1
|
Zhang L, Zhang Z, Huang Q, Zhao C, Shao X, Li Z. Design, Synthesis, and Insecticidal Activity of Novel meta-Diamide Compounds Bearing a Phthalimide as a Potential GABA Receptor Antagonist. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39565938 DOI: 10.1021/acs.jafc.4c05418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In pursuit of potent and environmentally benign insecticides targeting the γ-aminobutyric acid (GABA) receptor, a series of novel meta-diamide compounds bearing a phthalimide were rationally designed and synthesized. Bioassay studies revealed that most of the target compounds exhibited promising larvicidal activity against Mythimna separata (M. separata) and Plutella xylostella (P. xylostella). Notably, the most active compound N15 displayed exceptional potency with LC50 values of 3.82 and 3.42 mg·L-1 against M. separata and P. xylostella, respectively. Electrophysiological studies using Xenopus oocytes confirmed that compound N15 exerted its insecticidal activity by targeting the GABA receptors.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenguo Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qiutang Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunqing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - XuSheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Wang G, Peng S, Reyes Mendez M, Keramidas A, Castellano D, Wu K, Han W, Tian Q, Dong L, Li Y, Lu W. The TMEM132B-GABA A receptor complex controls alcohol actions in the brain. Cell 2024; 187:6649-6668.e35. [PMID: 39357522 DOI: 10.1016/j.cell.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Alcohol is the most consumed and abused psychoactive drug globally, but the molecular mechanisms driving alcohol action and its associated behaviors in the brain remain enigmatic. Here, we have discovered a transmembrane protein TMEM132B that is a GABAA receptor (GABAAR) auxiliary subunit. Functionally, TMEM132B promotes GABAAR expression at the cell surface, slows receptor deactivation, and enhances the allosteric effects of alcohol on the receptor. In TMEM132B knockout (KO) mice or TMEM132B I499A knockin (KI) mice in which the TMEM132B-GABAAR interaction is specifically abolished, GABAergic transmission is decreased and alcohol-induced potentiation of GABAAR-mediated currents is diminished in hippocampal neurons. Behaviorally, the anxiolytic and sedative/hypnotic effects of alcohol are markedly reduced, and compulsive, binge-like alcohol consumption is significantly increased. Taken together, these data reveal a GABAAR auxiliary subunit, identify the TMEM132B-GABAAR complex as a major alcohol target in the brain, and provide mechanistic insights into alcohol-related behaviors.
Collapse
Affiliation(s)
- Guohao Wang
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shixiao Peng
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miriam Reyes Mendez
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Mizutani K, Tsuchiya M. Hiccups during general anesthesia with remimazolam. JA Clin Rep 2024; 10:55. [PMID: 39230836 PMCID: PMC11374937 DOI: 10.1186/s40981-024-00727-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Koh Mizutani
- Department of Anesthesia, Chibune Hospital, 3-2-39 Fukumachi, Nishiyodogawa-Ku, Osaka, 555-0034, Japan.
| | - Masahiko Tsuchiya
- Department of Anesthesia, Kishiwada Tokushukai Hospital, 4-27-1, Kamoricho, Kishiwada, 596-0042, Japan
| |
Collapse
|
4
|
Do HQ, Pirayesh E, Ferreira G, Pandhare A, Gallardo ZR, Jansen M. A bupropion modulatory site in the Gloeobacter violaceus ligand-gated ion channel. Biophys J 2024; 123:2185-2198. [PMID: 38678367 PMCID: PMC11309978 DOI: 10.1016/j.bpj.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/27/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Bupropion is an atypical antidepressant and smoking cessation drug that causes adverse effects such as insomnia, irritability, and anxiety. Bupropion inhibits dopamine and norepinephrine reuptake transporters and eukaryotic cation-conducting pentameric ligand-gated ion channels, such as nicotinic acetylcholine and serotonin type 3A receptors, at clinically relevant concentrations. Here, we demonstrate that bupropion also inhibits a prokaryotic homolog of pentameric ligand-gated ion channels, the Gloeobacter violaceus ligand-gated ion channel (GLIC). Using the GLIC as a model, we used molecular docking to predict binding sites for bupropion. Bupropion was found to bind to several sites within the transmembrane domain, with the predominant site being localized to the interface between transmembrane segments M1 and M3 of two adjacent subunits. Residues W213, T214, and W217 in the first transmembrane segment, M1, and F267 and I271 in the third transmembrane segment, M3, most frequently reside within a 4 Å distance from bupropion. We then used single amino acid substitutions at these positions and two-electrode voltage-clamp recordings to determine their impact on bupropion inhibitory effects. The substitution T214F alters bupropion potency by shifting the half-maximal inhibitory concentration to a 13-fold higher value compared to wild-type GLIC. Residue T214 is found within a previously identified binding pocket for neurosteroids and lipids in the GLIC. This intersubunit binding pocket is structurally conserved and almost identical to a binding pocket described for neurosteroids in γ-aminobutyric acid type A receptors. Our data thus suggest that the T214 that lines a previously identified lipophilic binding pocket in GLIC and γ-aminobutyric acid type A receptors is also a modulatory site for bupropion interaction with the GLIC.
Collapse
Affiliation(s)
- Hoa Quynh Do
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Elham Pirayesh
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Garren Ferreira
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Akash Pandhare
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Zackary Ryan Gallardo
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Michaela Jansen
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|
5
|
Avoli M, Chen LY, Di Cristo G, Librizzi L, Scalmani P, Shiri Z, Uva L, de Curtis M, Lévesque M. Ligand-gated mechanisms leading to ictogenesis in focal epileptic disorders. Neurobiol Dis 2023; 180:106097. [PMID: 36967064 DOI: 10.1016/j.nbd.2023.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABAA receptors, cause large increases in extracellular [K+] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges. It has also been found that interactions between different areas of the limbic system modulate seizure occurrence by controlling extracellular [K+] homeostasis. In line with this view, low-frequency electrical or optogenetic activation of limbic networks restrain seizure generation, an effect that may also involve the activation of GABAB receptors and activity-dependent changes in epileptiform synchronization. Overall, these findings highlight the paradoxical role of GABAA signaling in both focal seizure generation and maintenance, emphasize the efficacy of low-frequency activation in abating seizures, and provide experimental evidence explaining the poor efficacy of antiepileptic drugs designed to augment GABAergic function in controlling seizures in focal epileptic disorders.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada; Neurology & Neurosurgery and of Physiology, McGill University, Montreal H3A 2B4, Que, Canada.
| | - Li-Yuan Chen
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Québec H3T 1N8, Canada; CHU Sainte-Justine Research Center, Montréal, Québec H3T 1C5, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Scalmani
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Zahra Shiri
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Laura Uva
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| |
Collapse
|
6
|
Avoli M, de Curtis M, Lévesque M, Librizzi L, Uva L, Wang S. GABAA signaling, focal epileptiform synchronization and epileptogenesis. Front Neural Circuits 2022; 16:984802. [PMID: 36275847 PMCID: PMC9581276 DOI: 10.3389/fncir.2022.984802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Under physiological conditions, neuronal network synchronization leads to different oscillatory EEG patterns that are associated with specific behavioral and cognitive functions. Excessive synchronization can, however, lead to focal or generalized epileptiform activities. It is indeed well established that in both epileptic patients and animal models, focal epileptiform EEG patterns are characterized by interictal and ictal (seizure) discharges. Over the last three decades, employing in vitro and in vivo recording techniques, several experimental studies have firmly identified a paradoxical role of GABAA signaling in generating interictal discharges, and in initiating—and perhaps sustaining—focal seizures. Here, we will review these experiments and we will extend our appraisal to evidence suggesting that GABAA signaling may also contribute to epileptogenesis, i.e., the development of plastic changes in brain excitability that leads to the chronic epileptic condition. Overall, we anticipate that this information should provide the rationale for developing new specific pharmacological treatments for patients presenting with focal epileptic disorders such as mesial temporal lobe epilepsy (MTLE).
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
- *Correspondence: Massimo Avoli,
| | - Marco de Curtis
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Montreal, QC, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Uva
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Siyan Wang
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Montreal, QC, Canada
| |
Collapse
|
7
|
Shafiee Z, Karami L, Akbari M, Rezaee E, Maaza M, Tabatabai SA, Karimi G. Insights into the molecular mechanism of triazolopyrimidinone derivatives effects on the modulation of α 1β 2γ 2 subtype of GABA A receptor: An in silico approach. Arch Biochem Biophys 2022; 729:109380. [PMID: 36027937 DOI: 10.1016/j.abb.2022.109380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/30/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Due to the importance of benzodiazepine drugs in clinical practice, such as the treatment of anxiety disorders, depression, and insomnia and the side effects of classical benzodiazepines, the study of new benzodiazepine agonists has received much attentions. In this work, we used in silico methods to explore the molecular mechanism of 1,2,4-triazolo [1,5--a] pyrimidinone derivatives in the modulation of α1β2γ2 subtype of GABAA receptor. To this aim, molecular docking, molecular dynamics simulation (MD), post-MD analysis, binding free energy calculation, and prediction of ADME properties were performed. Results showed that all new compounds have a better binding affinity for the Benzodiazepine (BZD) site of the receptor than diazepam and compound 4c had the highest affinity among them. Moreover, a good agreement was observed between the calculated ΔGbinding and experimental IC50 values. Also, we noticed that residues in loop regions (particularly loop C and D-F in α1 and γ2 subunits, respectively) forming BZD binding site, take part in forming several H-bonds between the agonists and the receptor. Ser205, Thr207, Tyr160, and His102 of α1 subunit and Thr207 of γ2 subunit are mainly involved in forming H-bonds. Also, the orientation of agonists in the BZD binding site leads to π-π interactions with hydrophobic residues in loops A-F. Based on the DCCM analysis, the correlated motions in the γ2 subunit residues are greater than those of α1 subunit residues. Further, predicted ADME results indicated that all agonists meet the criteria. The triplicate MD simulation showed the reproducibility of the results and strengthened the study. Our results provide a comprehensive insight into the receptor-agonist interactions and clues for designing future BZD agonists.
Collapse
Affiliation(s)
- Zohreh Shafiee
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mahmood Akbari
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Old Faure Road, 7129, Somerset West, South Africa
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Old Faure Road, 7129, Somerset West, South Africa
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gilda Karimi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
8
|
Volkova YA, Rassokhina IV, Kondrakhin EA, Rossokhin AV, Kolbaev SN, Tihonova TB, Kh. Dzhafarov M, Schetinina MA, Chernoburova EI, Vasileva EV, Dmitrenok AS, Kovalev GI, Sharonova IN, Zavarzin IV. Synthesis and Evaluation of Avermectin–Imidazo[1,2-a]pyridine Hybrids as Potent GABAA Receptor Modulators. Bioorg Chem 2022; 127:105904. [DOI: 10.1016/j.bioorg.2022.105904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/08/2023]
|
9
|
GABA A Receptor-Stabilizing Protein Ubqln1 Affects Hyperexcitability and Epileptogenesis after Traumatic Brain Injury and in a Model of In Vitro Epilepsy in Mice. Int J Mol Sci 2022; 23:ijms23073902. [PMID: 35409261 PMCID: PMC8999075 DOI: 10.3390/ijms23073902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic epilepsy (PTE) is a major public health concern and strongly contributes to human epilepsy cases worldwide. However, an effective treatment and prevention remains a matter of intense research. The present study provides new insights into the gamma aminobutyric acid A (GABAA)-stabilizing protein ubiquilin-1 (ubqln1) and its regulation in mouse models of traumatic brain injury (TBI) and in vitro epilepsy. We performed label-free quantification on isolated cortical GABAergic interneurons from GAD67-GFP mice that received unilateral TBI and discovered reduced expression of ubqln1 24 h post-TBI. To investigate the link between this regulation and the development of epileptiform activity, we further studied ubqln1 expression in hippocampal and cortical slices. Epileptiform events were evoked pharmacologically in acute brain slices by administration of picrotoxin (PTX, 50 μM) and kainic acid (KA, 500 nM) and recorded in the hippocampal CA1 subfield using Multi-electrode Arrays (MEA). Interestingly, quantitative Western blots revealed significant decreases in ubqln1 expression 1–7 h after seizure induction that could be restored by application of the non-selective monoamine oxidase inhibitor nialamide (NM, 10 μM). In picrotoxin-dependent dose–response relationships, NM administration alleviated the frequency and peak amplitude of seizure-like events (SLEs). These findings indicate a role of the monoamine transmitter systems and ubqln1 for cortical network activity during posttraumatic epileptogenesis.
Collapse
|
10
|
Distinct Functional Alterations and Therapeutic Options of Two Pathological De Novo Variants of the T292 Residue of GABRA1 Identified in Children with Epileptic Encephalopathy and Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23052723. [PMID: 35269865 PMCID: PMC8911174 DOI: 10.3390/ijms23052723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations of GABAAR have reportedly led to epileptic encephalopathy and neurodevelopmental disorders. We have identified a novel de novo T292S missense variant of GABRA1 from a pediatric patient with grievous global developmental delay but without obvious epileptic activity. This mutation coincidentally occurs at the same residue as that of a previously reported GABRA1 variant T292I identified from a pediatric patient with severe epilepsy. The distinct phenotypes of these two patients prompted us to compare the impacts of the two mutants on the receptor function and to search for suitable therapeutics. In this study, we used biochemical techniques and patch-clamp recordings in HEK293 cells overexpressing either wild-type or mutated rat recombinant GABAARs. We found that the α1T292S variant significantly increased GABA-evoked whole-cell currents, shifting the dose-response curve to the left without altering the maximal response. In contrast, the α1T292I variant significantly reduced GABA-evoked currents, shifting the dose-response curve to the right with a severely diminished maximum response. Single-channel recordings further revealed that the α1T292S variant increased, while the α1T292I variant decreased the GABAAR single-channel open time and open probability. Importantly, we found that the T292S mutation-induced increase in GABAAR function could be fully normalized by the negative GABAAR modulator thiocolchicoside, whereas the T292I mutation-induced impairment of GABAAR function was largely rescued with a combination of the GABAAR positive modulators diazepam and verapamil. Our study demonstrated that α1T292 is a critical residue for controlling GABAAR channel gating, and mutations at this residue may produce opposite impacts on the function of the receptors. Thus, the present work highlights the importance of functionally characterizing each individual GABAAR mutation for ensuring precision medicine.
Collapse
|
11
|
Soualah Z, Taly A, Crespin L, Saulais O, Henrion D, Legendre C, Tricoire-Leignel H, Legros C, Mattei C. GABA A Receptor Subunit Composition Drives Its Sensitivity to the Insecticide Fipronil. Front Neurosci 2021; 15:768466. [PMID: 34912189 PMCID: PMC8668240 DOI: 10.3389/fnins.2021.768466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Fipronil (FPN) is a worldwide-used neurotoxic insecticide, targeting, and blocking GABAA receptors (GABAARs). Beyond its efficiency on insect GABAARs, FPN causes neurotoxic effects in humans and mammals. Here, we investigated the mode of action of FPN on mammalian α6-containing GABAARs to understand its inhibitory effects on GABA-induced currents, as a function of the synaptic or extrasynaptic localization of GABAARs. We characterized the effects of FPN by electrophysiology using Xenopus oocytes which were microtransplanted with cerebellum membranes or injected with α6β3, α6β3γ2S (synaptic), and α6β3δ (extrasynaptic) cDNAs. At micromolar concentrations, FPN dose-dependently inhibited cerebellar GABA currents. FPN acts as a non-competitive antagonist on ternary receptors. Surprisingly, the inhibition of GABA-induced currents was partial for extra-synaptic (α6β3δ) and binary (α6β3) receptors, while synaptic α6β3γ2S receptors were fully blocked, indicating that the complementary γ or δ subunit participates in FPN-GABAAR interaction. FPN unexpectedly behaved as a positive modulator on β3 homopentamers. These data show that FPN action is driven by the subunit composition of GABAARs-highlighting the role of the complementary subunit-and thus their localization within a physiological synapse. We built a docking model of FPN on GABAARs, which reveals two putative binding sites. This is consistent with a double binding mode of FPN on GABAARs, possibly one being of high affinity and the other of low affinity. Physiologically, the γ/δ subunit incorporation drives its inhibitory level and has important significance for its toxicity on the mammalian nervous system, especially in acute exposure.
Collapse
Affiliation(s)
- Zineb Soualah
- Univ Angers, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Lucille Crespin
- Univ Angers, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | - Ophélie Saulais
- Univ Angers, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | - Daniel Henrion
- Univ Angers, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | - Claire Legendre
- Univ Angers, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | | | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | - César Mattei
- Univ Angers, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| |
Collapse
|
12
|
Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABA A receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol 2021; 19:123. [PMID: 34417930 PMCID: PMC8380214 DOI: 10.1186/s43141-021-00224-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/08/2021] [Indexed: 02/03/2023]
Abstract
Background γ-Aminobutyric acid sub-type A receptors (GABAARs) are the most prominent inhibitory neurotransmitter receptors in the CNS. They are a family of ligand-gated ion channel with significant physiological and therapeutic implications. Main body GABAARs are heteropentamers formed from a selection of 19 subunits: six α (alpha1-6), three β (beta1-3), three γ (gamma1-3), three ρ (rho1-3), and one each of the δ (delta), ε (epsilon), π (pi), and θ (theta) which result in the production of a considerable number of receptor isoforms. Each isoform exhibits distinct pharmacological and physiological properties. However, the majority of GABAARs are composed of two α subunits, two β subunits, and one γ subunit arranged as γ2β2α1β2α1 counterclockwise around the center. The mature receptor has a central chloride ion channel gated by GABA neurotransmitter and modulated by a variety of different drugs. Changes in GABA synthesis or release may have a significant effect on normal brain function. Furthermore, The molecular interactions and pharmacological effects caused by drugs are extremely complex. This is due to the structural heterogeneity of the receptors, and the existence of multiple allosteric binding sites as well as a wide range of ligands that can bind to them. Notably, dysfunction of the GABAergic system contributes to the development of several diseases. Therefore, understanding the relationship between GABAA receptor deficits and CNS disorders thus has a significant impact on the discovery of disease pathogenesis and drug development. Conclusion To date, few reviews have discussed GABAA receptors in detail. Accordingly, this review aims to summarize the current understanding of the structural, physiological, and pharmacological properties of GABAARs, as well as shedding light on the most common associated disorders.
Collapse
Affiliation(s)
- Amr Ghit
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy. .,Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Dina Assal
- Department of Biotechnology, American University in Cairo (AUC), Cairo, Egypt
| | - Ahmed S Al-Shami
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Diaa Eldin E Hussein
- Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Port of Alexandria, Alexandria, Egypt
| |
Collapse
|
13
|
Doyno CR, White CM. Sedative-Hypnotic Agents That Impact Gamma-Aminobutyric Acid Receptors: Focus on Flunitrazepam, Gamma-Hydroxybutyric Acid, Phenibut, and Selank. J Clin Pharmacol 2021; 61 Suppl 2:S114-S128. [PMID: 34396551 DOI: 10.1002/jcph.1922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022]
Abstract
There are many nonopioid central nervous system depressant substances that share a gamma-aminobutyric acid (GABA) receptor-related mechanism of action. These sedatives-hypnotics can be indicated to treat anxiety, seizures, depression, and insomnia but are also used as substances of abuse and used to facilitate sexual assault. Barbiturates, methaqualone, and glutethimide were among the first type A GABA receptor-mediated sedative-hypnotics. Their clinical use was limited for most indications by serious adverse events and strong abuse potential but continue to be used illicitly around the world. The benzodiazepines supplanted barbiturates for most indications because they were less likely to cause severe adverse events in monotherapy. Flunitrazepam is a newer benzodiazepine that is preferentially used recreationally and to facilitate sexual assault. Flunitrazepam has greater potency and higher affinity for the type A GABA receptor than most benzodiazepines. Gamma-hydroxybutyric acid is sought illicitly for its hypnotic, euphoric and anabolic effects as well as to facilitate sexual assault. When any of these GABAergic drugs are used in high doses or with other sedative hypnotic agents, respiratory depression, coma, and death have occurred. Chronic use of these GABAergic drugs can lead to significant withdrawal syndromes. Phenibut and selank are poorly studied Russian drugs with GABAergic mechanisms that are inexplicably sold to US consumers as dietary supplements. Poison control center calls regarding phenibut have increased substantially over the past 5 years. Desired euphoriant effects account for the recreational and illicit use of many GABA-modulating agents. However, illicit use can lead to significant toxicities related to abuse, dependence, and subsequent withdrawal syndromes. Significant evaluation of developing agents with GABA properties should be conducted to determine abuse potential before public access ensues.
Collapse
Affiliation(s)
- Cassandra R Doyno
- Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Storrs, Connecticut, USA.,John Dempsey Hospital, University of Connecticut, Farmington, Connecticut, USA
| | - C Michael White
- Department of Research Administration, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
14
|
Halliwell RF, Salmanzadeh H, Coyne L, Cao WS. An Electrophysiological and Pharmacological Study of the Properties of Human iPSC-Derived Neurons for Drug Discovery. Cells 2021; 10:cells10081953. [PMID: 34440722 PMCID: PMC8395001 DOI: 10.3390/cells10081953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
Human stem cell-derived neurons are increasingly considered powerful models in drug discovery and disease modeling, despite limited characterization of their molecular properties. Here, we have conducted a detailed study of the properties of a commercial human induced Pluripotent Stem Cell (iPSC)-derived neuron line, iCell [GABA] neurons, maintained for up to 3 months in vitro. We confirmed that iCell neurons display neurite outgrowth within 24 h of plating and label for the pan-neuronal marker, βIII tubulin within the first week. Our multi-electrode array (MEA) recordings clearly showed neurons generated spontaneous, spike-like activity within 2 days of plating, which peaked at one week, and rapidly decreased over the second week to remain at low levels up to one month. Extracellularly recorded spikes were reversibly inhibited by tetrodotoxin. Patch-clamp experiments showed that iCell neurons generated spontaneous action potentials and expressed voltage-gated Na and K channels with membrane capacitances, resistances and membrane potentials that are consistent with native neurons. Our single neuron recordings revealed that reduced spiking observed in the MEA after the first week results from development of a dominant inhibitory tone from GABAergic neuron circuit maturation. GABA evoked concentration-dependent currents that were inhibited by the convulsants, bicuculline and picrotoxin, and potentiated by the positive allosteric modulators, diazepam, chlordiazepoxide, phenobarbital, allopregnanolone and mefenamic acid, consistent with native neuronal GABAA receptors. We also show that glycine evoked robust concentration-dependent currents that were inhibited by the neurotoxin, strychnine. Glutamate, AMPA, Kainate and NMDA each evoked concentration-dependent currents in iCell neurons that were blocked by their selective antagonists, consistent with the expression of ionotropic glutamate receptors. The NMDA currents required the presence of the co-agonist glycine and were blocked in a highly voltage-dependent manner by Mg2+ consistent with the properties of native neuronal NMDA receptors. Together, our data suggest that such human iPSC-derived neurons may have significant value in drug discovery and development and may eventually largely replace the need for animal tissues in human biomedical research.
Collapse
|
15
|
Mundy PC, Pressly B, Carty DR, Yaghoobi B, Wulff H, Lein PJ. The efficacy of γ-aminobutyric acid type A receptor (GABA AR) subtype-selective positive allosteric modulators in blocking tetramethylenedisulfotetramine (TETS)-induced seizure-like behavior in larval zebrafish with minimal sedation. Toxicol Appl Pharmacol 2021; 426:115643. [PMID: 34265354 PMCID: PMC8514104 DOI: 10.1016/j.taap.2021.115643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022]
Abstract
The chemical threat agent tetramethylenedisulfotetramine (TETS) is a γ-aminobutyric acid type A receptor (GABA AR) antagonist that causes life threatening seizures. Currently, there is no specific antidote for TETS intoxication. TETS-induced seizures are typically treated with benzodiazepines, which function as nonselective positive allosteric modulators (PAMs) of synaptic GABAARs. The major target of TETS was recently identified as the GABAAR α2β3γ2 subtype in electrophysiological studies using recombinantly expressed receptor combinations. Here, we tested whether these in vitro findings translate in vivo by comparing the efficacy of GABAAR subunit-selective PAMs in reducing TETS-induced seizure behavior in larval zebrafish. We tested PAMs targeting α1, α2, α2/3/5, α6, ß2/3, ß1/2/3, and δ subunits and compared their efficacy to the benzodiazepine midazolam (MDZ). The data demonstrate that α2- and α6-selective PAMs (SL-651,498 and SB-205384, respectively) were effective at mitigating TETS-induced seizure-like behavior. Combinations of SB-205384 and MDZ or SL-651,498 and 2–261 (ß2/3-selective) mitigated TETS-induced seizure-like behavior at concentrations that did not elicit sedating effects in a photomotor behavioral assay, whereas MDZ alone caused sedation at the concentration required to stop seizure behavior. Isobologram analyses suggested that SB-205384 and MDZ interacted in an antagonistic fashion, while the effects of SL-651,498 and 2–261 were additive. These results further elucidate the molecular mechanism by which TETS induces seizures and provide mechanistic insight regarding specific countermeasures against this chemical convulsant.
Collapse
Affiliation(s)
- Paige C Mundy
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Brandon Pressly
- Department of Pharmacology, University of California, School of Medicine, Davis, CA 95616, United States.
| | - Dennis R Carty
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Heike Wulff
- Department of Pharmacology, University of California, School of Medicine, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States.
| |
Collapse
|
16
|
Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABA A receptors in pain management: Promising targets for novel analgesics. Neuropharmacology 2021; 195:108675. [PMID: 34153311 DOI: 10.1016/j.neuropharm.2021.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Communication between nerve cells depends on the balance between excitatory and inhibitory circuits. GABA, the major inhibitory neurotransmitter, regulates this balance and insufficient GABAergic activity is associated with numerous neuropathological disorders including pain. Of the various GABAA receptor subtypes, the δ-containing receptors are particularly interesting drug targets in management of chronic pain. These receptors are pentameric ligand-gated ion channels composed of α, β and δ subunits and can be activated by ambient levels of GABA to generate tonic conductance. However, only a few ligands preferentially targeting δ-containing GABAA receptors have so far been identified, limiting both pharmacological understanding and drug-discovery efforts, and more importantly, understanding of how they affect pain pathways. Here, we systemically review and discuss the known drugs and ligands with analgesic potential targeting δ-containing GABAA receptors and further integrate the biochemical nature of the receptors with clinical perspectives in pain that might generate interest among researchers and clinical physicians to encourage analgesic discovery efforts leading to more efficient therapies.
Collapse
Affiliation(s)
- Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ali Saad Kusay
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tian Jiang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mary Chebib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
17
|
Vitale RM, Iannotti FA, Amodeo P. The (Poly)Pharmacology of Cannabidiol in Neurological and Neuropsychiatric Disorders: Molecular Mechanisms and Targets. Int J Mol Sci 2021; 22:4876. [PMID: 34062987 PMCID: PMC8124847 DOI: 10.3390/ijms22094876] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cannabidiol (CBD), the major nonpsychoactive Cannabis constituent, has been proposed for the treatment of a wide panel of neurological and neuropsychiatric disorders, including anxiety, schizophrenia, epilepsy and drug addiction due to the ability of its versatile scaffold to interact with diverse molecular targets that are not restricted to the endocannabinoid system. Albeit the molecular mechanisms responsible for the therapeutic effects of CBD have yet to be fully elucidated, many efforts have been devoted in the last decades to shed light on its complex pharmacological profile. In particular, an ever-increasing number of molecular targets linked to those disorders have been identified for this phytocannabinoid, along with the modulatory effects of CBD on their cascade signaling. In this view, here we will try to provide a comprehensive and up-to-date overview of the molecular basis underlying the therapeutic effects of CBD involved in the treatment of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| |
Collapse
|
18
|
Janković SM, Dješević M, Janković SV. Experimental GABA A Receptor Agonists and Allosteric Modulators for the Treatment of Focal Epilepsy. J Exp Pharmacol 2021; 13:235-244. [PMID: 33727865 PMCID: PMC7954424 DOI: 10.2147/jep.s242964] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
GABA A receptors are ubiquitous in the central nervous system and there is a huge diversity of receptor subtypes in almost all regions of the brain. However, the expression of GABA A receptor subtypes is altered in both the gray and white matter of patients with focal epilepsy. Although there is a number of anticonvulsants with marketing authorization for the treatment of focal epilepsy which act through GABA A receptors, potentiating the inhibitory effects of GABA, it is necessary to develop more potent and more specific GABAergic anticonvulsants that are effective in drug-resistant patients with focal epilepsy. There are three orthosteric and at least seven allosteric agonist binding sites at the GABA A receptor. In experimental and clinical studies, full agonists of GABA A receptors showed a tendency to cause desensitization of the receptors, tolerance, and physical dependence; therefore, partial orthosteric agonists and positive allosteric modulators of GABA A receptors were further developed. Preclinical studies demonstrated the anticonvulsant efficacy of positive allosteric modulators with selective action on GABA A receptors with α2/α3 subunits, but only a handful of them were further tested in clinical trials. The best results were obtained for clobazam (already marketed), ganaxolone (in phase III trials), CVL-865 (in phase II trials), and padsevonil (in phase III trials). Several compounds with more selective action on GABA A receptors, perhaps only in certain brain regions, have the potential to become effective drugs against specific subtypes of focal-onset epilepsy. However, their development needs time, and in the near future we can expect only one or two new GABA A agonists to obtain marketing authorization for focal epilepsy, an advance that would be of use for just a fraction of patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
| | - Miralem Dješević
- Cardiology Department, Private Policlinic Center Eurofarm, Sarajevo, Bosnia and Hercegovina
| | - Snežana V Janković
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
19
|
Pressly B, Lee RD, Barnych B, Hammock BD, Wulff H. Identification of the Functional Binding Site for the Convulsant Tetramethylenedisulfotetramine in the Pore of the α 2 β 3 γ 2 GABA A Receptor. Mol Pharmacol 2021; 99:78-91. [PMID: 33109687 PMCID: PMC7746976 DOI: 10.1124/molpharm.120.000090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022] Open
Abstract
Tetramethylenedisulfotetramine (TETS) is a so-called "caged" convulsant that is responsible for thousands of accidental and malicious poisonings. Similar to the widely used GABA receptor type A (GABAA) antagonist picrotoxinin, TETS has been proposed to bind to the noncompetitive antagonist (NCA) site in the pore of the receptor channel. However, the TETS binding site has never been experimentally mapped, and we here set out to gain atomistic level insights into how TETS inhibits the human α 2 β 3 γ 2 GABAA receptor. Using the Rosetta molecular modeling suite, we generated three homology models of the α 2 β 3 γ 2 receptor in the open, desensitized, and closed/resting state. Three different ligand-docking algorithms (RosettaLigand, Glide, and Swissdock) identified two possible TETS binding sites in the channel pore. Using a combination of site-directed mutagenesis, electrophysiology, and modeling to probe both sites, we demonstrate that TETS binds at the T6' ring in the closed/resting-state model, in which it shows perfect space complementarity and forms hydrogen bonds or makes hydrophobic interactions with all five pore-lining threonine residues of the pentameric receptor. Mutating T6' in either the α 2 or β 3 subunit reduces the IC50 of TETS by ∼700-fold in whole-cell patch-clamp experiments. TETS is thus interacting at the NCA site in the pore of the GABAA receptor at a location that is overlapping but not identical to the picrotoxinin binding site. SIGNIFICANCE STATEMENT: Our study identifies the binding site of the highly toxic convulsant tetramethylenedisulfotetramine (TETS), which is classified as a threat agent by the World Health Organization. Using a combination of homology protein modeling, ligand docking, site-directed mutagenesis, and electrophysiology, we show that TETS is binding in the pore of the α2β3γ2 GABA receptor type A receptor at the so-called T6' ring, wherein five threonine residues line the permeation pathway of the pentameric receptor channel.
Collapse
Affiliation(s)
- Brandon Pressly
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| | - Ruth D Lee
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| | - Bogdan Barnych
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| | - Bruce D Hammock
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| | - Heike Wulff
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| |
Collapse
|
20
|
Rahaman M, Ali MS, Jahan K, Belayet JB, Rahman AFMT, Hossain MM. Chemistry of 3-hydroxy-2-aryl acrylate: syntheses, mechanisms, and applications. Org Chem Front 2021. [DOI: 10.1039/d0qo01157f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
3-Hydroxy-2-aryl acrylate is important scaffold which is widely used for the synthesis of pharmacologically active compounds. This review summarises the synthetic methods of the 3-hydroxy-2-aryl acrylate including mechanisms and applications.
Collapse
Affiliation(s)
- Mizzanoor Rahaman
- Department of Chemistry and Biochemistry
- University of Wisconsin–Milwaukee
- Milwaukee
- USA
| | - M. Shahnawaz Ali
- Department of Chemistry and Biochemistry
- University of Wisconsin–Milwaukee
- Milwaukee
- USA
| | - Khorshada Jahan
- Department of Chemistry and Biochemistry
- University of Wisconsin–Milwaukee
- Milwaukee
- USA
| | - Jawad Bin Belayet
- Department of Chemistry and Biochemistry
- University of Wisconsin–Milwaukee
- Milwaukee
- USA
| | | | - M. Mahmun Hossain
- Department of Chemistry and Biochemistry
- University of Wisconsin–Milwaukee
- Milwaukee
- USA
| |
Collapse
|
21
|
Wang PF, Jensen AA, Bunch L. From Methaqualone and Beyond: Structure-Activity Relationship of 6-, 7-, and 8-Substituted 2,3-Diphenyl-quinazolin-4(3 H)-ones and in Silico Prediction of Putative Binding Modes of Quinazolin-4(3 H)-ones as Positive Allosteric Modulators of GABA A Receptors. ACS Chem Neurosci 2020; 11:4362-4375. [PMID: 33170625 DOI: 10.1021/acschemneuro.0c00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Methaqualone (2-methyl-3-(o-tolyl)-quinazolin-4(3H)-one, MTQ) is a moderately potent positive allosteric modulator (PAM) of GABAA receptors (GABAARs). In a previous structure-activity relationship (SAR) study probing the importance of 2- and 3-substituents in the quinazolin-4(3H)-one scaffold, several potent GABAAR PAMs were identified, including 2,3-diphenylquinazolin-4(3H)-one (PPQ) and 3-(2-chlorophenyl)-2-phenylquinazolin-4(3H)-one (Cl-PPQ). Here, PPQ was applied as lead in a SAR study of 6-, 7-, and 8-substituents in the quinazolin-4(3H)-one by synthesis and functional characterization of 36 PPQ analogs at various GABAAR subtypes. While none of the new analogs were significantly more potent than PPQ or displayed pronounced subtype selectivity across the GABAARs tested, several interesting SAR observations were extracted from the study. In an in silico study, the putative binding modes of MTQ, PPQ, and Cl-PPQ in the transmembrane β2(+)/α1(-) interface of the α1β2γ2S GABAAR were predicted. Several plausible binding modes were identified for the three PAMs, and rationalization of the molecular basis for their different modulatory potencies was attempted.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 400044, P.R. China
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
22
|
Untereiner A, Xu J, Bhattacharjee A, Cabrera O, Hu C, Dai FF, Wheeler MB. γ-aminobutyric acid stimulates β-cell proliferation through the mTORC1/p70S6K pathway, an effect amplified by Ly49, a novel γ-aminobutyric acid type A receptor positive allosteric modulator. Diabetes Obes Metab 2020; 22:2021-2031. [PMID: 32558194 DOI: 10.1111/dom.14118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
AIM To examine the mechanism of action of γ-aminobutyric acid (GABA) on β-cell proliferation and investigate if co-treatment with Ly49, a novel GABA type A receptor positive allosteric modulator (GABAA -R PAM), amplifies this effect. METHODS Human or mouse islets were co-treated for 4-5 days with GABA and selected receptor or cell signalling pathway modulators. Immunofluorescence was used to determine protein co-localization, cell number or proliferation, and islet size. Osmotic minipumps were surgically implanted in mice to assess Ly49 effects on pancreatic β-cells. RESULTS Amplification of GABAA -R signalling enhanced GABA-stimulated β-cell proliferation in cultured mouse islets. Co-treatment of GABA with an inhibitor specific for PI3K, mTORC1/2, or p70S6K, abolished GABA-stimulated β-cell proliferation in mouse and human islets. Nuclear p-AktSer473 and p-p70S6KThr421/Ser424 expression in pancreatic β-cells was increased in GABA-treated mice compared with vehicle-treated mice, an effect augmented with GABA and Ly49 co-treatment. Mice co-treated with GABA and Ly49 exhibited enhanced β-cell area and proliferation compared with GABA-treated mice. Furthermore, S961 injection (an insulin receptor antagonist) resulted in enhanced plasma insulin in GABA and Ly49 co-treated mice compared with GABA-treated mice. Importantly, GABA co-treated with Ly49 increased β-cell proliferation in human islets providing a potential application for human subjects. CONCLUSIONS We show that GABA stimulates β-cell proliferation via the PI3K/mTORC1/p70S6K pathway in both mouse and human islets. Furthermore, we show that Ly49 enhances the β-cell regenerative effects of GABA, showing potential in the intervention of diabetes.
Collapse
Affiliation(s)
- Ashley Untereiner
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jie Xu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Alpana Bhattacharjee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Over Cabrera
- Diabetes and Complications Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Feihan F Dai
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Han W, Li J, Pelkey KA, Pandey S, Chen X, Wang YX, Wu K, Ge L, Li T, Castellano D, Liu C, Wu LG, Petralia RS, Lynch JW, McBain CJ, Lu W. Shisa7 is a GABA A receptor auxiliary subunit controlling benzodiazepine actions. Science 2020; 366:246-250. [PMID: 31601770 DOI: 10.1126/science.aax5719] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
The function and pharmacology of γ-aminobutyric acid type A receptors (GABAARs) are of great physiological and clinical importance and have long been thought to be determined by the channel pore-forming subunits. We discovered that Shisa7, a single-passing transmembrane protein, localizes at GABAergic inhibitory synapses and interacts with GABAARs. Shisa7 controls receptor abundance at synapses and speeds up the channel deactivation kinetics. Shisa7 also potently enhances the action of diazepam, a classic benzodiazepine, on GABAARs. Genetic deletion of Shisa7 selectively impairs GABAergic transmission and diminishes the effects of diazepam in mice. Our data indicate that Shisa7 regulates GABAAR trafficking, function, and pharmacology and reveal a previously unknown molecular interaction that modulates benzodiazepine action in the brain.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Pelkey
- Cellular and Synaptic Neuroscience Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saurabh Pandey
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lihao Ge
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tianming Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenetic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chris J McBain
- Cellular and Synaptic Neuroscience Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Arch Toxicol 2020; 94:1995-2007. [PMID: 32239239 PMCID: PMC7303059 DOI: 10.1007/s00204-020-02728-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
Acute intoxication with picrotoxin or the rodenticide tetramethylenedisulfotetramine (TETS) can cause seizures that rapidly progress to status epilepticus and death. Both compounds inhibit γ-aminobutyric acid type-A (GABAA) receptors with similar potency. However, TETS is approximately 100 × more lethal than picrotoxin. Here, we directly compared the toxicokinetics of the two compounds following intraperitoneal administration in mice. Using LC/MS analysis we found that picrotoxinin, the active component of picrotoxin, hydrolyses quickly into picrotoxic acid, has a short in vivo half-life, and is moderately brain penetrant (brain/plasma ratio 0.3). TETS, in contrast, is not metabolized by liver microsomes and persists in the body following intoxication. Using both GC/MS and a TETS-selective immunoassay we found that mice administered TETS at the LD50 of 0.2 mg/kg in the presence of rescue medications exhibited serum levels that remained constant around 1.6 μM for 48 h before falling slowly over the next 10 days. TETS showed a similar persistence in tissues. Whole-cell patch-clamp demonstrated that brain and serum extracts prepared from mice at 2 and 14 days after TETS administration significantly blocked heterologously expressed α2β3γ2 GABAA-receptors confirming that TETS remains pharmacodynamically active in vivo. This observed persistence may contribute to the long-lasting and recurrent seizures observed following human exposures. We suggest that countermeasures to neutralize TETS or accelerate its elimination should be explored for this highly dangerous threat agent.
Collapse
|
25
|
Shalabi AR, Yu Z, Zhou X, Jounaidi Y, Chen H, Dai J, Kent DE, Feng HJ, Forman SA, Cohen JB, Bruzik KS, Miller KW. A potent photoreactive general anesthetic with novel binding site selectivity for GABA A receptors. Eur J Med Chem 2020; 194:112261. [PMID: 32247113 DOI: 10.1016/j.ejmech.2020.112261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022]
Abstract
The pentameric γ-aminobutyric acid type A receptors (GABAARs) are the major inhibitory ligand-gated ion channels in the central nervous system. They mediate diverse physiological functions, mutations in them are associated with mental disorders and they are the target of many drugs such as general anesthetics, anxiolytics and anti-convulsants. The five subunits of synaptic GABAARs are arranged around a central pore in the order β-α-β-α-γ. In the outer third of the transmembrane domain (TMD) drugs may bind to five homologous intersubunit binding sites. Etomidate binds between the pair of β - α subunit interfaces (designated as β+/α-) and R-mTFD-MPAB binds to an α+/β- and an γ+/β- subunit interface (a β- selective ligand). Ligands that bind selectively to other homologous sites have not been characterized. We have synthesized a novel photolabel, (2,6-diisopropyl-4-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenyl)methanol or pTFD-di-iPr-BnOH). It is a potent general anesthetic that positively modulates agonist and benzodiazepine binding. It enhances GABA-induced currents, shifting the GABA concentration-response curve to lower concentrations. Photolabeling-protection studies show that it has negligible affinity for the etomidate sites and high affinity for only one of the two R-mTFD-MPAB sites. Exploratory site-directed mutagenesis studies confirm the latter conclusions and hint that pTFD-di-iPr-BnOH may bind between the α+/β- and α+/γ- subunits in the TMD, making it an α+ ligand. The latter α+/γ- site has not previously been implicated in ligand binding. Thus, pTFD-di-iPr-BnOH is a promising new photolabel that may open up a new pharmacology for synaptic GABAARs.
Collapse
Affiliation(s)
- Abdelrahman R Shalabi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Zhiyi Yu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Hanwen Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA.
| | - Jiajia Dai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA.
| | - Daniel E Kent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA; Department of Health Science, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA
| | - Jonathan B Cohen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
26
|
Lévesque M, Ragsdale D, Avoli M. Evolving Mechanistic Concepts of Epileptiform Synchronization and their Relevance in Curing Focal Epileptic Disorders. Curr Neuropharmacol 2020; 17:830-842. [PMID: 30479217 PMCID: PMC7052840 DOI: 10.2174/1570159x17666181127124803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023] Open
Abstract
The synchronized activity of neuronal networks under physiological conditions is mirrored by specific oscillatory patterns of the EEG that are associated with different behavioral states and cognitive functions. Excessive synchronization can, however, lead to focal epileptiform activity characterized by interictal and ictal discharges in epileptic patients and animal models. This review focusses on studies that have addressed epileptiform synchronization in temporal lobe regions by employing in vitro and in vivo recording techniques. First, we consider the role of ionotropic and metabotropic excitatory glutamatergic transmission in seizure generation as well as the paradoxical role of GABAA signaling in initiating and perhaps maintaining focal seizure activity. Second, we address non-synaptic mechanisms (which include voltage-gated ionic currents and gap junctions) in the generation of epileptiform synchronization. For each mechanism, we discuss the actions of antiepileptic drugs that are presumably modulating excitatory or inhibitory signaling and voltage-gated currents to prevent seizures in epileptic patients. These findings provide insights into the mechanisms of seizure initiation and maintenance, thus leading to the development of specific pharmacological treatments for focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - David Ragsdale
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada.,Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada.,Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
27
|
Sharma J, Bhardwaj VK, Das P, Purohit R. Identification of naturally originated molecules as γ-aminobutyric acid receptor antagonist. J Biomol Struct Dyn 2020; 39:911-922. [DOI: 10.1080/07391102.2020.1720818] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
- CSIR-IHBT Campus, Academy of Scientific & Innovative Research (AcSIR), Palampur, Himachal Pradesh, India
| | - Pralay Das
- CSIR-IHBT Campus, Academy of Scientific & Innovative Research (AcSIR), Palampur, Himachal Pradesh, India
- Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
- CSIR-IHBT Campus, Academy of Scientific & Innovative Research (AcSIR), Palampur, Himachal Pradesh, India
| |
Collapse
|
28
|
Kent DE, Savechenkov PY, Bruzik KS, Miller KW. Binding site location on GABA A receptors determines whether mixtures of intravenous general anaesthetics interact synergistically or additively in vivo. Br J Pharmacol 2019; 176:4760-4772. [PMID: 31454409 DOI: 10.1111/bph.14843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE General anaesthetics can act on synaptic GABAA receptors by binding to one of three classes of general anaesthetic sites. Canonical drugs that bind selectively to only one class of site are etomidate, alphaxalone, and the mephobarbital derivative, R-mTFD-MPAB. We tested the hypothesis that the general anaesthetic potencies of mixtures of such site-selective agents binding to the same or to different sites would combine additively or synergistically respectively. EXPERIMENTAL APPROACH The potency of general anaesthetics individually or in combinations to cause loss of righting reflexes in tadpoles was determined, and the results were analysed using isobolographic methods. KEY RESULTS The potencies of combinations of two or three site-selective anaesthetics that all acted on a single class of site were strictly additive, regardless of which single site was involved. Combinations of two or three site-selective anaesthetics that all bound selectively to different sites always interacted synergistically. The strength of the synergy increased with the number of separate sites involved such that the percentage of each agent's EC50 required to cause anaesthesia was just 35% and 14% for two or three sites respectively. Propofol, which binds non-selectively to the etomidate and R-mTFD-MPAB sites, interacted synergistically with each of these agents. CONCLUSIONS AND IMPLICATIONS The established pharmacology of the three anaesthetic binding sites on synaptic GABAA receptors was sufficient to predict whether a mixture of anaesthetics interacted additively or synergistically to cause loss of righting reflexes in vivo. The principles established here have implications for clinical practice.
Collapse
Affiliation(s)
- Daniel E Kent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Health Sciences, Northeastern University, Boston, Massachusetts
| | | | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Tikhonova TA, Rassokhina IV, Kondrakhin EA, Fedosov MA, Bukanova JV, Rossokhin AV, Sharonova IN, Kovalev GI, Zavarzin IV, Volkova YA. Development of 1,3-thiazole analogues of imidazopyridines as potent positive allosteric modulators of GABA A receptors. Bioorg Chem 2019; 94:103334. [PMID: 31711764 DOI: 10.1016/j.bioorg.2019.103334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Structure-activity relationship studies were conducted in the search for 1,3-thiazole isosteric analogs of imidazopyridine drugs (Zolpidem, Alpidem). Three series of novel γ-aminobutyric acid receptor (GABAAR) ligands belonging to imidazo[2,1-b]thiazoles, imidazo[2,1-b][1,3,4]thiadiazoles, and benzo[d]imidazo[2,1-b]thiazoles were synthesized and characterized as active agents against GABAAR benzodiazepine-binding site. In each of these series, potent compounds were discovered using a radioligand competition binding assay. The functional properties of highest-affinity compounds 28 and 37 as GABAAR positive allosteric modulators (PAMs) were determined by electrophysiological measurements. In vivo studies on zebrafish demonstrated their potential for the further development of anxiolytics. Using the OECD "Fish, Acute Toxicity Test" active compounds were found safe and non-toxic. Structural bases for activity of benzo[d]imidazo[2,1-b]thiazoles were proposed using molecular docking studies. The isosteric replacement of the pyridine nuclei by 1,3-thiazole, 1,3,4-thiadiazole, or 1,3-benzothiazole in the ring-fused imidazole class of GABAAR PAMs was shown to be promising for the development of novel hypnotics, anxiolytics, anticonvulsants, and sedatives drug-candidates.
Collapse
Affiliation(s)
- Tatyana A Tikhonova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Irina V Rassokhina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Eugeny A Kondrakhin
- V. V. Zakusov Institute of Pharmacology, Russian Academy of Sciences, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Mikhail A Fedosov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Julia V Bukanova
- Research Center of Neurology, 5 By-str. Obukha, 105064 Moscow, Russia
| | | | - Irina N Sharonova
- Research Center of Neurology, 5 By-str. Obukha, 105064 Moscow, Russia
| | - Georgy I Kovalev
- V. V. Zakusov Institute of Pharmacology, Russian Academy of Sciences, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Yulia A Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia.
| |
Collapse
|
30
|
Abstract
Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia.
Collapse
Affiliation(s)
- W Wisden
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - X Yu
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - N P Franks
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
31
|
Brickley S, Zirpel F. Developing more effective seizure therapies requires more selective drugs. J Physiol 2019; 597:4123-4124. [PMID: 31166606 DOI: 10.1113/jp278229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Stephen Brickley
- Imperial College London, Department of Life Sciences, London, SW7 2AZ, UK
| | - Florian Zirpel
- Imperial College London, Department of Life Sciences, London, SW7 2AZ, UK
| |
Collapse
|
32
|
Gao F, Chen D, Ma X, Sudweeks S, Yorgason JT, Gao M, Turner D, Eaton JB, McIntosh JM, Lukas RJ, Whiteaker P, Chang Y, Steffensen SC, Wu J. Alpha6-containing nicotinic acetylcholine receptor is a highly sensitive target of alcohol. Neuropharmacology 2019; 149:45-54. [PMID: 30710570 PMCID: PMC7323585 DOI: 10.1016/j.neuropharm.2019.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/01/2019] [Accepted: 01/17/2019] [Indexed: 02/05/2023]
Abstract
Alcohol use disorder (AUD) is a serious public health problem that results in tremendous social, legal and medical costs to society. Unlike other addictive drugs, there is no specific molecular target for ethanol (EtOH). Here, we report a novel molecular target that mediates EtOH effects at concentrations below those that cause legally-defined inebriation. Using patch-clamp recording of human α6*-nicotinic acetylcholine receptor (α6*-nAChR) function when heterologously expressed in SH-EP1 human epithelial cells, we found that 0.1-5 mM EtOH significantly enhances α6*-nAChR-mediated currents with effects that are dependent on both EtOH and nicotine concentrations. EtOH exposure increased both whole-cell current rising slope and decay constants. This EtOH modulation was selective for α6*-nAChRs since it did not affect α3β4-, α4β2-, or α7-nAChRs. In addition, 5 mM EtOH also increased the frequency and amplitude of dopaminergic neuron transients in mouse brain nucleus accumbens slices, that were blocked by the α6*-nAChR antagonist, α-conotoxin MII, suggesting a role for native α6*-nAChRs in low-dose EtOH effects. Collectively, our data suggest that α6*-nAChRs are sensitive targets mediating low-dose EtOH effects through a positive allosteric mechanism, which provides new insight into mechanisms involved in pharmacologically-relevant alcohol effects contributing to AUD.
Collapse
Affiliation(s)
- Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 51504, China; Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Dejie Chen
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong, 527300, China
| | - Xiaokuang Ma
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 51504, China; Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Sterling Sudweeks
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Jordan T Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, 84602, USA
| | - Ming Gao
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Dharshaun Turner
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Jason Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA 84108, USA
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, 84602, USA
| | - Jie Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 51504, China; Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong, 527300, China.
| |
Collapse
|
33
|
Yu Z, Chiara DC, Savechenkov PY, Bruzik KS, Cohen JB. A photoreactive analog of allopregnanolone enables identification of steroid-binding sites in a nicotinic acetylcholine receptor. J Biol Chem 2019; 294:7892-7903. [PMID: 30923128 DOI: 10.1074/jbc.ra118.007172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Indexed: 11/06/2022] Open
Abstract
Many neuroactive steroids potently and allosterically modulate pentameric ligand-gated ion channels, including GABAA receptors (GABAAR) and nicotinic acetylcholine receptors (nAChRs). Allopregnanolone and its synthetic analog alphaxalone are GABAAR-positive allosteric modulators (PAMs), whereas alphaxalone and most neuroactive steroids are nAChR inhibitors. In this report, we used 11β-(p-azidotetrafluorobenzoyloxy)allopregnanolone (F4N3Bzoxy-AP), a general anesthetic and photoreactive allopregnanolone analog that is a potent GABAAR PAM, to characterize steroid-binding sites in the Torpedo α2βγδ nAChR in its native membrane environment. We found that F4N3Bzoxy-AP (IC50 = 31 μm) is 7-fold more potent than alphaxalone in inhibiting binding of the channel blocker [3H]tenocyclidine to nAChRs in the desensitized state. At 300 μm, neither steroid inhibited binding of [3H]tetracaine, a closed-state selective channel blocker, or of [3H]acetylcholine. Photolabeling identified three distinct [3H]F4N3Bzoxy-AP-binding sites in the nAChR transmembrane domain: 1) in the ion channel, identified by photolabeling in the M2 helices of βVal-261 and δVal-269 (position M2-13'); 2) at the interface between the αM1 and αM4 helices, identified by photolabeling in αM1 (αCys-222/αLeu-223); and 3) at the lipid-protein interface involving γTrp-453 (M4), a residue photolabeled by small lipophilic probes and promegestone, a steroid nAChR antagonist. Photolabeling in the ion channel and αM1 was higher in the nAChR-desensitized state than in the resting state and inhibitable by promegestone. These results directly indicate a steroid-binding site in the nAChR ion channel and identify additional steroid-binding sites also occupied by other lipophilic nAChR antagonists.
Collapse
Affiliation(s)
- Zhiyi Yu
- From the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - David C Chiara
- From the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Pavel Y Savechenkov
- the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Karol S Bruzik
- the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Jonathan B Cohen
- From the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
34
|
Tian J, Dang H, Karashchuk N, Xu I, Kaufman DL. A Clinically Applicable Positive Allosteric Modulator of GABA Receptors Promotes Human β-Cell Replication and Survival as well as GABA's Ability to Inhibit Inflammatory T Cells. J Diabetes Res 2019; 2019:5783545. [PMID: 30937314 PMCID: PMC6413367 DOI: 10.1155/2019/5783545] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
A major goal of T1D research is to develop new approaches to increase β-cell mass and control autoreactive T cell responses. GABAA-receptors (GABAA-Rs) are promising drug targets in both those regards due to their abilities to promote β-cell replication and survival, as well as inhibit autoreactive T cell responses. We previously showed that positive allosteric modulators (PAMs) of GABAA-Rs could promote rat β-cell line INS-1 and human islet cell replication in vitro. Here, we assessed whether treatment with alprazolam, a widely prescribed GABAA-R PAM, could promote β-cell survival and replication in human islets after implantation into NOD/scid mice. We observed that alprazolam treatment significantly reduced human islet cell apoptosis following transplantation and increased β-cell replication in the xenografts. Evidently, the GABAA-R PAM works in conjunction with GABA secreted from β-cells to increase β-cell survival and replication. Treatment with both the PAM and GABA further enhanced human β-cell replication. Alprazolam also augmented the ability of suboptimal doses of GABA to inhibit antigen-specific T cell responses in vitro. Thus, combined GABAA-R agonist and PAM treatment may help control inflammatory immune responses using reduced drug dosages. Together, these findings suggest that GABAA-R PAMs represent a promising drug class for safely modulating islet cells toward beneficial outcomes to help prevent or reverse T1D and, together with a GABAA-R agonist, may have broader applications for ameliorating other disorders in which inflammation contributes to the disease process.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Hoa Dang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Nataliya Karashchuk
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Irvin Xu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Abstract
The pentameric γ-aminobutyric acid type A receptors are ion channels activated by ligands, which intervene in the rapid inhibitory transmission in the mammalian CNS. Due to their rich pharmacology and therapeutic potential, it is essential to understand their structure and function thoroughly. This deep characterization was hampered by the lack of experimental structural information for many years. Thus, computational techniques have been extensively combined with experimental data, in order to undertake the study of γ-aminobutyric acid type A receptors and their interaction with drugs. Here, we review the exciting journey made to assess the structures of these receptors and outline major outcomes. Finally, we discuss the brand new structure of the α1β2γ2 subtype and the amazing advances it brings to the field.
Collapse
|
36
|
Masiulis S, Desai R, Uchański T, Serna Martin I, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A, Steyaert J, Miller KW, Aricescu AR. GABA A receptor signalling mechanisms revealed by structural pharmacology. Nature 2019; 565:454-459. [PMID: 30602790 PMCID: PMC6370056 DOI: 10.1038/s41586-018-0832-5] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023]
Abstract
Type-A γ-aminobutyric (GABAA) receptors are ligand-gated chloride channels with a very rich pharmacology. Some of their modulators, including benzodiazepines and general anaesthetics, are among the most successful drugs in clinical use and are common substances of abuse. Without reliable structural data, the mechanistic basis for the pharmacological modulation of GABAA receptors remains largely unknown. Here we report several high-resolution cryo-electron microscopy structures in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam. We describe the binding modes and mechanistic effects of these ligands, the closed and desensitized states of the GABAA receptor gating cycle, and the basis for allosteric coupling between the extracellular, agonist-binding region and the transmembrane, pore-forming region. This work provides a structural framework in which to integrate previous physiology and pharmacology research and a rational basis for the development of GABAA receptor modulators.
Collapse
Affiliation(s)
- Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Rooma Desai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Itziar Serna Martin
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Duncan Laverty
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jasenko Zivanov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Abhay Kotecha
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Golovko AI, Ivanov MB, Golovko ES, Dolgo-Saburov VB, Zatsepin EP. The Neurochemical Mechanisms of the Pharmacological Activities of Inverse Agonists of the Benzodiazepine Binding Site. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Wu B, Jayakar SS, Zhou X, Titterton K, Chiara DC, Szabo AL, Savechenkov PY, Kent DE, Cohen JB, Forman SA, Miller KW, Bruzik KS. Inhibitable photolabeling by neurosteroid diazirine analog in the β3-Subunit of human hetereopentameric type A GABA receptors. Eur J Med Chem 2018; 162:810-824. [PMID: 30544077 DOI: 10.1016/j.ejmech.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
Abstract
Pregnanolone and allopregnanolone-type ligands exert general anesthetic, anticonvulsant and anxiolytic effects due to their positive modulatory interactions with the GABAA receptors in the brain. Binding sites for these neurosteroids have been recently identified at subunit interfaces in the transmembrane domain (TMD) of homomeric β3 GABAA receptors using photoaffinity labeling techniques, and in homomeric chimeric receptors containing GABAA receptor α subunit TMDs by crystallography. Steroid binding sites have yet to be determined in human, heteromeric, functionally reconstituted, full-length, glycosylated GABAA receptors. Here, we report on the synthesis and pharmacological characterization of several photoaffinity analogs of pregnanolone and allopregnanolone, of which 21-[4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoxy]allopregnanolone (21-pTFDBzox-AP) was the most potent ligand. It is a partial positive modulator of the human α1β3 and α1β3γ2L GABAA receptors at sub-micromolar concentrations. [3H]21-pTFDBzox-AP photoincorporated in a pharmacologically specific manner into the α and β subunits of those receptors, with the β3 subunit photolabeled most efficiently. Importantly, photolabeling by [3H]21-pTFDBzox-AP was inhibited by the positive steroid modulators alphaxalone, pregnanolone and allopregnanolone, but not by inhibitory neurosteroid pregnenolone sulfate or by two potent general anesthetics and GABAAR positive allosteric modulators, etomidate and an anesthetic barbiturate. The latter two ligands bind to sites at subunit interfaces in the GABAAR that are different from those interacting with neurosteroids. 21-pTFDBzox-AP's potency and pharmacological specificity of photolabeling indicate its suitability for characterizing neurosteroid binding sites in native GABAA receptors.
Collapse
Affiliation(s)
- Bo Wu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Selwyn S Jayakar
- Department of Neurobiology, 220 Longwood Avenue, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
| | - Katherine Titterton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
| | - David C Chiara
- Department of Neurobiology, 220 Longwood Avenue, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea L Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
| | - Pavel Y Savechenkov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Daniel E Kent
- Department of Health Science, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Jonathan B Cohen
- Department of Neurobiology, 220 Longwood Avenue, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA; Department of Biological Chemistry and Molecular Pharmacology, 220 Longwood Avenue, Harvard Medical School, Boston, MA, 02115, USA
| | - Karol S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
39
|
Salort G, Álvaro-Bartolomé M, García-Sevilla JA. Pentobarbital and other anesthetic agents induce opposite regulations of MAP kinases p-MEK and p-ERK, and upregulate p-FADD/FADD neuroplastic index in brain during hypnotic states in mice. Neurochem Int 2018; 122:59-72. [PMID: 30423425 DOI: 10.1016/j.neuint.2018.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023]
Abstract
Midazolam and ketamine-induced anesthesia were recently shown to induce a disruption of MEK/ERK sequential phosphorylation with parallel upregulation of p-FADD in the mouse brain. The present study was designed to assess whether other structurally diverse anesthetic agents (pentobarbital, ethanol, chloral hydrate, isoflurane) also impair brain p-MEK to p-ERK signal and increase p-FADD during the particular time course of 'sleep' in mice. Pentobarbital (50 mg/kg)-, ethanol (4000 mg/kg)-, chloral hydrate (400 mg/kg)-, and isoflurane (2% in O2)-induced anesthesia (range: 24-60 min) were associated with unaltered or increased p-MEK1/2 (up to +155%) and decreased p-ERK1/2 (up to -60%) contents, revealing disruption of MEK to ERK activation in mouse brain cortex. These anesthetic agents also upregulated cortical p-FADD (up to +110%), but not total FADD (moderately decreased), which resulted in increased neuroplastic/survival p-FADD/FADD ratios (up to +2.8 fold). The inhibition of pentobarbital metabolism with SKF525-A (a cytochrome P450 inhibitor) augmented barbiturate anesthesia (2.6 times) and induced a greater and sustained upregulation of p-MEK with p-ERK downregulation, as well as prolonged increases of p-FADD content and p-FADD/FADD ratio (effects lasting for more than 240 min). Pentobarbital also upregulated significantly the cortical contents of other markers of neuroplasticity such as the ERK inhibitor p-PEA-15 (up to +46%), the transcription factor NF-κB (up to +27%) and the synaptic density protein PSD-95 (up to +20%) during 'sleep'. The results reveal a paradoxical stimulation of p-MEK without the concomitant (canonical) activation of p-ERK (e.g. with pentobarbital and isoflurane), for which various molecular mechanisms are discussed. The downregulation of brain p-ERK may participate in the manifestations of adverse effects displayed by most hypnotic/anesthetic agents in clinical use (e.g. amnesia).
Collapse
Affiliation(s)
- Glòria Salort
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - María Álvaro-Bartolomé
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| |
Collapse
|
40
|
Olsen RW. GABA A receptor: Positive and negative allosteric modulators. Neuropharmacology 2018; 136:10-22. [PMID: 29407219 PMCID: PMC6027637 DOI: 10.1016/j.neuropharm.2018.01.036] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABAAR) and Type B (GABABR) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABABR is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABAAR pharmacology, the topic of this article. GABAAR are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABAAR the targets of agonist depressants and antagonist convulsants, but most GABAAR drugs act at other (allosteric) binding sites on the GABAAR proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABAAR subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABAAR subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABAAR subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABAAR subtype-dependent extracellular domain sites. Thus GABAAR subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of clinically important neuropharmacological agents. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE. Structure of a human synaptic GABA A receptor. Nature 2018; 559:67-72. [PMID: 29950725 PMCID: PMC6220708 DOI: 10.1038/s41586-018-0255-3] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/17/2018] [Indexed: 11/08/2022]
Abstract
Fast inhibitory neurotransmission in the brain is principally mediated by the neurotransmitter GABA (γ-aminobutyric acid) and its synaptic target, the type A GABA receptor (GABAA receptor). Dysfunction of this receptor results in neurological disorders and mental illnesses including epilepsy, anxiety and insomnia. The GABAA receptor is also a prolific target for therapeutic, illicit and recreational drugs, including benzodiazepines, barbiturates, anaesthetics and ethanol. Here we present high-resolution cryo-electron microscopy structures of the human α1β2γ2 GABAA receptor, the predominant isoform in the adult brain, in complex with GABA and the benzodiazepine site antagonist flumazenil, the first-line clinical treatment for benzodiazepine overdose. The receptor architecture reveals unique heteromeric interactions for this important class of inhibitory neurotransmitter receptor. This work provides a template for understanding receptor modulation by GABA and benzodiazepines, and will assist rational approaches to therapeutic targeting of this receptor for neurological disorders and mental illness.
Collapse
Affiliation(s)
- Shaotong Zhu
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Colleen M Noviello
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinfeng Teng
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard M Walsh
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeong Joo Kim
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan E Hibbs
- Departments of Neuroscience and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
42
|
Ali Rodriguez R, Joya C, Hines RM. Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders. Front Mol Neurosci 2018; 11:132. [PMID: 29740280 PMCID: PMC5928253 DOI: 10.3389/fnmol.2018.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The term neurodevelopmental disorder (NDD) is an umbrella term used to group together a heterogeneous class of disorders characterized by disruption in cognition, emotion, and behavior, early in the developmental timescale. These disorders are heterogeneous, yet they share common behavioral symptomatology as well as overlapping genetic contributors, including proteins involved in the formation, specialization, and function of synaptic connections. Advances may arise from bridging the current knowledge on synapse related factors indicated from both human studies in NDD populations, and in animal models. Mounting evidence has shown a link to inhibitory synapse formation, specialization, and function among Autism, Angelman, Rett and Dravet syndromes. Inhibitory signaling is diverse, with numerous subtypes of inhibitory interneurons, phasic and tonic modes of inhibition, and the molecular and subcellular diversity of GABAA receptors. We discuss common ribs of inhibitory synapse dysfunction in the umbrella of NDD, highlighting alterations in the developmental switch to inhibitory GABA, dysregulation of neuronal activity patterns by parvalbumin-positive interneurons, and impaired tonic inhibition. Increasing our basic understanding of inhibitory synapses, and their role in NDDs is likely to produce significant therapeutic advances in behavioral symptom alleviation for interrelated NDDs.
Collapse
Affiliation(s)
- Rachel Ali Rodriguez
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Christina Joya
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rochelle M Hines
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
43
|
|
44
|
Delineation of the functional properties and the mechanism of action of AA29504, an allosteric agonist and positive allosteric modulator of GABA A receptors. Biochem Pharmacol 2018; 150:305-319. [DOI: 10.1016/j.bcp.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/22/2022]
|
45
|
Woll KA, Zhou X, Bhanu NV, Garcia BA, Covarrubias M, Miller KW, Eckenhoff RG. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB J 2018; 32:4172-4189. [PMID: 29505303 DOI: 10.1096/fj.201701347r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most general anesthetics enhance GABA type A (GABAA) receptor activity at clinically relevant concentrations. Sites of action of volatile anesthetics on the GABAA receptor remain unknown, whereas sites of action of many intravenous anesthetics have been identified in GABAA receptors by using photolabeling. Here, we used photoactivatable analogs of isoflurane (AziISO) and sevoflurane (AziSEVO) to locate their sites on α1β3γ2L and α1β3 GABAA receptors. As with isoflurane and sevoflurane, AziISO and AziSEVO enhanced the currents elicited by GABA. AziISO and AziSEVO each labeled 10 residues in α1β3 receptors and 9 and 8 residues, respectively, in α1β3γ2L receptors. Photolabeled residues were concentrated in transmembrane domains and located in either subunit interfaces or in the interface between the extracellular domain and the transmembrane domain. The majority of these transmembrane residues were protected from photolabeling with the addition of excess parent anesthetic, which indicated specificity. Binding sites were primarily located within α+/β- and β+/α- subunit interfaces, but residues in the α+/γ- interface were also identified, which provided a basis for differential receptor subtype sensitivity. Isoflurane and sevoflurane did not always share binding sites, which suggests an unexpected degree of selectivity.-Woll, K. A., Zhou, X., Bhanu, N. V., Garcia, B. A., Covarrubias, M., Miller, K. W., Eckenhoff, R. G. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Rosas-Arellano A, Tejeda-Guzmán C, Lorca-Ponce E, Palma-Tirado L, Mantellero CA, Rojas P, Missirlis F, Castro MA. Huntington's disease leads to decrease of GABA-A tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiol Dis 2018; 110:142-153. [DOI: 10.1016/j.nbd.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 01/24/2023] Open
|
47
|
Functional properties and mechanism of action of PPTQ, an allosteric agonist and low nanomolar positive allosteric modulator at GABAA receptors. Biochem Pharmacol 2018; 147:153-169. [DOI: 10.1016/j.bcp.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022]
|
48
|
Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M. Molecular Targets for Components of Essential Oils in the Insect Nervous System-A Review. Molecules 2017; 23:E34. [PMID: 29295521 PMCID: PMC5943938 DOI: 10.3390/molecules23010034] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/29/2022] Open
Abstract
Essential oils (EOs) are lipophilic secondary metabolites obtained from plants; terpenoids represent the main components of them. A lot of studies showed neurotoxic actions of EOs. In insects, they cause paralysis followed by death. This feature let us consider components of EOs as potential bioinsecticides. The inhibition of acetylcholinesterase (AChE) is the one of the most investigated mechanisms of action in EOs. However, EOs are rather weak inhibitors of AChE. Another proposed mechanism of EO action is a positive allosteric modulation of GABA receptors (GABArs). There are several papers that prove the potentiation of GABA effect on mammalian receptors induced by EOs. In contrast, there is lack of any data concerning the binding of EO components in insects GABArs. In insects, EOs act also via the octopaminergic system. Available data show that EOs can increase the level of both cAMP and calcium in nervous cells. Moreover, some EO components compete with octopamine in binding to its receptor. Electrophysiological experiments performed on Periplaneta americana have shown similarity in the action of EO components and octopamine. This suggests that EOs can modify neuron activity by octopamine receptors. A multitude of potential targets in the insect nervous system makes EO components interesting candidates for bio-insecticides.
Collapse
Affiliation(s)
- Milena Jankowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| | - Joanna Wyszkowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| | - Maria Stankiewicz
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
49
|
Guerrini G, Ciciani G, Crocetti L, Daniele S, Ghelardini C, Giovannoni MP, Iacovone A, Di Cesare Mannelli L, Martini C, Vergelli C. Identification of a New Pyrazolo[1,5-a]quinazoline Ligand Highly Affine to γ-Aminobutyric Type A (GABAA) Receptor Subtype with Anxiolytic-Like and Antihyperalgesic Activity. J Med Chem 2017; 60:9691-9702. [DOI: 10.1021/acs.jmedchem.7b01151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriella Guerrini
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Giovanna Ciciani
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Letizia Crocetti
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Simona Daniele
- Dipartimento
FARMACIA, Università degli Studi di Pisa, Pisa56126, Italy
| | - Carla Ghelardini
- Dipartimento
NEUROFARBA, Sezione Farmacologia, Università degli Studi di Firenze, Sesto
Fiorentino, Firenze 50019, Italy
| | - Maria Paola Giovannoni
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Antonella Iacovone
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento
NEUROFARBA, Sezione Farmacologia, Università degli Studi di Firenze, Sesto
Fiorentino, Firenze 50019, Italy
| | - Claudia Martini
- Dipartimento
FARMACIA, Università degli Studi di Pisa, Pisa56126, Italy
| | - Claudia Vergelli
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| |
Collapse
|
50
|
Ghezzi F, Monni L, Corsini S, Rauti R, Nistri A. Propofol Protects Rat Hypoglossal Motoneurons in an In Vitro Model of Excitotoxicity by Boosting GABAergic Inhibition and Reducing Oxidative Stress. Neuroscience 2017; 367:15-33. [PMID: 29069620 DOI: 10.1016/j.neuroscience.2017.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022]
Abstract
In brainstem motor networks, hypoglossal motoneurons (HMs) play the physiological role of driving tongue contraction, an activity critical for inspiration, phonation, chewing and swallowing. HMs are an early target of neurodegenerative diseases like amyotrophic lateral sclerosis that, in its bulbar form, is manifested with initial dysphagia and dysarthria. One important pathogenetic component of this disease is the high level of extracellular glutamate due to uptake block that generates excitotoxicity. To understand the earliest phases of this condition we devised a model, the rat brainstem slice, in which block of glutamate uptake is associated with intense bursting of HMs, dysmetabolism and death. Since blocking bursting becomes a goal to prevent cell damage, the present report enquired whether boosting GABAergic inhibition could fulfill this aim and confer beneficial outcome. Propofol (0.5 µM) and midazolam (0.01 µM), two allosteric modulators of GABAA receptors, were used at concentrations yielding analogous potentiation of GABA-mediated currents. Propofol also partly depressed NMDA receptor currents. Both drugs significantly shortened bursting episodes without changing single burst properties, their synchronicity, or their occurrence. Two hours later, propofol prevented the rise in reactive oxygen species (ROS) and, at 4 hours, it inhibited intracellular release of apoptosis-inducing factor (AIF) and prevented concomitant cell loss. Midazolam did not contrast ROS and AIF release. The present work provides experimental evidence for the neuroprotective action of a general anesthetic like propofol, which, in this case, may be achieved through a combination of boosted GABAergic inhibition and reduced ROS production.
Collapse
Affiliation(s)
- Filippo Ghezzi
- Department of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy.
| | - Laura Monni
- Department of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy.
| | - Silvia Corsini
- Department of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy.
| | - Rossana Rauti
- Department of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy.
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy.
| |
Collapse
|