1
|
Elliott C, Jackson J, Findlay J, Williams G, Ghosh A, Ribe E, Ulmschneider M, Khan A, Ballard C, Aarsland D, Baillie GS, Harte M, Killick R. Blocking the Dkk1-LRP6 interaction prevents acute amyloid-β-driven cognitive impairment. Cell Signal 2025; 131:111716. [PMID: 40057150 DOI: 10.1016/j.cellsig.2025.111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025]
Abstract
Synapse loss driven by amyloid-β (Aβ) is an early event in Alzheimer's disease (AD). Although the mechanism by which Aβ drives synapse loss remain poorly understood data indicate that a disruption of Wnt signalling plays an important part. We have shown that Aβ exerts its effects on synapses through Dickkopf-1 (Dkk1), a secreted protein that acts upon Wnt signalling via a direct interaction with the canonical Wnt pathway co-receptor proteins, LRP5 and LRP6, preventing their interaction with the receptor Frizzled. This antagonises canonical, Wnt/β-catenin, signalling and allows concomitant activation of non-canonical signalling pathways. We contend that it is the switch from canonical to non-canonical Wnt signalling activity that drives synapse loss and subsequent cognitive impairment in AD, driven by Aβ and mediated by Dkk1. Preventing the Dkk1-LRP5/6 interaction could protect synapses and cognition against Aβ by maintaining canonical Wnt signalling. To test this, we mapped the Dkk1-LRP6 interaction by peptide array and identified a small peptide able to disrupt the Dkk1-LRP6 interaction. This Dkk1-LRP6 'disruptor' peptide dose dependently restores canonical Wnt signalling in the presence of Dkk1; blocks Dkk1-driven dendritic spine loss in primary rat cortical cultures and the accompanying increase in endogenous Aβ production; and when administered intracerebroventricularly to a rat acute Aβ model, blocks Aβ-driven cognitive impairment. These data support our contention that the ability of Aβ to induce Dkk1 and the effects of Dkk1 on LRP6 are an important element in AD aetiopathology and establish Dkk1 as a therapeutic target for protecting synapse and cognition in AD.
Collapse
Affiliation(s)
- Christina Elliott
- King's College London, Centre for Healthy Brain Aging, The Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, London, UK; Newcastle University, School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle-upon-Tyne, UK
| | - Joshua Jackson
- University of Manchester, Faculty of Biology, Medicine and Health, Division of Pharmacy and Optometry, Manchester, UK
| | - Jane Findlay
- University of Glasgow, School of Cardiovascular and Metabolic Health, Glasgow, Scotland, UK
| | - Gareth Williams
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Anshua Ghosh
- King's College London, Centre for Healthy Brain Aging, The Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, London, UK
| | - Elena Ribe
- King's College London, Centre for Healthy Brain Aging, The Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, London, UK
| | | | - Ayesha Khan
- EveBioTek Ltd., Trimble House, Warrington, UK
| | - Clive Ballard
- The University of Exeter Medical School, College of Medicine and Health, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK
| | - Dag Aarsland
- King's College London, Centre for Healthy Brain Aging, The Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, London, UK
| | - George S Baillie
- University of Glasgow, School of Cardiovascular and Metabolic Health, Glasgow, Scotland, UK
| | - Michael Harte
- University of Manchester, Faculty of Biology, Medicine and Health, Division of Pharmacy and Optometry, Manchester, UK
| | - Richard Killick
- King's College London, Centre for Healthy Brain Aging, The Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, London, UK.
| |
Collapse
|
2
|
Yang Y, Ondrejcak T, Hu NW, Klyubin I, Rowan MJ. Divergent disruptive effects of soluble recombinant tau assemblies on synaptic plasticity in vivo. Mol Brain 2025; 18:36. [PMID: 40251677 PMCID: PMC12007380 DOI: 10.1186/s13041-025-01208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/05/2025] [Indexed: 04/20/2025] Open
Abstract
Neurofibrillary tangles (NFTs), composed of tau protein fibrils, together with brain inflammation and synaptic loss, are neuropathological hallmarks of several neurodegenerative diseases, including Alzheimer's disease. Compared with tau fibrils, more water-soluble assemblies of either recombinant or patient-derived tau have been reported to exert relatively potent rapid synaptotoxic effects, including inhibition of synaptic long-term potentiation (LTP) in the hippocampus. Less is known regarding the action of exogenous tau soluble assemblies on the opposite form of synaptic plasticity, long-term depression (LTD). We compared the synaptic plasticity actions of two relatively standard preparations of soluble recombinant tau assemblies, (i) fibril-derived soluble sonicated tau aggregates (SτAs) and (ii) oligomer-enriched tau (oTau) prepared from monomers. Consistent with previous findings, intracerebroventricular injections of either SτAs or oTau acutely inhibited high-frequency stimulation-induced LTP at CA3-to-CA1 synapses in the anaesthetized rat hippocampus. However, LTP inhibition by oTau, but not SτAs, was prevented by co-injection with the conformational anti-tau monoclonal antibody, TOMA1. Furthermore, in contrast to SτAs, which inhibited LTD, injection of oTau potently facilitated LTD, decreasing the threshold for LTD induction by low-frequency stimulation. To test the role of pro-inflammatory cytokines in mediating the disruptive effects of the two forms of soluble tau on synaptic plasticity we pre-injected etanercept, a decoy receptor for tumor necrosis factor alpha (TNFα). Etanercept reduced the disruption of synaptic plasticity by oTau but not by SτAs. Moreover, injection of exogenous TNFα mimicked the facilitation of LTD by oTau, consistent with a role of this pro-inflammatory cytokine in LTD facilitation.These data provide evidence that preparations of soluble tau containing either monomer- or fibril-derived assemblies disrupt LTP and LTD via different mechanisms. Intriguingly, when oTau and SτAs were applied together, LTD block predominated. Thus, if similar synaptotoxic soluble tau assemblies are present together later during the disease process, as seems likely, inhibition of synaptic weakening processes is predicted to predominate. Equally, reducing TNFα would be expected to be more effective when the monomer-derived soluble tau assemblies are the dominant synaptotoxic species. We conclude that oTau and SτAs provide useful means to explore ways of targeting different synaptotoxic soluble tau species in tauopathies.
Collapse
Affiliation(s)
- Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland.
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
3
|
Abbas K, Mustafa M, Alam M, Habib S, Ahmad W, Adnan M, Hassan MI, Usmani N. Multi-target approach to Alzheimer's disease prevention and treatment: antioxidant, anti-inflammatory, and amyloid- modulating mechanisms. Neurogenetics 2025; 26:39. [PMID: 40167826 DOI: 10.1007/s10048-025-00821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaque accumulation, neurofibrillary tangles, neuroinflammation, and progressive cognitive decline, posing a significant global health challenge. Growing evidence suggests that dietary polyphenols may reduce the risk and progression of AD through multifaceted neuroprotective mechanisms. Polyphenols regulate amyloid proteostasis by inhibiting β/γ-secretase activity, preventing Aβ aggregation, and enhancing clearance pathways. Their strong antioxidant properties neutralize reactive oxygen species, chelate redox-active metals, and activate cytoprotective enzymes via Nrf2 signaling. This review examines the potential therapeutic targets, signaling pathways, and molecular mechanisms by which dietary polyphenols exert neuroprotective effects in AD, focusing on their roles in modulating amyloid proteostasis, oxidative stress, neuroinflammation, and cerebrovascular health. Polyphenols mitigate neuroinflammation by suppressing NF-κB signaling and upregulating brain-derived neurotrophic factor, supporting neuroplasticity and neurogenesis. They also enhance cerebrovascular health by improving cerebral blood flow, maintaining blood-brain barrier integrity, and modulating angiogenesis. This review examines the molecular and cellular pathways through which polyphenols exert neuroprotective effects, focusing on their antioxidant, anti-inflammatory, and amyloid-modulating roles. We also discuss their influence on key AD pathologies, including Aβ deposition, tau hyperphosphorylation, oxidative stress, and neuroinflammation. Insights from clinical and preclinical studies highlight the potential of polyphenols in preventing or slowing AD progression. Future research should explore personalized dietary strategies that integrate genetic and lifestyle factors to optimize the neuroprotective effects of polyphenols.
Collapse
Affiliation(s)
- Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'Il, Ha'il, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Nazura Usmani
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Wang Y, Wang J, Chen X, Lin Z, You Z, He K, Guo T, Zhao J, Huang Q, Ni R, Guan Y, Li B, Xie F. Tau pathology is associated with postsynaptic metabotropic glutamate receptor 5 (mGluR5) in early Alzheimer's disease in a sex-specific manner. Alzheimers Dement 2025; 21:e70004. [PMID: 39998900 PMCID: PMC11853735 DOI: 10.1002/alz.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION To investigate the associations of metabotropic glutamate receptor 5 (mGluR5) with tau deposition and cognitive ability in patients with early Alzheimer's disease (AD). METHODS Twenty-six cognitively impaired (CI) and 14 cognitively unimpaired (CU) individuals underwent mGluR5 positron emission tomography (PET) ([18F]PSS232), amyloid PET ([18F]florbetapir), and tau PET ([18F]MK6240), and neuropsychological assessment. The relationships among mGluR5 availability, tau deposition, and neuropsychological assessment were analyzed using Spearman's correlation and mediation analyses. RESULTS CI patients had lower mGluR5 in the hippocampus than CU (standardized uptake value ratio [SUVr]: 2.03 ± 0.25 vs 1.79 ± 0.17, p = 0.003). Hippocampal mGluR5 was negatively associated with hippocampal tau deposition (r = -.46, p = 0.003) and positively associated with cognitive performance, but only in women. Hippocampal tau deposition mediated the effect of mGluR5 on cognitive performance. DISCUSSION Reduced hippocampal mGluR5 is negatively related with tau deposition in most cortical regions and positively associated with cognitive performance, making it a promising biomarker for AD diagnosis and therapy. HIGHLIGHTS Cognitively impaired (CI) patients exhibited lower metabotropic glutamate receptor 5 (mGluR5) availability in the hippocampus than cognitively unimpaired (CU) subjects. Hippocampal mGluR5 availability was negatively associated with tau deposition in widespread cortex. Hippocampal mGluR5 availability was positively associated with cognitive performance. The close association of mGluR5 with tau and cognition performance exists only in females. Tau pathology mediated the relationship between mGluR5 availability and cognition.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Xing Chen
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Zengping Lin
- Central Research InstituteUnited Imaging Health Care Group Co., Ltd.ShanghaiChina
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Tengfei Guo
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Ruiqing Ni
- Institute for Biomedical Engineering, Institute for Regenerative MedicineUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
6
|
Luo H, de Velasco EMF, Gansemer B, Frederick M, Aguado C, Luján R, Thayer SA, Wickman K. Amyloid-β oligomers trigger sex-dependent inhibition of GIRK channel activity in hippocampal neurons in mice. Sci Signal 2024; 17:eado4132. [PMID: 39353038 PMCID: PMC11600338 DOI: 10.1126/scisignal.ado4132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by amyloid plaques and cognitive decline, the latter of which is thought to be driven by soluble oligomeric amyloid-β (oAβ). The dysregulation of G protein-gated inwardly rectifying K+ (GIRK; also known as Kir3) channels has been implicated in rodent models of AD. Here, seeking mechanistic insights, we uncovered a sex-dependent facet of GIRK-dependent signaling in AD-related amyloid pathophysiology. Synthetic oAβ1-42 suppressed GIRK-dependent signaling in hippocampal neurons from male mice, but not from female mice. This effect required cellular prion protein, the receptor mGluR5, and production of arachidonic acid by the phospholipase PLA2. Although oAβ suppressed GIRK channel activity only in male hippocampal neurons, intrahippocampal infusion of oAβ or genetic suppression of GIRK channel activity in hippocampal pyramidal neurons impaired performance on a memory test in both male and female mice. Moreover, genetic enhancement of GIRK channel activity in hippocampal pyramidal neurons blocked oAβ-induced cognitive impairment in both male and female mice. In APP/PS1 AD model mice, GIRK-dependent signaling was diminished in hippocampal CA1 pyramidal neurons from only male mice before cognitive deficit was detected. However, enhancing GIRK channel activity rescued cognitive deficits in older APP/PS1 mice of both sexes. Thus, whereas diminished GIRK channel activity contributes to cognitive deficits in male mice with increased oAβ burden, enhancing its activity may have therapeutic potential for both sexes.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Benjamin Gansemer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - McKinzie Frederick
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carolina Aguado
- Synaptic Structure Laboratory, Departmento de Ciencias Médicas, Instituto de Biomedicina, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete 02006, SPAIN
| | - Rafael Luján
- Synaptic Structure Laboratory, Departmento de Ciencias Médicas, Instituto de Biomedicina, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete 02006, SPAIN
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Lee JW, Mizuno K, Watanabe H, Lee IH, Tsumita T, Hida K, Yawaka Y, Kitagawa Y, Hasebe A, Iimura T, Kong SW. Enhanced phagocytosis associated with multinucleated microglia via Pyk2 inhibition in an acute β-amyloid infusion model. J Neuroinflammation 2024; 21:196. [PMID: 39107821 PMCID: PMC11301859 DOI: 10.1186/s12974-024-03192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Multinucleated microglia have been observed in contexts associated with infection, inflammation, and aging. Though commonly linked to pathological conditions, the larger cell size of multinucleated microglia might enhance their phagocytic functions, potentially aiding in the clearance of brain debris and suggesting a reassessment of their pathological significance. To assess the phagocytic capacity of multinucleated microglia and its implications for brain debris clearance, we induced their formation by inhibiting Pyk2 activity using the pharmacological inhibitor PF-431396, which triggers cytokinesis regression. Multinucleated microglia demonstrate enhanced phagocytic function, as evidenced by their increased capacity to engulf β-amyloid (Aβ) oligomers. Concurrently, the phosphorylation of Pyk2, induced by Aβ peptide, was diminished upon treatment with a Pyk2 inhibitor (Pyk2-Inh, PF-431396). Furthermore, the increased expression of Lamp1, a lysosomal marker, with Pyk2-inh treatment, suggests an enhancement in proteolytic activity. In vivo, we generated an acute Alzheimer's disease (AD) model by infusing Aβ into the brains of Iba-1 EGFP transgenic (Tg) mice. The administration of the Pyk2-Inh led to an increased migration of microglia toward amyloid deposits in the brains of Iba-1 EGFP Tg mice, accompanied by morphological activation, suggesting a heightened affinity for Aβ. In human microglia, lipopolysaccharide (LPS)-induced inflammatory responses showed that inhibition of Pyk2 signaling significantly reduced the transcription and protein expression of pro-inflammatory markers. These results suggest that Pyk2 inhibition can modulate microglial functions, potentially reducing neuroinflammation and aiding in the clearance of neurodegenerative disease markers. This highlights Pyk2 as a promising target for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji-Won Lee
- Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan.
| | - Kaito Mizuno
- Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
- Dentistry for Children and Disabled Persons, Department of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
- Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - In-Hee Lee
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Yasutaka Yawaka
- Dentistry for Children and Disabled Persons, Department of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Akira Hasebe
- Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Sek Won Kong
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
9
|
Kuhn TB, Minamide LS, Tahtamouni LH, Alderfer SA, Walsh KP, Shaw AE, Yanouri O, Haigler HJ, Ruff MR, Bamburg JR. Chemokine Receptor Antagonists Prevent and Reverse Cofilin-Actin Rod Pathology and Protect Synapses in Cultured Rodent and Human iPSC-Derived Neurons. Biomedicines 2024; 12:93. [PMID: 38255199 PMCID: PMC10813319 DOI: 10.3390/biomedicines12010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Synapse loss is the principal cause of cognitive decline in Alzheimer's disease (AD) and related disorders (ADRD). Synapse development depends on the intricate dynamics of the neuronal cytoskeleton. Cofilin, the major protein regulating actin dynamics, can be sequestered into cofilactin rods, intra-neurite bundles of cofilin-saturated actin filaments that can disrupt vesicular trafficking and cause synaptic loss. Rods are a brain pathology in human AD and mouse models of AD and ADRD. Eliminating rods is the focus of this paper. One pathway for rod formation is triggered in ~20% of rodent hippocampal neurons by disease-related factors (e.g., soluble oligomers of Amyloid-β (Aβ)) and requires cellular prion protein (PrPC), active NADPH oxidase (NOX), and cytokine/chemokine receptors (CCRs). FDA-approved antagonists of CXCR4 and CCR5 inhibit Aβ-induced rods in both rodent and human neurons with effective concentrations for 50% rod reduction (EC50) of 1-10 nM. Remarkably, two D-amino acid receptor-active peptides (RAP-103 and RAP-310) inhibit Aβ-induced rods with an EC50 of ~1 pM in mouse neurons and ~0.1 pM in human neurons. These peptides are analogs of D-Ala-Peptide T-Amide (DAPTA) and share a pentapeptide sequence (TTNYT) antagonistic to several CCR-dependent responses. RAP-103 does not inhibit neuritogenesis or outgrowth even at 1 µM, >106-fold above its EC50. N-terminal methylation, or D-Thr to D-Ser substitution, decreases the rod-inhibiting potency of RAP-103 by 103-fold, suggesting high target specificity. Neither RAP peptide inhibits neuronal rod formation induced by excitotoxic glutamate, but both inhibit rods induced in human neurons by several PrPC/NOX pathway activators (Aβ, HIV-gp120 protein, and IL-6). Significantly, RAP-103 completely protects against Aβ-induced loss of mature and developing synapses and, at 0.1 nM, reverses rods in both rodent and human neurons (T½ ~ 3 h) even in the continuous presence of Aβ. Thus, this orally available, brain-permeable peptide should be highly effective in reducing rod pathology in multifactorial neurological diseases with mixed proteinopathies acting through PrPC/NOX.
Collapse
Affiliation(s)
- Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Sydney A. Alderfer
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Omar Yanouri
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Henry J. Haigler
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - Michael R. Ruff
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
10
|
Ng AN, Salter EW, Georgiou J, Bortolotto ZA, Collingridge GL. Amyloid-β 1-42 oligomers enhance mGlu 5R-dependent synaptic weakening via NMDAR activation and complement C5aR1 signaling. iScience 2023; 26:108412. [PMID: 38053635 PMCID: PMC10694656 DOI: 10.1016/j.isci.2023.108412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Synaptic weakening and loss are well-correlated with the pathology of Alzheimer's disease (AD). Oligomeric amyloid beta (oAβ) is considered a major synaptotoxic trigger for AD. Recent studies have implicated hyperactivation of the complement cascade as the driving force for loss of synapses caused by oAβ. However, the initial synaptic cues that trigger pathological complement activity remain elusive. Here, we examined a form of synaptic long-term depression (LTD) mediated by metabotropic glutamate receptors (mGluRs) that is disrupted in rodent models of AD. Exogenous application of oAβ (1-42) to mouse hippocampal slices enhanced the magnitude of mGlu subtype 5 receptor (mGlu5R)-dependent LTD. We found that the enhanced synaptic weakening occurred via both N-methyl-D-aspartate receptors (NMDARs) and complement C5aR1 signaling. Our findings reveal a mechanistic interaction between mGlu5R, NMDARs, and the complement system in aberrant synaptic weakening induced by oAβ, which could represent an early trigger of synaptic loss and degeneration in AD.
Collapse
Affiliation(s)
- Ai Na Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Eric W. Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Zuner A. Bortolotto
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Graham L. Collingridge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
11
|
Stoner A, Fu L, Nicholson L, Zheng C, Toyonaga T, Spurrier J, Laird W, Cai Z, Strittmatter SM. Neuronal transcriptome, tau and synapse loss in Alzheimer's knock-in mice require prion protein. Alzheimers Res Ther 2023; 15:201. [PMID: 37968719 PMCID: PMC10647125 DOI: 10.1186/s13195-023-01345-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Progression of Alzheimer's disease leads to synapse loss, neural network dysfunction and cognitive failure. Accumulation of protein aggregates and brain immune activation have triggering roles in synaptic failure but the neuronal mechanisms underlying synapse loss are unclear. On the neuronal surface, cellular prion protein (PrPC) is known to be a high-affinity binding site for Amyloid-β oligomers (Aβo). However, PrPC's dependence in knock-in AD models for tau accumulation, transcriptomic alterations and imaging biomarkers is unknown. METHODS The necessity of PrPC was examined as a function of age in homozygous AppNL-G-F/hMapt double knock-in mice (DKI). Phenotypes of AppNL-G-F/hMapt mice with a deletion of Prnp expression (DKI; Prnp-/-) were compared with DKI mice with intact Prnp, mice with a targeted deletion of Prnp (Prnp-/-), and mice with intact Prnp (WT). Phenotypes examined included behavioral deficits, synapse loss by PET imaging, synapse loss by immunohistology, tau pathology, gliosis, inflammatory markers, and snRNA-seq transcriptomic profiling. RESULTS By 9 months age, DKI mice showed learning and memory impairment, but DKI; Prnp-/- and Prnp-/- groups were indistinguishable from WT. Synapse loss in DKI brain, measured by [18F]SynVesT-1 SV2A PET or anti-SV2A immunohistology, was prevented by Prnp deletion. Accumulation of Tau phosphorylated at aa 217 and 202/205, C1q tagging of synapses, and dystrophic neurites were all increased in DKI mice but each decreased to WT levels with Prnp deletion. In contrast, astrogliosis, microgliosis and Aβ levels were unchanged between DKI and DKI; Prnp-/- groups. Single-nuclei transcriptomics revealed differential expression in neurons and glia of DKI mice relative to WT. For DKI; Prnp-/- mice, the majority of neuronal genes differentially expressed in DKI mice were no longer significantly altered relative to WT, but most glial DKI-dependent gene expression changes persisted. The DKI-dependent neuronal genes corrected by Prnp deletion associated bioinformatically with synaptic function. Additional genes were uniquely altered only in the Prnp-/- or the DKI; Prnp-/- groups. CONCLUSIONS Thus, PrPC-dependent synapse loss, phospho-tau accumulation and neuronal gene expression in AD mice can be reversed without clearing Aβ plaque or preventing gliotic reaction. This supports targeting the Aβo-PrPC interaction to prevent Aβo-neurotoxicity and pathologic tau accumulation in AD.
Collapse
Affiliation(s)
- Austin Stoner
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Li Fu
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - LaShae Nicholson
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Chao Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Joshua Spurrier
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Will Laird
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
12
|
Gautam D, Naik UP, Naik MU, Yadav SK, Chaurasia RN, Dash D. Glutamate Receptor Dysregulation and Platelet Glutamate Dynamics in Alzheimer's and Parkinson's Diseases: Insights into Current Medications. Biomolecules 2023; 13:1609. [PMID: 38002291 PMCID: PMC10669830 DOI: 10.3390/biom13111609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Two of the most prevalent neurodegenerative disorders (NDDs), Alzheimer's disease (AD) and Parkinson's disease (PD), present significant challenges to healthcare systems worldwide. While the etiologies of AD and PD differ, both diseases share commonalities in synaptic dysfunction, thereby focusing attention on the role of neurotransmitters. The possible functions that platelets may play in neurodegenerative illnesses including PD and AD are becoming more acknowledged. In AD, platelets have been investigated for their ability to generate amyloid-ß (Aß) peptides, contributing to the formation of neurotoxic plaques. Moreover, platelets are considered biomarkers for early AD diagnosis. In PD, platelets have been studied for their involvement in oxidative stress and mitochondrial dysfunction, which are key factors in the disease's pathogenesis. Emerging research shows that platelets, which release glutamate upon activation, also play a role in these disorders. Decreased glutamate uptake in platelets has been observed in Alzheimer's and Parkinson's patients, pointing to a systemic dysfunction in glutamate handling. This paper aims to elucidate the critical role that glutamate receptors play in the pathophysiology of both AD and PD. Utilizing data from clinical trials, animal models, and cellular studies, we reviewed how glutamate receptors dysfunction contributes to neurodegenerative (ND) processes such as excitotoxicity, synaptic loss, and cognitive impairment. The paper also reviews all current medications including glutamate receptor antagonists for AD and PD, highlighting their mode of action and limitations. A deeper understanding of glutamate receptor involvement including its systemic regulation by platelets could open new avenues for more effective treatments, potentially slowing disease progression and improving patient outcomes.
Collapse
Affiliation(s)
- Deepa Gautam
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Ulhas P. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Meghna U. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Santosh K. Yadav
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Rameshwar Nath Chaurasia
- The Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
13
|
Hyun Yi J, Cho E, Lee S, Ja Kwon K, Lee S, Lee J, Lee C, Young Shin C, Hyun Kim D, Hee Shim S. Aβ dissociation by pectolinarin may counteract against Aβ-induced synaptic dysfunction and memory impairment. Biochem Pharmacol 2023; 216:115792. [PMID: 37689271 DOI: 10.1016/j.bcp.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder characterised by various neurological symptoms, including memory impairment and mood disorders, associated with the abnormal accumulation of amyloid b(Aβ) and tau proteins in the brain. There is still no definitive treatment available for AD, and the Aβ antibody drugs, which are expected to be approved by the FDA, have many limitations. Therefore, there is an urgent need to develop low-molecular-weight therapeutic agents for the management of AD. In this study, we investigated whether pectolinarin, a flavonoid, regulates Aβ aggregation and Aβ-induced toxicity. Pectolinarin demonstrated concentration-dependent inhibition of Aβ aggregation and had the ability to break down pre-formed Aβ aggregates, thereby reducing their neurotoxicity. Furthermore, pectolinarin suppressed Aβ aggregates-induced reduction in long-term potentiation (LTP) in the hippocampus. Oral administration of pectolinarin in experimental animals inhibited memory impairment and LTP deficits induced by Aβ injection in the hippocampus. These results indicate that pectolinarin may reduce toxic Aβ species and Aβ-induced memory impairments and synaptic dysfunction.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soowon Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Ja Kwon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seungheon Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Juyong Lee
- Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Arontier Co., Seoul 06735, Republic of Korea
| | - Changyeol Lee
- Herbal Medicine Resources Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sang Hee Shim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Danziger R, Fuchs DT, Koronyo Y, Rentsendorj A, Sheyn J, Hayden EY, Teplow DB, Black KL, Fuchs S, Bernstein KE, Koronyo-Hamaoui M. The effects of enhancing angiotensin converting enzyme in myelomonocytes on ameliorating Alzheimer's-related disease and preserving cognition. Front Physiol 2023; 14:1179315. [PMID: 37427403 PMCID: PMC10326285 DOI: 10.3389/fphys.2023.1179315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
This review examines the role of angiotensin-converting enzyme (ACE) in the context of Alzheimer's disease (AD) and its potential therapeutic value. ACE is known to degrade the neurotoxic 42-residue long alloform of amyloid β-protein (Aβ42), a peptide strongly associated with AD. Previous studies in mice, demonstrated that targeted overexpression of ACE in CD115+ myelomonocytic cells (ACE10 models) improved their immune responses to effectively reduce viral and bacterial infection, tumor growth, and atherosclerotic plaque. We further demonstrated that introducing ACE10 myelomonocytes (microglia and peripheral monocytes) into the double transgenic APPSWE/PS1ΔE9 murine model of AD (AD+ mice), diminished neuropathology and enhanced the cognitive functions. These beneficial effects were dependent on ACE catalytic activity and vanished when ACE was pharmacologically blocked. Moreover, we revealed that the therapeutic effects in AD+ mice can be achieved by enhancing ACE expression in bone marrow (BM)-derived CD115+ monocytes alone, without targeting central nervous system (CNS) resident microglia. Following blood enrichment with CD115+ ACE10-monocytes versus wild-type (WT) monocytes, AD+ mice had reduced cerebral vascular and parenchymal Aβ burden, limited microgliosis and astrogliosis, as well as improved synaptic and cognitive preservation. CD115+ ACE10-versus WT-monocyte-derived macrophages (Mo/MΦ) were recruited in higher numbers to the brains of AD+ mice, homing to Aβ plaque lesions and exhibiting a highly Aβ-phagocytic and anti-inflammatory phenotype (reduced TNFα/iNOS and increased MMP-9/IGF-1). Moreover, BM-derived ACE10-Mo/MΦ cultures had enhanced capability to phagocytose Aβ42 fibrils, prion-rod-like, and soluble oligomeric forms that was associated with elongated cell morphology and expression of surface scavenger receptors (i.e., CD36, Scara-1). This review explores the emerging evidence behind the role of ACE in AD, the neuroprotective properties of monocytes overexpressing ACE and the therapeutic potential for exploiting this natural mechanism for ameliorating AD pathogenesis.
Collapse
Affiliation(s)
- Ron Danziger
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Eric Y. Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Sebastien Fuchs
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
15
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
16
|
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE, Nava-Mesa MO. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24109067. [PMID: 37240413 DOI: 10.3390/ijms24109067] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most frequent cause of progressive dementia in senior adults. It is characterized by memory loss and cognitive impairment secondary to cholinergic dysfunction and N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. Intracellular neurofibrillary tangles, extracellular plaques composed of amyloid-β (Aβ), and selective neurodegeneration are the anatomopathological hallmarks of this disease. The dysregulation of calcium may be present in all the stages of AD, and it is associated with other pathophysiological mechanisms, such as mitochondrial failure, oxidative stress, and chronic neuroinflammation. Although the cytosolic calcium alterations in AD are not completely elucidated, some calcium-permeable channels, transporters, pumps, and receptors have been shown to be involved at the neuronal and glial levels. In particular, the relationship between glutamatergic NMDA receptor (NMDAR) activity and amyloidosis has been widely documented. Other pathophysiological mechanisms involved in calcium dyshomeostasis include the activation of L-type voltage-dependent calcium channels, transient receptor potential channels, and ryanodine receptors, among many others. This review aims to update the calcium-dysregulation mechanisms in AD and discuss targets and molecules with therapeutic potential based on their modulation.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sara Sofia Avendaño-Lopez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Rodriguez-Giraldo
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos A Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Grupo de Investigación en Ciencias Biomédicas Aplicadas (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
17
|
Ali T, Klein AN, Vu A, Arifin MI, Hannaoui S, Gilch S. Peptide aptamer targeting Aβ-PrP-Fyn axis reduces Alzheimer's disease pathologies in 5XFAD transgenic mouse model. Cell Mol Life Sci 2023; 80:139. [PMID: 37149826 PMCID: PMC10164677 DOI: 10.1007/s00018-023-04785-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Currently, no effective therapeutics exist for the treatment of incurable neurodegenerative diseases such as Alzheimer's disease (AD). The cellular prion protein (PrPC) acts as a high-affinity receptor for amyloid beta oligomers (AβO), a main neurotoxic species mediating AD pathology. The interaction of AβO with PrPC subsequently activates Fyn tyrosine kinase and neuroinflammation. Herein, we used our previously developed peptide aptamer 8 (PA8) binding to PrPC as a therapeutic to target the AβO-PrP-Fyn axis and prevent its associated pathologies. Our in vitro results indicated that PA8 prevents the binding of AβO with PrPC and reduces AβO-induced neurotoxicity in mouse neuroblastoma N2a cells and primary hippocampal neurons. Next, we performed in vivo experiments using the transgenic 5XFAD mouse model of AD. The 5XFAD mice were treated with PA8 and its scaffold protein thioredoxin A (Trx) at a 14.4 µg/day dosage for 12 weeks by intraventricular infusion through Alzet® osmotic pumps. We observed that treatment with PA8 improves learning and memory functions of 5XFAD mice as compared to Trx-treated 5XFAD mice. We found that PA8 treatment significantly reduces AβO levels and Aβ plaques in the brain tissue of 5XFAD mice. Interestingly, PA8 significantly reduces AβO-PrP interaction and its downstream signaling such as phosphorylation of Fyn kinase, reactive gliosis as well as apoptotic neurodegeneration in the 5XFAD mice compared to Trx-treated 5XFAD mice. Collectively, our results demonstrate that treatment with PA8 targeting the AβO-PrP-Fyn axis is a promising and novel approach to prevent and treat AD.
Collapse
Affiliation(s)
- Tahir Ali
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Antonia N Klein
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alex Vu
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Maria I Arifin
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Samia Hannaoui
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
18
|
Jaffré N, Delmotte J, Mikol J, Deslys JP, Comoy E. Unexpected decrease of full-length prion protein in macaques inoculated with prion-contaminated blood products. Front Mol Biosci 2023; 10:1164779. [PMID: 37214335 PMCID: PMC10196267 DOI: 10.3389/fmolb.2023.1164779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
The presence of prion infectivity in the blood of patients affected by variant Creutzfeldt-Jakob disease (v-CJD), the human prion disease linked to the bovine spongiform encephalopathy (BSE), poses the risk of inter-human transmission of this fatal prion disease through transfusion. In the frame of various experiments, we have previously described that several cynomolgus macaques experimentally exposed to prion-contaminated blood products developed c-BSE/v-CJD, but the vast majority of them developed an unexpected, fatal disease phenotype focused on spinal cord involvement, which does not fulfill the classical diagnostic criteria of v-CJD. Here, we show that extensive analyses with current conventional techniques failed to detect any accumulation of abnormal prion protein (PrPv-CJD) in the CNS of these myelopathic animals, i.e., the biomarker considered responsible for neuronal death and subsequent clinical signs in prion diseases. Conversely, in the spinal cord of these myelopathic primates, we observed an alteration of their physiological cellular PrP pattern: PrP was not detectable under its full-length classical expression but mainly under its physiological terminal-truncated C1 fragment. This observed disappearance of the N-terminal fragment of cellular PrP at the level of the lesions may provide the first experimental evidence of a link between loss of function of the cellular prion protein and disease onset. This original prion-induced myelopathic syndrome suggests an unexpected wide extension in the field of prion diseases that is so far limited to pathologies associated with abnormal changes of the cellular PrP to highly structured conformations.
Collapse
|
19
|
Valdivia G, Ardiles AO, Idowu A, Salazar C, Lee HK, Gallagher M, Palacios AG, Kirkwood A. mGluR-dependent plasticity in rodent models of Alzheimer's disease. Front Synaptic Neurosci 2023; 15:1123294. [PMID: 36937569 PMCID: PMC10017879 DOI: 10.3389/fnsyn.2023.1123294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Long-term potentiation (LTP) and depression (LTD) are currently the most comprehensive models of synaptic plasticity models to subserve learning and memory. In the CA1 region of the hippocampus LTP and LTD can be induced by the activation of either NMDA receptors or mGluR5 metabotropic glutamate receptors. Alterations in either form of synaptic plasticity, NMDAR-dependent or mGluR-dependent, are attractive candidates to contribute to learning deficits in conditions like Alzheimer's disease (AD) and aging. Research, however, has focused predominantly on NMDAR-dependent forms of LTP and LTD. Here we studied age-associated changes in mGluR-dependent LTP and LTD in the APP/PS1 mouse model of AD and in Octodon degu, a rodent model of aging that exhibits features of AD. At 2 months of age, APP/PS1 mouse exhibited robust mGluR-dependent LTP and LTD that was completely lost by the 8th month of age. The expression of mGluR protein in the hippocampus of APP/PS1 mice was not affected, consistent with previous findings indicating the uncoupling of the plasticity cascade from mGluR5 activation. In O. degu, the average mGluR-LTD magnitude is reduced by half by the 3 rd year of age. In aged O. degu individuals, the reduced mGluR-LTD correlated with reduced performance in a radial arm maze task. Altogether these findings support the idea that the preservation of mGluR-dependent synaptic plasticity is essential for the preservation of learning capacity during aging.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alvaro O. Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Abimbola Idowu
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| | - Claudia Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Hey-Kyoung Lee
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alfredo Kirkwood
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
20
|
Cellular prion protein offers neuroprotection in astrocytes submitted to amyloid β oligomer toxicity. Mol Cell Biochem 2022:10.1007/s11010-022-04631-w. [PMID: 36576715 DOI: 10.1007/s11010-022-04631-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
The cellular prion protein (PrPC), in its native conformation, performs numerous cellular and cognitive functions in brain tissue. However, despite the cellular prion research in recent years, there are still questions about its participation in oxidative and neurodegenerative processes. This study aims to elucidate the involvement of PrPC in the neuroprotection cascade in the presence of oxidative stressors. For that, astrocytes from wild-type mice and knockout to PrPC were subjected to the induction of oxidative stress with hydrogen peroxide (H2O2) and with the toxic oligomer of the amyloid β protein (AβO). We observed that the presence of PrPC showed resistance in the cell viability of astrocytes. It was also possible to monitor changes in basic levels of metals and associate them with an induced damage condition, indicating the precise role of PrPC in metal homeostasis, where the absence of PrPC leads to metallic unbalance, culminating in cellular vulnerability to oxidative stress. Increased caspase 3, p-Tau, p53, and Bcl2 may establish a relationship between a PrPC and an induced damage condition. Complementarily, it has been shown that PrPC prevents the internalization of AβO and promotes its degradation under oxidative stress induction, thus preventing protein aggregation in astrocytes. It was also observed that the presence of PrPC can be related to translocating SOD1 to cell nuclei under oxidative stress, probably controlling DNA damage. The results of this study suggest that PrPC acts against oxidative stress activating the cellular response and defense by displaying neuroprotection to neurons and ensuring the functionality of astrocytes.
Collapse
|
21
|
Emerging Roles of Extracellular Vesicles in Alzheimer's Disease: Focus on Synaptic Dysfunction and Vesicle-Neuron Interaction. Cells 2022; 12:cells12010063. [PMID: 36611856 PMCID: PMC9818402 DOI: 10.3390/cells12010063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is considered by many to be a synaptic failure. Synaptic function is in fact deeply affected in the very early disease phases and recognized as the main cause of AD-related cognitive impairment. While the reciprocal involvement of amyloid beta (Aβ) and tau peptides in these processes is under intense investigation, the crucial role of extracellular vesicles (EVs) released by different brain cells as vehicles for these molecules and as mediators of early synaptic alterations is gaining more and more ground in the field. In this review, we will summarize the current literature on the contribution of EVs derived from distinct brain cells to neuronal alterations and build a working model for EV-mediated propagation of synaptic dysfunction in early AD. A deeper understanding of EV-neuron interaction will provide useful targets for the development of novel therapeutic approaches aimed at hampering AD progression.
Collapse
|
22
|
Hu HY, Liu YJ. Sequestration of cellular native factors by biomolecular assemblies: Physiological or pathological? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119360. [PMID: 36087810 DOI: 10.1016/j.bbamcr.2022.119360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In addition to native-state structures, biomolecules often form condensed supramolecular assemblies or cellular membraneless organelles that are critical for cell life. These biomolecular assemblies, generally including liquid-like droplets (condensates) and amyloid-like aggregates, can sequester or recruit their interacting partners, so as to either modulate various cellular behaviors or even cause disorders. This review article summarizes recent advances in the sequestration of native factors by biomolecular assemblies and discusses their potential consequences on cellular function, homeostasis, and disease pathology.
Collapse
Affiliation(s)
- Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
23
|
Salasova A, Monti G, Andersen OM, Nykjaer A. Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 2022; 17:74. [PMID: 36397124 PMCID: PMC9673319 DOI: 10.1186/s13024-022-00576-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer’s disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
Collapse
|
24
|
Hu Y, Lu X, Qiu W, Liu H, Wang Q, Chen Y, Liu W, Feng F, Sun H. The Role of Leukocyte Immunoglobulin-Like Receptors Focusing on the Therapeutic Implications of the Subfamily B2. Curr Drug Targets 2022; 23:1430-1452. [PMID: 36017847 DOI: 10.2174/1389450123666220822201605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
The leukocyte immunoglobulin (Ig)-like receptors (LILRs) are constituted by five inhibitory subpopulations (LILRB1-5) and six stimulatory subpopulations (LILRA1-6). The LILR populations substantially reside in immune cells, especially myeloid cells, functioning as a regulator in immunosuppressive and immunostimulatory responses, during which the nonclassical major histocompatibility complex (MHC) class I molecules are widely involved. In addition, LILRs are also distributed in certain tumor cells, implicated in the malignancy progression. Collectively, the suppressive Ig-like LILRB2 is relatively well-studied to date. Herein, we summarized the whole family of LILRs and their biologic function in various diseases upon ligation to the critical ligands, therefore providing more information on their potential roles in these pathological processes and giving the clinical significance of strategies targeting LILRs.
Collapse
Affiliation(s)
- Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Weimin Qiu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hui Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghua Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, 223005, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
25
|
A conformational switch controlling the toxicity of the prion protein. Nat Struct Mol Biol 2022; 29:831-840. [PMID: 35948768 PMCID: PMC9371974 DOI: 10.1038/s41594-022-00814-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
Prion infections cause conformational changes of the cellular prion protein (PrPC) and lead to progressive neurological impairment. Here we show that toxic, prion-mimetic ligands induce an intramolecular R208-H140 hydrogen bond ('H-latch'), altering the flexibility of the α2-α3 and β2-α2 loops of PrPC. Expression of a PrP2Cys mutant mimicking the H-latch was constitutively toxic, whereas a PrPR207A mutant unable to form the H-latch conferred resistance to prion infection. High-affinity ligands that prevented H-latch induction repressed prion-related neurodegeneration in organotypic cerebellar cultures. We then selected phage-displayed ligands binding wild-type PrPC, but not PrP2Cys. These binders depopulated H-latched conformers and conferred protection against prion toxicity. Finally, brain-specific expression of an antibody rationally designed to prevent H-latch formation prolonged the life of prion-infected mice despite unhampered prion propagation, confirming that the H-latch is an important reporter of prion neurotoxicity.
Collapse
|
26
|
Hu C, Chen C, Xia Y, Chen J, Yang W, Wang L, Chen DD, Wu YZ, Fan Q, Jia XX, Xiao K, Shi Q, Chen ZB, Dong XP. Different Aberrant Changes of mGluR5 and Its Downstream Signaling Pathways in the Scrapie-Infected Cell Line and the Brains of Scrapie-Infected Experimental Rodents. Front Cell Dev Biol 2022; 10:844378. [PMID: 35646890 PMCID: PMC9133610 DOI: 10.3389/fcell.2022.844378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5) is a G-protein-coupled receptor found widely in the central nervous system. It has been involved in the development and progression of some neurodegenerative diseases, but its role in prion diseases is rarely described. In this study, the changes of mGluR5 and its downstream signaling pathways in prion-infected cell line SMB-S15 and the brains of scrapie-infected experimental rodents were evaluated by various methodologies. We found the levels of mGluR5 were significantly increased in a prion-infected cell line SMB-S15 and the cultured cells transiently express an abnormal form PrP (Cyto-PrP). Using immunoprecipitation tests and immunofluorescent assays (IFA), molecular interaction and morphological colocalization between PrP and mGluR5 were observed in the cultured cells. We identified that the (GPCRs)-IP3-IP3R-Ca2+ pathway was activated and the levels of the downstream kinases p38, ERK, and JNK were increased in SMB-S15 cells. After treated with mGluR5 antagonist (MTEP) or the removal of prion replication by resveratrol in SMB-S15 cells, the upregulations of mGluR5 and the downstream kinases were restored in a certain degree. Moreover, increased mGluR5 contributes to the cell damage in prion-infected cells. Contrarily, the levels of mGluR5 in the brains of several scrapie-infected rodent models were decreased at terminal stage. IFA of the brain sections of scrapie-infected rodents demonstrated that the signals of mGluR5 were preferentially colocalized with the NeuN-positive cells, accompanying with severe neuron losses in Nissl staining, which might be a reason for the decrease of mGluR5. Our data indicate the different aberrant alterations of mGluR5 and the downstream signaling pathways during prion infection in vivo and in vitro.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Cao Chen, ; Xiao-Ping Dong,
| | - Ying Xia
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Yang
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin Fan
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Xi Jia
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi-Bao Chen
- College of Agricultural, Guangdong Ocean University, Zhanjiang, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- China Academy of Chinese Medical Sciences, Beijing, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China
- *Correspondence: Cao Chen, ; Xiao-Ping Dong,
| |
Collapse
|
27
|
Jyoti Dutta B, Singh S, Seksaria S, Das Gupta G, Bodakhe SH, Singh A. Potential role of IP3/Ca 2+ signaling and phosphodiesterases: Relevance to neurodegeneration in Alzheimer's disease and possible therapeutic strategies. Biochem Pharmacol 2022; 201:115071. [PMID: 35525328 DOI: 10.1016/j.bcp.2022.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
Despite large investments by industry and governments, no disease-modifying medications for the treatment of patients with Alzheimer's disease (AD) have been found. The failures of various clinical trials indicate the need for a more in-depth understanding of the pathophysiology of AD and for innovative therapeutic strategies for its treatment. Here, we review the rational for targeting IP3 signaling, cytosolic calcium dysregulation, phosphodiesterases (PDEs), and secondary messengers like cGMP and cAMP, as well as their correlations with the pathophysiology of AD. Various drugs targeting these signaling cascades are still in pre-clinical and clinical trials which support the ideas presented in this article. Further, we describe different molecular mechanisms and medications currently being used in various pre-clinical and clinical trials involving IP3/Ca+2 signaling. We also highlight various isoforms, as well as the functions and pharmacology of the PDEs broadly expressed in different parts of the brain and attempt to unravel the potential benefits of PDE inhibitors for use as novel medications to alleviate the pathogenesis of AD.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur - 495009, Chhattisgarh, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
28
|
Cho E, Youn K, Kwon H, Jeon J, Cho WS, Park SJ, Son SH, Jang DS, Shin CY, Moon M, Jun M, Kim NJ, Kim DH. Eugenitol ameliorates memory impairments in 5XFAD mice by reducing Aβ plaques and neuroinflammation. Biomed Pharmacother 2022; 148:112763. [PMID: 35240526 DOI: 10.1016/j.biopha.2022.112763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is caused by various pathological mechanisms; therefore, it is necessary to develop drugs that simultaneously act on multiple targets. In this study, we investigated the effects of eugenitol, which has anti-amyloid β (Aβ) and anti-neuroinflammatory effects, in an AD mouse model. We found that eugenitol potently inhibited Aβ plaque and oligomer formation. Moreover, eugenitol dissociated the preformed Aβ plaques and reduced Aβ-induced nero2a cell death. An in silico docking simulation study showed that eugenitol may interact with Aβ1-42 monomers and fibrils. Eugenitol showed radical scavenging effects and potently reduced the release of proinflammatory cytokines from lipopolysaccharide-treated BV2 cells. Systemic administration of eugenitol blocked Aβ aggregate-induced memory impairment in the Morris water maze test in a dose-dependent manner. In 5XFAD mice, prolonged administration of eugenitol ameliorated memory and hippocampal long-term potentiation impairment. Moreover, eugenitol significantly reduced Aβ deposits and neuroinflammation in the hippocampus of 5XFAD mice. These results suggest that eugenitol, which has anti-Aβ aggregation, Aβ fibril dissociation, and anti-inflammatory effects, potently modulates AD-like pathologies in 5XFAD mice, and could be a promising candidate for AD therapy.
Collapse
Affiliation(s)
- Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Huiyoung Kwon
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea
| | - Jieun Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Hwan Son
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, Republic of Korea, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Mira Jun
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea.
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
29
|
Agarwal A, Arora L, Rai SK, Avni A, Mukhopadhyay S. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nat Commun 2022; 13:1154. [PMID: 35241680 PMCID: PMC8894376 DOI: 10.1038/s41467-022-28797-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022] Open
Abstract
Biomolecular condensation via liquid-liquid phase separation of proteins and nucleic acids is associated with a range of critical cellular functions and neurodegenerative diseases. Here, we demonstrate that complex coacervation of the prion protein and α-synuclein within narrow stoichiometry results in the formation of highly dynamic, reversible, thermo-responsive liquid droplets via domain-specific electrostatic interactions between the positively-charged intrinsically disordered N-terminal segment of prion and the acidic C-terminal tail of α-synuclein. The addition of RNA to these coacervates yields multiphasic, vesicle-like, hollow condensates. Picosecond time-resolved measurements revealed the presence of transient electrostatic nanoclusters that are stable on the nanosecond timescale and can undergo breaking-and-making of interactions on slower timescales giving rise to a liquid-like behavior in the mesoscopic regime. The liquid-to-solid transition drives a rapid conversion of complex coacervates into heterotypic amyloids. Our results suggest that synergistic prion-α-synuclein interactions within condensates provide mechanistic underpinnings of their physiological role and overlapping neuropathological features.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
30
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
31
|
Britton RJ, Hutchison JM, Sanders CR. The transmembrane amyloid precursor C99 protein exhibits non-specific interaction with tau. Biochem Biophys Res Commun 2021; 576:48-52. [PMID: 34481234 DOI: 10.1016/j.bbrc.2021.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
Historically, the two most prominent proteins in Alzheimer's disease (AD) research have been the amyloid precursor protein (APP) and the microtubule assembly protein tau. In the classical model for the etiology of AD, amyloid-β (Aβ)-an APP derivative and hyperphosphorylated tau form aggregates in the brain that underlie the pathogenesis of the disease. However, the connection between Aβ and tau pathologies remains unclear. Several studies have provided evidence that the presence of Aβ can induce or enhance neurofibrillary tangle formation by tau. Others have reported a direct interaction between tau and short fragments of the APP transmembrane domain, C99. Structural studies of C99 show that these in vitro tau-binding fragments of C99 are buried in the lipid bilayer and are likely unavailable to bind tau in vivo. Given the importance of APP and tau in AD, we sought to characterize the potential interaction of the Aβ precursor, full length C99, and tau in vitro using NMR spectroscopy. We found that C99 and soluble tau interact only weakly and, most likely, non-specifically.
Collapse
Affiliation(s)
- Rhett J Britton
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
| | - James M Hutchison
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA; Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, TN, 37240, USA
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37240, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
32
|
Abd-Elrahman KS, Ferguson SSG. Noncanonical Metabotropic Glutamate Receptor 5 Signaling in Alzheimer's Disease. Annu Rev Pharmacol Toxicol 2021; 62:235-254. [PMID: 34516293 DOI: 10.1146/annurev-pharmtox-021821-091747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) is ubiquitously expressed in brain regions responsible for memory and learning. It plays a key role in modulating rapid changes in synaptic transmission and plasticity. mGluR5 supports long-term changes in synaptic strength by regulating the transcription and translation of essential synaptic proteins. β-Amyloid 42 (Aβ42) oligomers interact with a mGluR5/cellular prion protein (PrPC) complex to disrupt physiological mGluR5 signal transduction. Aberrant mGluR5 signaling and associated synaptic failure are considered an emerging pathophysiological mechanism of Alzheimer's disease (AD). Therefore, mGluR5 represents an attractive therapeutic target for AD, and recent studies continue to validate the efficacy of various mGluR5 allosteric modulators in improving memory deficits and mitigating disease pathology. However, sex-specific differences in the pharmacology of mGluR5 and activation of noncanonical signaling downstream of the receptor suggest that its utility as a therapeutic target in female AD patients needs to be reconsidered. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; email
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| |
Collapse
|
33
|
Polido SA, Kamps J, Tatzelt J. Biological Functions of the Intrinsically Disordered N-Terminal Domain of the Prion Protein: A Possible Role of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:1201. [PMID: 34439867 PMCID: PMC8391301 DOI: 10.3390/biom11081201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The mammalian prion protein (PrPC) is composed of a large intrinsically disordered N-terminal and a structured C-terminal domain, containing three alpha-helical regions and a short, two-stranded beta-sheet. Traditionally, the activity of a protein was linked to the ability of the polypeptide chain to adopt a stable secondary/tertiary structure. This concept has been extended when it became evident that intrinsically disordered domains (IDDs) can participate in a broad range of defined physiological activities and play a major functional role in several protein classes including transcription factors, scaffold proteins, and signaling molecules. This ability of IDDs to engage in a variety of supramolecular complexes may explain the large number of PrPC-interacting proteins described. Here, we summarize diverse physiological and pathophysiological activities that have been described for the unstructured N-terminal domain of PrPC. In particular, we focus on subdomains that have been conserved in evolution.
Collapse
Affiliation(s)
- Stella A. Polido
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
34
|
Schmitt-Ulms G, Mehrabian M, Williams D, Ehsani S. The IDIP framework for assessing protein function and its application to the prion protein. Biol Rev Camb Philos Soc 2021; 96:1907-1932. [PMID: 33960099 DOI: 10.1111/brv.12731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be 'known' are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: 'inheritance', 'distribution', 'interactions' and 'phenotypes' (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC ), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Sepehr Ehsani
- Theoretical and Philosophical Biology, Department of Philosophy, University College London, Bloomsbury, London, WC1E 6BT, U.K.,Ronin Institute for Independent Scholarship, Montclair, NJ, 07043, U.S.A
| |
Collapse
|
35
|
LaBarbera KM, Limegrover C, Rehak C, Yurko R, Izzo NJ, Knezovich N, Watto E, Waybright L, Catalano SM. Modeling the mature CNS: A predictive screening platform for neurodegenerative disease drug discovery. J Neurosci Methods 2021; 358:109180. [PMID: 33836174 PMCID: PMC8217273 DOI: 10.1016/j.jneumeth.2021.109180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022]
Abstract
Background: Mature primary neuronal cultures are an important model of the nervous system, but limited scalability has been a major challenge in their use for drug discovery of neurodegenerative diseases. This work describes a method for improving scalability through the use of larger format microtiter plates while preserving culture quality. New Method: Here we describe a method and quality control procedures for growing embryonic day 18 rat hippocampal/cortical neuronal cultures in 384-well microtiter plates for three weeks in vitro. Results: We use these cultures in two assays measuring intracellular lipid vesicle trafficking and synapse density for routine screening of small molecule libraries. Together this culture system and screening platform have successfully identified therapeutics capable of improving cognitive function in transgenic models of Alzheimer’s disease that have advanced to clinical trials, validating their translational applicability. Comparison with Existing Methods: Our method enables the growth of healthy, mature neurons in larger format microtiter plates than in traditional primary neuronal culturing protocols, making it ideal for drug screening and mechanism of action studies. Conclusion: The predictive capacity of this culture system and screening platform provides a method for rapidly identifying novel disease-modifying neurodegenerative therapeutics.
Collapse
Affiliation(s)
| | | | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | | | - Nicole Knezovich
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Emily Watto
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Lora Waybright
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States.
| |
Collapse
|
36
|
Gonzalez-Garcia M, Fusco G, De Simone A. Membrane Interactions and Toxicity by Misfolded Protein Oligomers. Front Cell Dev Biol 2021; 9:642623. [PMID: 33791300 PMCID: PMC8006268 DOI: 10.3389/fcell.2021.642623] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/13/2023] Open
Abstract
The conversion of otherwise soluble proteins into insoluble amyloid aggregates is associated with a range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases, as well as non-neuropathic conditions such as type II diabetes and systemic amyloidoses. It is increasingly evident that the most pernicious species among those forming during protein aggregation are small prefibrillar oligomers. In this review, we describe the recent progress in the characterization of the cellular and molecular interactions by toxic misfolded protein oligomers. A fundamental interaction by these aggregates involves biological membranes, resulting in two major model mechanisms at the onset of the cellular toxicity. These include the membrane disruption model, resulting in calcium imbalance, mitochondrial dysfunction and intracellular reactive oxygen species, and the direct interaction with membrane proteins, leading to the alteration of their native function. A key challenge remains in the characterization of transient interactions involving heterogeneous protein aggregates. Solving this task is crucial in the quest of identifying suitable therapeutic approaches to suppress the cellular toxicity in protein misfolding diseases.
Collapse
Affiliation(s)
- Mario Gonzalez-Garcia
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom
| | - Giuliana Fusco
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
37
|
Ellaithy A, Gonzalez-Maeso J, Logothetis DA, Levitz J. Structural and Biophysical Mechanisms of Class C G Protein-Coupled Receptor Function. Trends Biochem Sci 2020; 45:1049-1064. [PMID: 32861513 PMCID: PMC7642020 DOI: 10.1016/j.tibs.2020.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Groundbreaking structural and spectroscopic studies of class A G protein-coupled receptors (GPCRs), such as rhodopsin and the β2 adrenergic receptor, have provided a picture of how structural rearrangements between transmembrane helices control ligand binding, receptor activation, and effector coupling. However, the activation mechanism of other GPCR classes remains more elusive, in large part due to complexity in their domain assembly and quaternary structure. In this review, we focus on the class C GPCRs, which include metabotropic glutamate receptors (mGluRs) and gamma-aminobutyric acid B (GABAB) receptors (GABABRs) most prominently. We discuss the unique biophysical questions raised by the presence of large extracellular ligand-binding domains (LBDs) and constitutive homo/heterodimerization. Furthermore, we discuss how recent studies have begun to unravel how these fundamental class C GPCR features impact the processes of ligand binding, receptor activation, signal transduction, regulation by accessory proteins, and crosstalk with other GPCRs.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Diomedes A Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, College of Science and Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
38
|
Evidence for aggregation-independent, PrP C-mediated Aβ cellular internalization. Proc Natl Acad Sci U S A 2020; 117:28625-28631. [PMID: 33139554 DOI: 10.1073/pnas.2009238117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Evidence linking amyloid beta (Aβ) cellular uptake and toxicity has burgeoned, and mechanisms underlying this association are subjects of active research. Two major, interconnected questions are whether Aβ uptake is aggregation-dependent and whether it is sequence-specific. We recently reported that the neuronal uptake of Aβ depends significantly on peptide chirality, suggesting that the process is predominantly receptor-mediated. Over the past decade, the cellular prion protein (PrPC) has emerged as an important mediator of Aβ-induced toxicity and of neuronal Aβ internalization. Here, we report that the soluble, nonfibrillizing Aβ (1-30) peptide recapitulates full-length Aβ stereoselective cellular uptake, allowing us to decouple aggregation from cellular, receptor-mediated internalization. Moreover, we found that Aβ (1-30) uptake is also dependent on PrPC expression. NMR-based molecular-level characterization identified the docking site on PrPC that underlies the stereoselective binding of Aβ (1-30). Our findings therefore identify a specific sequence within Aβ that is responsible for the recognition of the peptide by PrPC, as well as PrPC-dependent cellular uptake. Further uptake stereodifferentiation in PrPC-free cells points toward additional receptor-mediated interactions as likely contributors for Aβ cellular internalization. Taken together, our results highlight the potential of targeting cellular surface receptors to inhibit Aβ cellular uptake as an alternative route for future therapeutic development for Alzheimer's disease.
Collapse
|
39
|
Chiasseu M, Fesharaki-Zadeh A, Saito T, Saido TC, Strittmatter SM. Gene-environment interaction promotes Alzheimer's risk as revealed by synergy of repeated mild traumatic brain injury and mouse App knock-in. Neurobiol Dis 2020; 145:105059. [PMID: 32858147 PMCID: PMC7572902 DOI: 10.1016/j.nbd.2020.105059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/17/2020] [Accepted: 08/20/2020] [Indexed: 11/20/2022] Open
Abstract
There is a strong unmet need for translational progress towards Alzheimer's disease (AD) modifying therapy. Unfortunately, preclinical modeling of the disease has been disappointing, relying primarily on transgenic mouse overexpression of rare dominant mutations. Clinical manifestation of AD symptoms is known to reflect interaction between environmental and genetic risks. Mild traumatic brain injury (mTBI) is an environmental risk for dementia, including Alzheimer's, but there has been limited mechanistic analysis of mTBI contribution to AD. Here, we investigate the interplay between mTBI and Aβ precursor protein gene mutation in AD pathogenesis. We employed a knock-in (KI) model of AD that expresses the Aß-containing exons from human APP bearing the Swedish and Iberian mutations, namely AppNL-F/NL-F mice. Without environmental risk, this genetic variation yields minimal mouse symptomatology. Anesthetized 4-month-old KI mice and their age-matched wild type (WT) controls were subjected to repeated mild closed head injury (rmCHI), once daily for 14 days. Anesthetized, uninjured genotype- and age-matched mice were used as sham controls. At 3- and 8-months post-injury, amyloid-β, phospho-tau and Iba1 expression in the injured KI cortices were assessed. Our data reveal that rmCHI enhances accumulation of amyloid-β and hyperphosphorylated tau inclusions, as well as neuroinflammation in AppNL-F/NL-F mice. Furthermore, novel object recognition and Morris water maze tests demonstrated that rmCHI greatly exacerbates persistent cognitive deficits in APPNL-F/NL-F mice. Therefore, study of gene-environment interaction demonstrates that combining risk factors provides a more robust model for AD, and that repeated mTBI substantially accelerates AD pathology in a genetically susceptible situation.
Collapse
Affiliation(s)
- Marius Chiasseu
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA; Departments of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Arman Fesharaki-Zadeh
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA; Departments of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-ku, Mizuho-cho, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA; Departments of Neurology, Yale University School of Medicine, New Haven, CT, USA; Departments of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21207452. [PMID: 33050345 PMCID: PMC7589203 DOI: 10.3390/ijms21207452] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related dementia and neurodegenerative disorder, characterized by Aβ and tau protein deposition impairing learning, memory and suppressing synaptic plasticity of neurons. Increasing evidence suggests that there is a link between the glucose and glutamate alterations with age that down-regulates glucose utilization reducing glutamate levels in AD patients. Deviations in brain energy metabolism reinforce the development of AD by hampering glutamate levels in the brain. Glutamate is a nonessential amino acid and the major excitatory neurotransmitter synthesized from glucose. Alterations in cerebral glucose and glutamate levels precede the deposition of Aβ plaques. In the brain, over 40% of neuronal synapses are glutamatergic and disturbances in glutamatergic function have been implicated in pathophysiology of AD. Nevertheless, targeting the glutamatergic system seems to be a promising strategy to develop novel, improved therapeutics for AD. Here, we review data supporting the involvement of the glutamatergic system in AD pathophysiology as well as the efficacy of glutamatergic agents in this neurodegenerative disorder. We also discuss exciting new prospects for the development of improved therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
41
|
Retinal Degeneration and Alzheimer's Disease: An Evolving Link. Int J Mol Sci 2020; 21:ijms21197290. [PMID: 33023198 PMCID: PMC7582766 DOI: 10.3390/ijms21197290] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) and glaucoma are degenerative conditions of the retina and a significant cause of irreversible blindness in developed countries. Alzheimer’s disease (AD), the most common dementia of the elderly, is often associated with AMD and glaucoma. The cardinal features of AD include extracellular accumulation of amyloid β (Aβ) and intracellular deposits of hyper-phosphorylated tau (p-tau). Neuroinflammation and brain iron dyshomeostasis accompany Aβ and p-tau deposits and, together, lead to progressive neuronal death and dementia. The accumulation of Aβ and iron in drusen, the hallmark of AMD, and Aβ and p-tau in retinal ganglion cells (RGC), the main retinal cell type implicated in glaucoma, and accompanying inflammation suggest overlapping pathology. Visual abnormalities are prominent in AD and are believed to develop before cognitive decline. Some are caused by degeneration of the visual cortex, while others are due to RGC loss or AMD-associated retinal degeneration. Here, we review recent information on Aβ, p-tau, chronic inflammation, and iron dyshomeostasis as common pathogenic mechanisms linking the three degenerative conditions, and iron chelation as a common therapeutic option for these disorders. Additionally discussed is the role of prion protein, infamous for prion disorders, in Aβ-mediated toxicity and, paradoxically, in neuroprotection.
Collapse
|
42
|
Kilinc D, Vreulx AC, Mendes T, Flaig A, Marques-Coelho D, Verschoore M, Demiautte F, Amouyel P, Eysert F, Dourlen P, Chapuis J, Costa MR, Malmanche N, Checler F, Lambert JC. Pyk2 overexpression in postsynaptic neurons blocks amyloid β 1-42-induced synaptotoxicity in microfluidic co-cultures. Brain Commun 2020; 2:fcaa139. [PMID: 33718872 PMCID: PMC7941669 DOI: 10.1093/braincomms/fcaa139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/12/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
Recent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer's disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer's disease, deciphering the impact of Alzheimer's risk genes on synapse formation and maintenance is of great interest. In this article, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid β peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein. Co-culture with cells overexpressing mutated amyloid precursor protein exposed the synapses of primary hippocampal neurons to amyloid β1-42 molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of amyloid β suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta-an Alzheimer's disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer's disease brains at gene expression and protein levels-selectively in postsynaptic neurons is protective against amyloid β1-42-induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically relevant model of Alzheimer's disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.
Collapse
Affiliation(s)
- Devrim Kilinc
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Anaïs-Camille Vreulx
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Tiago Mendes
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Amandine Flaig
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Diego Marques-Coelho
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59056-450, Brazil
| | - Maxime Verschoore
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Florie Demiautte
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Philippe Amouyel
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | | | - Fanny Eysert
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Pierre Dourlen
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Julien Chapuis
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Marcos R Costa
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Nicolas Malmanche
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| | - Frédéric Checler
- CNRS UMR7275 Laboratory of Excellence "Distalz", IPMC, Université Côte d'Azur, Inserm, Valbonne 06560, France
| | - Jean-Charles Lambert
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France
| |
Collapse
|
43
|
Simões-Pires EN, Ferreira ST, Linden R. Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases. J Neurochem 2020; 156:539-552. [PMID: 32683713 DOI: 10.1111/jnc.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
Systemic multimorbidity is highly prevalent in the elderly and, remarkably, coexisting neuropathological markers of Alzheimer's (AD) and cerebrovascular (CVD) diseases are found at autopsy in most brains of patients clinically diagnosed as AD. Little is known on neurodegeneration peculiar to comorbidities, especially at early stages when pathogenesis may propagate at subclinical levels. We developed a novel in vitro model of comorbid CVD/AD in organotypic hippocampal cultures, by combining oxygen-glucose deprivation (OGD) and exposure to amyloid-Aβ oligomers (AβOs), both applied at levels subtoxic to neurons when used in isolation. We focused on synaptic proteins and the roles of glutamate receptors, which have been implicated in many basic and clinical approaches to either CVD or AD. Subtoxic insults by OGD and AβOs synergized to reduce levels of synaptophysin (SYP) and PSD-95 without cell death, while effects of antagonists of either metabotropic or ionotropic glutamate receptors were distinct from reports in models of isolated CVD or AD. In particular, modulation of glutamate receptors differentially impacted SYP and PSD-95, and antagonists of a single receptor subtype had distinct effects when either isolated or combined. Our findings highlight the complexity of CVD/AD comorbidity, help understand variable responses to glutamate receptor antagonists in patients diagnosed with AD and may contribute to future development of therapeutics based on investigation of the pattern of progressive comorbidity.
Collapse
Affiliation(s)
| | - Sergio T Ferreira
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, UFRJ, Rio de Janeiro, Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
45
|
Huang YR, Liu RT. The Toxicity and Polymorphism of β-Amyloid Oligomers. Int J Mol Sci 2020; 21:E4477. [PMID: 32599696 PMCID: PMC7352971 DOI: 10.3390/ijms21124477] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022] Open
Abstract
It is widely accepted that β-amyloid oligomers (Aβos) play a key role in the progression of Alzheimer's disease (AD) by inducing neuron damage and cognitive impairment, but Aβos are highly heterogeneous in their size, structure and cytotoxicity, making the corresponding studies tough to carry out. Nevertheless, a number of studies have recently made remarkable progress in the describing the characteristics and pathogenicity of Aβos. We here review the mechanisms by which Aβos exert their neuropathogenesis for AD progression, including receptor binding, cell membrane destruction, mitochondrial damage, Ca2+ homeostasis dysregulation and tau pathological induction. We also summarize the characteristics and pathogenicity such as the size, morphology and cytotoxicity of dimers, trimers, Aβ*56 and spherical oligomers, and suggest that Aβos may play a different role at different phases of AD pathogenesis, resulting in differential consequences on neuronal synaptotoxicity and survival. It is warranted to investigate the temporal sequence of Aβos in AD human brain and examine the relationship between different Aβos and cognitive impairment.
Collapse
Affiliation(s)
- Ya-ru Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
46
|
Francistiová L, Bianchi C, Di Lauro C, Sebastián-Serrano Á, de Diego-García L, Kobolák J, Dinnyés A, Díaz-Hernández M. The Role of P2X7 Receptor in Alzheimer's Disease. Front Mol Neurosci 2020; 13:94. [PMID: 32581707 PMCID: PMC7283947 DOI: 10.3389/fnmol.2020.00094] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease characterized by a progressive cognitive decline associated with global brain damage. Initially, intracellular paired helical filaments composed by hyperphosphorylated tau and extracellular deposits of amyloid-β (Aβ) were postulated as the causing factors of the synaptic dysfunction, neuroinflammation, oxidative stress, and neuronal death, detected in AD patients. Therefore, the vast majority of clinical trials were focused on targeting Aβ and tau directly, but no effective treatment has been reported so far. Consequently, only palliative treatments are currently available for AD patients. Over recent years, several studies have suggested the involvement of the purinergic receptor P2X7 (P2X7R), a plasma membrane ionotropic ATP-gated receptor, in the AD brain pathology. In this line, altered expression levels and function of P2X7R were found both in AD patients and AD mouse models. Consequently, genetic depletion or pharmacological inhibition of P2X7R ameliorated the hallmarks and symptoms of different AD mouse models. In this review, we provide an overview of the current knowledge about the role of the P2X7R in AD.
Collapse
Affiliation(s)
- Linda Francistiová
- BioTalentum Ltd., Gödöllõ, Hungary
- Szent István University, Gödöllõ, Hungary
| | - Carolina Bianchi
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Caterina Di Lauro
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | | | - András Dinnyés
- BioTalentum Ltd., Gödöllõ, Hungary
- Szent István University, Gödöllõ, Hungary
- HCEMM-USZ StemCell Research Group, University of Szeged, Szeged, Hungary
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
47
|
Webber CJ, Lei SE, Wolozin B. The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:187-223. [PMID: 32828466 DOI: 10.1016/bs.pmbts.2020.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid-liquid phase separation (LLPS) brings together functionally related proteins through the intrinsic biophysics of proteins in a process that is driven by reducing free energy and maximizing entropy. The process of LLPS allows proteins to form structures, termed membrane-less organelles. These diverse, dynamic organelles are active in a wide range of processes in the nucleus, cytoplasm, mitochondria and synapse, and ranging from bacteria to plants to eukaryotes. RNA and DNA present long chained charged polymers that promote LLPS. Consequently, many RNA binding proteins (RBPs) and DNA binding proteins form membrane-less organelles. However, the highly concentrated phase separated state creates conditions that also promote formation of irreversible protein aggregates. Mutations in RNA and DNA binding proteins that increase the stability of irreversible aggregates also increase the accumulation of irreversible aggregates directly and from membrane-less organelles. Many of the RBPs that exhibit disease-linked mutations carry out cytoplasmic actions through stress granules, which are a pleiotropic type of RNA granule that regulates the translational response to stress. Phosphorylation and oligomerization of tau facilitates its interactions with RBPs and ribosomal proteins, affecting RNA translation; we propose that this is a major reason that tau becomes phosphorylated with stress. Persistent stress leads to the accumulation of irreversible aggregates composed of RBPs or tau, which then cause toxicity and form many of the hallmark pathologies of major neurodegenerative diseases. This pathophysiology ultimately leads to multiple forms of neurodegenerative diseases, the specific type of which reflects the temporal and spatial accumulation of different aggregating proteins.
Collapse
Affiliation(s)
- Chelsea J Webber
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Shuwen Eric Lei
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States; Department of Neurology, Boston University School of Medicine, Boston, MA, United States; Program in Neuroscience, Boston University, Boston, MA, United States; Neurophotonics Center, Boston University, Boston, MA, United States.
| |
Collapse
|
48
|
Gallart-Palau X, Guo X, Serra A, Sze SK. Alzheimer's disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimers Res Ther 2020; 12:54. [PMID: 32384937 PMCID: PMC7210691 DOI: 10.1186/s13195-020-00623-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The contributions of brain intercellular communication mechanisms, specifically extracellular vesicles (EV), to the progression of Alzheimer's disease (AD) remain poorly understood. METHODS Here, we investigated the role(s) of brain EV in the progressive course of AD through unbiased proteome-wide analyses of temporal lobe-derived EV and proteome-label quantitation of complementary remaining brain portions. Furthermore, relevant proteins identified were further screened by multiple reaction monitoring. RESULTS Our data indicate that EV biogenesis was altered during preclinical AD with the genesis of a specific population of EV containing MHC class-type markers. The significant presence of the prion protein PrP was also manifested in these brain vesicles during preclinical AD. Similarly, sequestration of amyloid protein APP in brain EV coincided with the observed PrP patterns. In contrast, active incorporation of the mitophagy protein GABARAP in these brain vesicles was disrupted as AD progressed. Likewise, disrupted incorporation of LAMP1 in brain EV was evident from the initial manifestation of AD clinical symptoms, although the levels of the protein remained significantly upregulated in the temporal lobe of diseased brains. CONCLUSIONS Our findings indicate that impaired autophagy in preclinical AD coincides with the appearance of proinflammatory and neuropathological features in brain extracellular vesicles, facts that moderately remain throughout the entire AD progression. Thus, these data highlight the significance of brain EV in the establishment of AD neuropathology and represent a further leap toward therapeutic interventions with these vesicles in human dementias.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Institut Pere Mata, Reus, Tarragona, Spain
| | - Xue Guo
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Aida Serra
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain.
| | - Siu Kwan Sze
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
49
|
Gomes LA, Hipp SA, Rijal Upadhaya A, Balakrishnan K, Ospitalieri S, Koper MJ, Largo-Barrientos P, Uytterhoeven V, Reichwald J, Rabe S, Vandenberghe R, von Arnim CAF, Tousseyn T, Feederle R, Giudici C, Willem M, Staufenbiel M, Thal DR. Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathol 2019; 138:913-941. [PMID: 31414210 DOI: 10.1007/s00401-019-02053-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Abstract
Extracellular deposition of amyloid β-protein (Aβ) in amyloid plaques and intracellular accumulation of abnormally phosphorylated τ-protein (p-τ) in neurofibrillary tangles (NFTs) represent pathological hallmark lesions of Alzheimer's disease (AD). Both lesions develop in parallel in the human brain throughout the preclinical and clinical course of AD. Nevertheless, it is not yet clear whether there is a direct link between Aβ and τ pathology or whether other proteins are involved in this process. To address this question, we crossed amyloid precursor protein (APP) transgenic mice overexpressing human APP with the Swedish mutation (670/671 KM → NL) (APP23), human wild-type APP (APP51/16), or a proenkephalin signal peptide linked to human Aβ42 (APP48) with τ-transgenic mice overexpressing human mutant 4-repeat τ-protein with the P301S mutation (TAU58). In 6-month-old APP23xTAU58 and APP51/16xTAU58 mice, soluble Aβ was associated with the aggravation of p-τ pathology propagation into the CA1/subiculum region, whereas 6-month-old TAU58 and APP48xTAU58 mice neither exhibited significant amounts of p-τ pathology in the CA1/subiculum region nor displayed significant levels of soluble Aβ in the forebrain. In APP23xTAU58 and APP51/16xTAU58 mice showing an acceleration of p-τ propagation, Aβ and p-τ were co-immunoprecipitated with cellular prion protein (PrPC). A similar interaction between PrPC, p-τ and Aβ was observed in human AD brains. This association was particularly noticed in 60% of the symptomatic AD cases in our sample, suggesting that PrPC may play a role in the progression of AD pathology. An in vitro pull-down assay confirmed that PrPC is capable of interacting with Aβ and p-τ. Using a proximity ligation assay, we could demonstrate proximity (less than ~ 30-40 nm distance) between PrPC and Aβ and between PrPC and p-τ in APP23xTAU58 mouse brain as well as in human AD brain. Proximity between PrPC and p-τ was also seen in APP51/16xTAU58, APP48xTAU58, and TAU58 mice. Based on these findings, it is tempting to speculate that PrPC is a critical player in the interplay between Aβ and p-τ propagation at least in a large group of AD cases. Preexisting p-τ pathology interacting with PrPC, thereby, appears to be a prerequisite for Aβ to function as a p-τ pathology accelerator via PrPC.
Collapse
Affiliation(s)
- Luis Aragão Gomes
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU-Leuven, Leuven, Belgium
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium
| | - Silvia Andrea Hipp
- Laboratory for Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
- Anasthesiology and Intensive Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Ajeet Rijal Upadhaya
- Laboratory for Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
| | - Karthikeyan Balakrishnan
- Laboratory for Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
- Department of Gene Therapy, University of Ulm, Ulm, Germany
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU-Leuven, Leuven, Belgium
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU-Leuven, Leuven, Belgium
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium
- VIB, Center for Brain and Disease Research, Leuven, Belgium
| | - Pablo Largo-Barrientos
- VIB, Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU-Leuven, Leuven, Belgium
| | - Valerie Uytterhoeven
- VIB, Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU-Leuven, Leuven, Belgium
| | - Julia Reichwald
- Novartis Institutes for Biomedical Sciences, Basel, Switzerland
| | - Sabine Rabe
- Novartis Institutes for Biomedical Sciences, Basel, Switzerland
| | - Rik Vandenberghe
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium
- Experimental Neurology Group, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, UZ-Leuven, Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Clinic for Neurogeriatrics and Neurological Rehabilitation, University- und Rehabilitation Hospital Ulm (RKU), Ulm, Germany
| | | | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Research Group, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Camilla Giudici
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
| | - Michael Willem
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | | | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU-Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium.
- Laboratory for Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
50
|
Ding Y, Zhao J, Zhang X, Wang S, Viola KL, Chow FE, Zhang Y, Lippa C, Klein WL, Gong Y. Amyloid Beta Oligomers Target to Extracellular and Intracellular Neuronal Synaptic Proteins in Alzheimer's Disease. Front Neurol 2019; 10:1140. [PMID: 31736856 PMCID: PMC6838211 DOI: 10.3389/fneur.2019.01140] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: β-Amyloid protein (Aβ) putatively plays a seminal role in synaptic loss in Alzheimer's disease (AD). While there is no consensus regarding the synaptic-relevant species of Aβ, it is known that Aβ oligomers (AβOs) are noticeably increased in the early stages of AD, localizing at or within the synapse. In cell and animal models, AβOs have been shown to attach to synapses and instigate synapse dysfunction and deterioration. To establish the pathological mechanism of synaptic loss in AD, it will be important to identify the synaptic targets to which AβOs attach. Methods: An unbiased approach using far western ligand blots has identified three synaptic proteins to which AβOs specifically attach. These proteins (p100, p140, and p260) were subsequently enriched by detergent extraction, ultracentrifugation, and CHT-HPLC column separation, and sequenced by LC-MS/MS. P100, p140, and p260 were identified. These levels of AβOs targets in human AD and aging frontal cortexes were analyzed by quantitative proteomics and western-blot. The polyclonal antibody to AβOs was developed and used to block the toxicity of AβOs. The data were analyzed with one-way analysis of variance. Results: AβOs binding proteins p100, p140, and p260 were identified as Na/K-ATPase, synGap, and Shank3, respectively. α3-Na/K-ATPase, synGap, and Shank3 proteins showed loss in the postsynaptic density (PSD) of human AD frontal cortex. In short term experiments, oligomers of Aβ inhibited Na/K-ATPase at the synapse. Na/K-ATPase activity was restored by an antibody specific for soluble forms of Aβ. α3-Na/K-ATPase protein and synaptic β-amyloid peptides were pulled down from human AD synapses by co-immunoprecipitation. Results suggest synaptic dysfunction in early stages of AD may stem from inhibition of Na/K-ATPase activity by Aβ oligomers, while later stages could hypothetically result from disrupted synapse structure involving the PSD proteins synGap and Shank3. Conclusion: We identified three AβO binding proteins as α3-Na/K-ATPase, synGap, and Shank3. Soluble Aβ oligomers appear capable of attacking neurons via specific extracellular as well as intracellular synaptic proteins. Impact on these proteins hypothetically could lead to synaptic dysfunction and loss, and could serve as novel therapeutic targets for AD treatment by antibodies or other agents.
Collapse
Affiliation(s)
- Yu Ding
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiahui Zhao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xunle Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanshan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kirsten L. Viola
- Department of Neurobiology and Neurology, Northwestern University, Evanston, IL, United States
| | - Frances E. Chow
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Yang Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Carol Lippa
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - William L. Klein
- Department of Neurobiology and Neurology, Northwestern University, Evanston, IL, United States
| | - Yuesong Gong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|