1
|
Liu F, Li X, Chen J, Huang Y, Dang S. Maternal pesticide exposure and risk of birth defects: a population-based cross-sectional study in China. Front Public Health 2024; 12:1489365. [PMID: 39712309 PMCID: PMC11659231 DOI: 10.3389/fpubh.2024.1489365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Objective This study aimed to examine the association between maternal pesticide exposure during the periconceptional period and birth defects in their offspring. Methods A survey was conducted among 29,204 women with infants born between 2010 and 2013 in Shaanxi Province, Northwest China. All cases of birth defects were diagnosed using the International Classification of Diseases, Tenth Revision (ICD-10). Given the multistage sampling design, the generalized estimating equation (GEE) binomial regression models with log link and exchangeable correlation structures were used to analyze the association between maternal pesticide exposures and birth defects. Results Among the 29,204 subjects, 562 mothers had children with birth defects, resulting in an incidence rate of 192.44 per 10,000 live births. The incidence of birth defects was higher in the pesticide-exposed group compared to the control group (737.46/10,000 vs. 186.04/10,000). After adjusting for baseline demographic characteristics, fertility status, nutritional factors, and environmental factors in the GEE model, the results indicated that the risk of birth defects and cardiovascular system defects in mothers exposed to pesticides during the periconceptional period was 2.39 times (95% CI: 1.84-3.10) and 3.14 times (95% CI: 1.73-5.71) higher, respectively, compared to the control group. Conclusion This study demonstrated that maternal exposure to pesticides during the periconceptional period was associated with an increased risk of birth defects, particularly cardiovascular system defects in offspring. Consequently, it would be beneficial to avoid pesticide exposure from three months before pregnancy through the first trimester to lower birth defects in infants.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Stomatology, Xi’an Central Hospital, Xi’an, Shaanxi, China
| | - Xiayang Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jie Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yishuai Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shaonong Dang
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Mendizabal-Ruiz G, Paredes O, Álvarez Á, Acosta-Gómez F, Hernández-Morales E, González-Sandoval J, Mendez-Zavala C, Borrayo E, Chavez-Badiola A. Artificial Intelligence in Human Reproduction. Arch Med Res 2024; 55:103131. [PMID: 39615376 DOI: 10.1016/j.arcmed.2024.103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
The use of artificial intelligence (AI) in human reproduction is a rapidly evolving field with both exciting possibilities and ethical considerations. This technology has the potential to improve success rates and reduce the emotional and financial burden of infertility. However, it also raises ethical and privacy concerns. This paper presents an overview of the current and potential applications of AI in human reproduction. It explores the use of AI in various aspects of reproductive medicine, including fertility tracking, assisted reproductive technologies, management of pregnancy complications, and laboratory automation. In addition, we discuss the need for robust ethical frameworks and regulations to ensure the responsible and equitable use of AI in reproductive medicine.
Collapse
Affiliation(s)
- Gerardo Mendizabal-Ruiz
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Omar Paredes
- Laboratorio de Innovación Biodigital, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; IVF 2.0 Limited, Department of Research and Development, London, UK
| | - Ángel Álvarez
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Fátima Acosta-Gómez
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Estefanía Hernández-Morales
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Josué González-Sandoval
- Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Celina Mendez-Zavala
- Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ernesto Borrayo
- Laboratorio de Innovación Biodigital, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alejandro Chavez-Badiola
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; IVF 2.0 Limited, Department of Research and Development, London, UK; New Hope Fertility Center, Deparment of Research, Ciudad de México, Mexico
| |
Collapse
|
3
|
Jauniaux E, Jeremiah L, Richardson B, Rogozińska E. Exposure to drinking water pollutants and non-syndromic birth defects: a systematic review and meta-analysis synthesis. BMJ Open 2024; 14:e084122. [PMID: 39532365 PMCID: PMC11555108 DOI: 10.1136/bmjopen-2024-084122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES To evaluate the association between drinking water pollutants and non-syndromic birth defects. DESIGN Systematic review and meta-analysis synthesis. DATA SOURCES A search of MEDLINE, EMBASE and Google Scholar was performed to review relevant citations reporting on birth defects in pregnancies exposed to water pollutants between January 1962 and April 2023. ELIGIBILITY CRITERIA Prospective or retrospective cohort, population studies and case-control studies that provided data on exposure to drinking water pollutants around conception or during pregnancy and non-syndromic birth defects. We included studies published in the English language after the Minamata Bay disaster to reflect on contemporary concerns about the effect of environmental pollution and obstetric outcomes. DATA EXTRACTION AND SYNTHESIS Two reviewers independently read the retrieved articles for content, data extraction and analysis. The methodological quality of studies was assessed using the Newcastle-Ottawa Scale. Included studies were assessed for comparability when considered for meta-analysis. RESULTS 32 studies met inclusion criteria including 17 cohorts (6 389 097 participants) and 15 case-control studies (47 914 cases and 685 712 controls). The most common pollutants investigated were trihalomethanes (11 studies), arsenic (5 studies) and nitrates (4 studies). The studies varied in design with different estimates of exposure, different stages of gestation age and different durations of exposure to pollutants. 21 articles reported data on any birth defects in their population or study groups and the others on specific birth defects including congenital heart defects, neural tube defects, orofacial defects and hypospadias. An increased risk or higher incidence of overall birth defects was reported by 9 studies and for specific birth defects by 14 studies. Eight studies compared the risk or incidence of birth defects with exposure to different concentrations of the pollutants. The analysis showed an association between higher levels of trihalomethanes (TTMs) and arsenic increase in major birth defects (lower vs higher exposure (OR 0.76, 95% CI 0.65 to 0.89; p<0.001 and OR 0.56, 95% CI 0.39 to 0.82; p<0.005, respectively). CONCLUSION The evidence of an association between exposure to average levels of common drinking water chemical pollutants during pregnancy and an increased risk or incidence of birth defects is uncertain. Available evidence indicates that some common chemical pollutants currently found in drinking water may have a direct teratogenic effect at high maternal exposure, however, wide variation in methodology limits the interpretation of the results. Future prospective studies using standardised protocols comparing maternal levels during all three trimesters of pregnancy and cord blood levels at birth are needed to better understand the placental transfer of water pollutants and accurately evaluate individual fetal exposure to drinking water pollutants. PROSPERO REGISTRATION NUMBER CRD42018112524.
Collapse
Affiliation(s)
- Eric Jauniaux
- EGA Institute for Women Health, University College London, London, UK
| | - Lydia Jeremiah
- EGA Institute for Women Health, University College London, London, UK
| | - Biba Richardson
- EGA Institute for Women Health, University College London, London, UK
| | - Ewelina Rogozińska
- Women’s Health Research Unit, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- The EVIE Evidence Synthesis Research Group, Institute of Clinical Trials and Methodology, Faculty of Population Health Sciences, University College London, London, UK
| |
Collapse
|
4
|
Xue S, Liu Y, Wang L, Zhang L, Chang B, Ding G, Dai P. Clinical application of chromosome microarray analysis and karyotyping in prenatal diagnosis in Northwest China. Front Genet 2024; 15:1347942. [PMID: 39568677 PMCID: PMC11576268 DOI: 10.3389/fgene.2024.1347942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Karyotyping and chromosome microarray analysis (CMA) are the two main prenatal diagnostic techniques currently used for genetic testing. We aimed to evaluate the value of chromosomal karyotyping and CMA for different prenatal indications. Methods A total of 2084 amniocentesis samples from pregnant women who underwent prenatal diagnosis from 16 to 22 + 6 weeks of gestation between January 2021 and December 2022 were retrospectively collected. The pregnant women were classified according to different prenatal diagnostic indications and underwent CMA and karyotype analysis. Clinical data were collected, and the results of the CMA and karyotype analysis were statistically analyzed to compare the effects of the two diagnostic techniques. Results The total detection rate of abnormal chromosomes was significantly higher using CMA than karyotype analysis. The detection rate of abnormal chromosomes using CMA was significantly higher than that using karyotyping for ultrasound abnormalities, high-risk serologic screening, adverse pregnancy history, positive noninvasive prenatal test (NIPT) screening, and ultrasound abnormalities combined with adverse pregnancy history indications. Among the fetuses with inconsistent results between the two testing methods, 144 had an abnormal CMA but a normal karyotype, with the highest percentage of pregnant women with ultrasound abnormalities at 38.89% (56/144). CMA had the highest detection rate for structural abnormalities combined with soft-index abnormalities among all ultrasound abnormalities. The highest detection rate of copy number variants in the group of structural abnormalities in a single system was in the genitourinary system (3/29, 10.34%). Conclusion CMA can improve the detection rate of chromosomal abnormalities in patients with ultrasound abnormalities, high-risk serologic screening, adverse maternal history, positive NIPT screening, and ultrasound abnormalities combined with adverse maternal history and can increase the detection rate of chromosomal abnormalities in karyotypic normality by 6.91% (144/2,084), this result is higher than similar studies. However, karyotype analysis remains advantageous over CMA regarding balanced chromosomal rearrangement and detection of low-level chimeras, and the combination of the two methods is more helpful in improving the detection rate of prenatal chromosomal abnormalities.
Collapse
Affiliation(s)
- ShuYuan Xue
- The College of Life Sciences, Northwest University, Xi'an City, Shanxi, China
- Prenatal Diagnosis Center, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - YuTong Liu
- College of Public Health, Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region, China
| | - LiXia Wang
- Prenatal Diagnosis Center, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - Le Zhang
- Prenatal Diagnosis Center, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - Bozhen Chang
- Prenatal Diagnosis Center, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - GuiFeng Ding
- Department of Obstetrics, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - PengGao Dai
- The College of Life Sciences, Northwest University, Xi'an City, Shanxi, China
| |
Collapse
|
5
|
Du C, Zhang Z, Xiao S, Li Y, Jiang R, Jian W, Ren Z, Lv Y, Pan Z, Yang J. Association of the national level of human development with the incidence and mortality of congenital birth defects in 2019: A cross-sectional study from 189 countries. Biosci Trends 2024; 18:325-334. [PMID: 39198157 DOI: 10.5582/bst.2024.01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Congenital birth defects (CBD) play a significant role in causing child mortality globally. The incidence and mortality of CBD vary widely across countries, and the underlying causes for this divergence remain incompletely comprehended. We conducted an analysis to investigate the relationship between the incidence and mortality of CBD in 189 countries and their Human Development Index (HDI). In this study, CBD data from 189 countries was used from the Global Burden of Diseases Study (GBD) 2019, and HDI data was collected for the same countries. Later, the relationship between CBD and HDI was analyzed, and the impact of gross national income (GNI) per capita, expected years of schooling, mean years of schooling and life expectancy at birth was quantified using principal component regression. The age-standardized incidence rate (ASIR) varied between 66.57 to 202.24 per 100,000, with a 95% uncertainty interval (UI) of 57.20-77.51 and 165.87-241.48 respectively. The age-standardized mortality rate (ASMR) also showed a rang from 1.38 to 26.53 (14.03-39.90) per 100,000, with the 95%UI of 0.91-2.09 and 14.03-39.90 respectively. Both the incidence and mortality rates of CBD decreased with the increased HDI (incidence: r = -0.38, p < 0.001, mortality: r = -0.77, p < 0.001). Our investigation revealed significant variations in the incidence and mortality of CBD among countries with different development levels. In conclusion, the global incidence and mortality of CBD vary significantly among countries, possibly due to differences in the accessibility of health services.
Collapse
Affiliation(s)
- Chen Du
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziquan Zhang
- School of Artificial Intelligence, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shuzhe Xiao
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanwen Li
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruiwen Jiang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weihua Jian
- Department of Neonatology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Zhuxiao Ren
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Yiting Lv
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhizhang Pan
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Yang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Liu S, Yu L. Role of genetics and the environment in the etiology of congenital diaphragmatic hernia. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000884. [PMID: 39183805 PMCID: PMC11340715 DOI: 10.1136/wjps-2024-000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital malformation characterized by failure of diaphragm closure during embryonic development, leading to pulmonary hypoplasia and pulmonary hypertension, which contribute significantly to morbidity and mortality. The occurrence of CDH and pulmonary hypoplasia is theorized to result from both abnormalities in signaling pathways of smooth muscle cells in pleuroperitoneal folds and mechanical compression by abdominal organs within the chest cavity on the developing lungs. Although, the precise etiology of diaphragm maldevelopment in CDH is not fully understood, it is believed that interplay between genes and the environment contributes to its onset. Approximately 30% of patients with CDH possess chromosomal or single gene defects and these patients tend to have inferior outcomes compared with those without genetic associations. At present, approximately 150 gene variants have been linked to the occurrence of CDH. The variable expression of the CDH phenotype in the presence of a recognized genetic predisposition can be explained by an environmental effect on gene penetrance and expression. The retinoic acid pathway is thought to play an essential role in the interactions of genes and environment in CDH. However, apart from the gradually maturing retinol hypothesis, there is limited evidence implicating other environmental factors in CDH occurrence. This review aims to describe the pathogenesis of CDH by summarizing the genetic defects and potential environmental influences on CDH development.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Cardiac & Thoracic Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lan Yu
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Chen X, Lan L, Wu H, Zeng M, Zheng Z, Zhong Q, Lai F, Hu Y. Chromosomal Microarray Analysis in Fetuses with Ultrasound Abnormalities. Int J Gen Med 2024; 17:3531-3540. [PMID: 39161407 PMCID: PMC11332413 DOI: 10.2147/ijgm.s472906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Objective To explore and evaluate the value of chromosomal microarray analysis (CMA) in prenatal diagnosis of fetuses with ultrasound abnormalities. Methods A retrospective analysis was performed on 370 fetuses with ultrasound abnormalities received invasive prenatal diagnosis at Meizhou People's Hospital from October 2022 to December 2023. Fetal specimens were analyzed by CMA, and the detection rates of aneuploidy and pathogenic (P)/likely pathogenic (LP) copy number variations (CNVs) in ultrasound structural abnormalities (malformations of fetal anatomy) and non-structural abnormalities (abnormalities of fetal nonanatomical structure) were analyzed. Results There were 114 (30.8%) cases with isolated ultrasound structural abnormalities, 226 (61.1%) cases with isolated non-structural abnormalities (182 isolated ultrasound soft markers abnormalities, 30 isolated fetal growth restriction (FGR), and 8 isolated abnormalities of amniotic fluid volume), and 30 (8.1%) cases with both structural and non-structural abnormalities. The overall detection rate of aneuploidy and P/LP CNVs in isolated ultrasonic structural abnormalities was 5.3%, among which cardiovascular system abnormalities were the highest. In addition, the largest number of fetuses with non-structural abnormalities was nuchal translucency (NT) thickening (n = 81), followed by ventriculomegaly (n = 29), and nasal bone dysplasia (n = 24). The detection rate of chromosomal abnormalities of fetuses with abnormal ultrasound soft markers was 9.9%, and the detection rate in single abnormal ultrasound soft marker, and multiple ultrasound soft markers abnormalities was 9.7% (16/165) and 11.8% (2/17), respectively. Moreover, the detection rate of chromosomal abnormalities of fetuses with FGR and structural abnormalities combined with non-structural abnormalities was 6.7% (2/30), and 13.3% (4/30), respectively. Conclusion The incidence of chromosomal abnormalities (aneuploidy and P/LP CNVs) varies among different fetal ultrasound abnormalities.
Collapse
Affiliation(s)
- Xiaoqin Chen
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Liubing Lan
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Heming Wu
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Mei Zeng
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhiyuan Zheng
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Qiuping Zhong
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Fengdan Lai
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yonghe Hu
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
8
|
Qi Q, Jiang Y, Zhou X, Lü Y, Xiao R, Bai J, Lou H, Sun W, Lian Y, Hao N, Li M, Chang J. Whole-genome sequencing analysis in fetal structural anomalies: novel phenotype-genotype discoveries. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:664-671. [PMID: 37842862 DOI: 10.1002/uog.27517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES The identification of structural variants and single-nucleotide variants is essential in finding molecular etiologies of monogenic genetic disorders. Whole-genome sequencing (WGS) is becoming more widespread in genetic disease diagnosis. However, data on its clinical utility remain limited in prenatal practice. We aimed to expand our understanding of implementing WGS in the genetic diagnosis of fetal structural anomalies. METHODS We employed trio WGS with a minimum coverage of 40× on the MGI DNBSEQ-T7 platform in a cohort of 17 fetuses presenting with aberrations detected by ultrasound, but uninformative findings of standard chromosomal microarray analysis (CMA) and exome sequencing (ES). RESULTS Causative genetic variants were identified in two families, with an increased diagnostic yield of 11.8% (2/17). Both were exon-level copy-number variants of small size (3.03 kb and 5.16 kb) and beyond the detection thresholds of CMA and ES. Moreover, to the best of our knowledge, we have described the first prenatal instance of the association of FGF8 with holoprosencephaly and facial deformities. CONCLUSIONS Our analysis demonstrates the clinical value of WGS in the diagnosis of the underlying etiology of fetuses with structural abnormalities, when routine genetic tests have failed to provide a diagnosis. Additionally, the novel variants and new fetal manifestations have expanded the mutational and phenotypic spectrums of BBS9 and FGF8. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Q Qi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Y Jiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - X Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Y Lü
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - R Xiao
- National Engineering Laboratory for Key Technology of Birth Defect Control and Prevention, Screening and Diagnostic R&D Center, Zhejiang, China
| | - J Bai
- Becreative Lab Co. Ltd, Beijing, China
| | - H Lou
- Becreative Lab Co. Ltd, Beijing, China
| | - W Sun
- Biosan Biochemical Technologies Co. Ltd., Zhejiang, China
| | - Y Lian
- Biosan Biochemical Technologies Co. Ltd., Zhejiang, China
| | - N Hao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - M Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - J Chang
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Zhou X, He J, Wang A, Hua X, Li T, Shu C, Fang J. Multivariate logistic regression analysis of risk factors for birth defects: a study from population-based surveillance data. BMC Public Health 2024; 24:1037. [PMID: 38622560 PMCID: PMC11017609 DOI: 10.1186/s12889-024-18420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE To explore risk factors for birth defects (including a broad range of specific defects). METHODS Data were derived from the Population-based Birth Defects Surveillance System in Hunan Province, China, 2014-2020. The surveillance population included all live births, stillbirths, infant deaths, and legal termination of pregnancy between 28 weeks gestation and 42 days postpartum. The prevalence of birth defects (number of birth defects per 1000 infants) and its 95% confidence interval (CI) were calculated. Multivariate logistic regression analysis (method: Forward, Wald, α = 0.05) and adjusted odds ratios (ORs) were used to identify risk factors for birth defects. We used the presence or absence of birth defects (or specific defects) as the dependent variable, and eight variables (sex, residence, number of births, paternal age, maternal age, number of pregnancies, parity, and maternal household registration) were entered as independent variables in multivariate logistic regression analysis. RESULTS Our study included 143,118 infants, and 2984 birth defects were identified, with a prevalence of 20.85% (95%CI: 20.10-21.60). Multivariate logistic regression analyses showed that seven variables (except for parity) were associated with birth defects (or specific defects). There were five factors associated with the overall birth defects. The risk factors included males (OR = 1.49, 95%CI: 1.39-1.61), multiple births (OR = 1.44, 95%CI: 1.18-1.76), paternal age < 20 (OR = 2.20, 95%CI: 1.19-4.09) or 20-24 (OR = 1.66, 95%CI: 1.42-1.94), maternal age 30-34 (OR = 1.16, 95%CI: 1.04-1.29) or > = 35 (OR = 1.56, 95%CI: 1.33-1.81), and maternal non-local household registration (OR = 2.96, 95%CI: 2.39-3.67). Some factors were associated with the specific defects. Males were risk factors for congenital metabolic disorders (OR = 3.86, 95%CI: 3.15-4.72), congenital limb defects (OR = 1.34, 95%CI: 1.14-1.58), and congenital kidney and urinary defects (OR = 2.35, 95%CI: 1.65-3.34). Rural areas were risk factors for congenital metabolic disorders (OR = 1.21, 95%CI: 1.01-1.44). Multiple births were risk factors for congenital heart defects (OR = 2.09, 95%CI: 1.55-2.82), congenital kidney and urinary defects (OR = 2.14, 95%CI: 1.05-4.37), and cleft lip and/or palate (OR = 2.85, 95%CI: 1.32-6.15). Paternal age < 20 was the risk factor for congenital limb defects (OR = 3.27, 95%CI: 1.10-9.71), 20-24 was the risk factor for congenital heart defects (OR = 1.64, 95%CI: 1.24-2.17), congenital metabolic disorders (OR = 1.56, 95%CI: 1.11-2.21), congenital limb defects (OR = 1.61, 95%CI: 1.14-2.29), and congenital ear defects (OR = 2.13, 95%CI: 1.17-3.89). Maternal age < 20 was the risk factor for cleft lip and/or palate (OR = 3.14, 95%CI: 1.24-7.95), 30-34 was the risk factor for congenital limb defects (OR = 1.37, 95%CI: 1.09-1.73), >=35 was the risk factor for congenital heart defects (OR = 1.51, 95%CI: 1.14-1.99), congenital limb defects (OR = 1.98, 95%CI: 1.41-2.78), and congenital ear defects (OR = 1.82, 95%CI: 1.06-3.10). Number of pregnancies = 2 was the risk factor for congenital nervous system defects (OR = 2.27, 95%CI: 1.19-4.32), >=4 was the risk factor for chromosomal abnormalities (OR = 2.03, 95%CI: 1.06-3.88) and congenital nervous system defects (OR = 3.03, 95%CI: 1.23-7.47). Maternal non-local household registration was the risk factor for congenital heart defects (OR = 3.57, 95%CI: 2.54-5.03), congenital metabolic disorders (OR = 1.89, 95%CI: 1.06-3.37), congenital limb defects (OR = 2.94, 95%CI: 1.86-4.66), and congenital ear defects (OR = 3.26, 95%CI: 1.60-6.65). CONCLUSION In summary, several risk factors were associated with birth defects (including a broad range of specific defects). One risk factor may be associated with several defects, and one defect may be associated with several risk factors. Future studies should examine the mechanisms. Our findings have significant public health implications as some factors are modifiable or avoidable, such as promoting childbirths at the appropriate age, improving the medical and socio-economic conditions of non-local household registration residents, and devoting more resources to some specific defects in high-risk groups, which may help reducing birth defects in China.
Collapse
Affiliation(s)
- Xu Zhou
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan Province, 410000, China
| | - Jian He
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan Province, 410000, China
| | - Aihua Wang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan Province, 410000, China
| | - Xinjun Hua
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan Province, 410000, China
| | - Ting Li
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan Province, 410000, China
| | - Chuqiang Shu
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan Province, 410000, China.
| | - Junqun Fang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan Province, 410000, China.
| |
Collapse
|
10
|
Li Y, Yang X, Zhang Y, Lou H, Wu M, Liu F, Chang W, Zhao X. The detection efficacy of noninvasive prenatal genetic testing (NIPT) for sex chromosome abnormalities and copy number variation and its differentiation in pregnant women of different ages. Heliyon 2024; 10:e24155. [PMID: 38293423 PMCID: PMC10826137 DOI: 10.1016/j.heliyon.2024.e24155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Objective To analyze the efficacy of noninvasive prenatal genetic testing (NIPT) in detecting fetal sex chromosome abnormalities and copy number variation (CNV), compare the efficacy between NIPT and serological screening alone, and further analyze the fetal sex chromosome abnormalities and CNV differentiation in pregnant women of different ages, so as to provide a reference for the prevention and control of fetal birth defects. Methods Clinical data from 22,692 pregnant women admitted to our hospital from January 2013 to December 2022 were retrospectively analyzed. All participants underwent serological screening and NIPT screening to compare fetal chromosomal abnormalities between the two screening modalities. 145 women whose fetus were diagnosed as sex chromosome abnormalities and 36 women whose fetus were diagnosed as CNV abnormalities based on NIPT screening were selected for prenatal diagnosis by amniocentesis or karyotyping. Taking prenatal diagnosis as the standard, the four-grid table method was used to detect the positive predictive value of NIPT screening for fetal sex chromosomal abnormalities and CNV. According to the age, pregnant women were divided into 18-30 years old (n = 9844), 31-35 years old (n = 7612), >35 years old (n = 5236), and then the detection rates of sexual fetal chromosomal abnormalities, CNV and total chromosomal abnormalities were compared in pregnant women. Results Among the 22,692 pregnant women in this study, the high-risk proportion of serologic screening with 4.38% was higher than that of NIPT screening with 1.93% (P < 0.05). Among the 145 women with fetal sex chromosome abnormalities screened by NIPT, 122 cases of fetal sex chromosome abnormalities were diagnosed prenatally, including 45, X/47, XXX/47, XYY/47, XXY. The positive predictive values of NIPT screening were 25.00%, 58.82%, 85.71%, and 85.71%, respectively, with an overall predictive value of 44.26%. The positive predictive value of fetal sex chromosome abnormalities in NIPT screening was higher than that of serological screening (P < 0.05). Among the 36 pregnant women with fetal CNV, NIPT screening showed that CNVs≤10 Mb and CNVs>10 Mb were 33.33% and 66.67%, respectively. There were 12 cases of prenatal diagnosis of fetal CNV, among which the NIPT-screened positive predictive values of fetal copy number deletion, duplicate, deletion and duplicate were 50.00%, 57.14% and 100.00%, respectively, with an overall predictive value of 58.33%. The positive predictive value of CNV in NIPT screening was higher than that of serological screening without statistically significant difference (P > 0.05). The results of NIPT screening showed that the detection rate of fetal sex chromosome abnormalities and total abnormalities of pregnant women over 35 years of age was significantly higher than that of pregnant women aged 18-30 and 31-35 years (P < 0.05). Conclusion NIPT screening could greatly improve the detection efficacy of fetal sex chromosome abnormalities, CNV and other chromosome abnormalities, and decline the false positive rate. However, the positive predictive value of NIPT screening was relatively low, and further prenatal testing and genetic counseling are still required. In addition, NIPT screening for fetal sex chromosome abnormalities, and the detection rate of total abnormalities in pregnant women older than 35 years old were increased significantly, and pregnancy at an advanced age may be one of the risk factors for fetal chromosomal abnormalities.
Collapse
Affiliation(s)
- Yimei Li
- Department of Gynecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, PR China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, PR China
| | - Ying Zhang
- Department of Gynecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, PR China
| | - Huan Lou
- Department of Gynecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, PR China
| | - Mingli Wu
- Department of Gynecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, PR China
| | - Fang Liu
- Department of Gynecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, PR China
| | - Wenjing Chang
- Department of Gynecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, PR China
| | - Xueling Zhao
- Department of Gynecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, PR China
| |
Collapse
|
11
|
Zhou X, Cai S, Wang H, Fang J, Gao J, Kuang H, Xie D, He J, Wang A. Update from a cohort study for birth defects in Hunan Province, China, 2010-2020. Sci Rep 2023; 13:20257. [PMID: 37985789 PMCID: PMC10662386 DOI: 10.1038/s41598-023-47741-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
To define the relationship between sex, residence, maternal age, and a broad range of birth defects by conducting a comprehensive cross-analysis based on up-to-date data. Data were obtained from the Birth Defects Surveillance System in Hunan Province, China, 2010-2020. Prevalences of birth defects (number of cases per 10,000 fetuses (births and deaths at 28 weeks of gestation and beyond)) with 95% confidence intervals (CI) were calculated by sex, residence, maternal age, year, and 23 specific defects. Cross-analysis of sex, residence, and maternal age was conducted, and crude odds ratios (ORs) were calculated to examine the association of each maternal characteristic with birth defects. A total of 1,619,376 fetuses and 30,596 birth defects were identified. The prevalence of birth defects was 188.94/10,000 (95% CI 186.82-191.05). Birth defects were more frequent in males than females (210.46 vs. 163.03/10,000, OR = 1.30, 95% CI 1.27-1.33), in urban areas than in rural areas (223.61 vs. 162.90/10,000, OR = 1.38, 95% CI 1.35-1.41), and in mothers ≥ 35 than mothers 25-29 (206.35 vs. 187.79/10,000, OR = 1.10, 95% CI 1.06-1.14). Cross-analysis showed that the prevalence of birth defects was higher in urban females than in rural males (194.53 vs. 182.25/10,000), the difference in prevalence between males and females was more significant for maternal age < 20 compared to other age groups (OR = 1.64, 95% CI 1.37-1.95), and the prevalence difference between urban and rural areas is more significant for maternal age 25-34 compared to other age groups (OR = 1.49, 95% CI 1.43-1.57). Cleft palates were more frequent in males, and nine specific defects were more frequent in females. Five specific defects were more frequent in rural areas, and eight were more frequent in urban areas. Compared to mothers 25-29, five specific defects were more frequent in mothers < 20, seven specific defects were more frequent in mothers 20-24, two specific defects were more frequent in mothers 30-34, and ten specific defects were more frequent in mothers ≥ 35. Our data indicate that sex, residence, and maternal age differences in the prevalences of birth defects and most specific defects are common. We have found some new epidemiological characteristics of birth defects using cross-analysis, such as residence is the determining factor for the prevalence of birth defects, the difference in prevalence between males and females was more significant for maternal age < 20 compared to other age groups, the prevalence difference between urban and rural areas is more significant for maternal age 25-34 compared to other age groups. And differences in the epidemiological characteristics of some specific defects from previous studies. Future studies should examine mechanisms. Our findings contributed to clinical counseling and advancing research on the risk factors for birth defects.
Collapse
Affiliation(s)
- Xu Zhou
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| | - Shenglan Cai
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Hua Wang
- The Hunan Children's Hospital, Changsha, Hunan, China.
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| | - Junqun Fang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| | - Jie Gao
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| | - Haiyan Kuang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Donghua Xie
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Jian He
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Aihua Wang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| |
Collapse
|
12
|
Zhao H, Du C, Yang G, Wang Y. Diagnosis, treatment, and research status of rare diseases related to birth defects. Intractable Rare Dis Res 2023; 12:148-160. [PMID: 37662624 PMCID: PMC10468410 DOI: 10.5582/irdr.2023.01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Rare diseases are diseases that occur at low prevalence, and most of them are chronic and serious diseases that are often life-threatening. Currently, there is no unified definition for rare diseases. The diagnosis, treatment, and research of rare diseases have become the focus of medicine and biopharmacology, as well as the breakthrough point of clinical and basic research. Birth defects are the hard-hit area of rare diseases and the frontiers of its research. Since most of these defects have a genetic basis, early screening and diagnosis have important scientific value and social significance for the prevention and control of such diseases. At present, there is no effective treatment for most rare diseases, but progress in prenatal diagnosis and screening can prevent the occurrence of diseases and help prevent and treat rare diseases. This article discusses the progress in genetic-related birth defects and rare diseases.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Gynecology and Obstetrics, Shandong Provincial Third Hospital, Shandong University, Ji'nan, China
| | - Chen Du
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| |
Collapse
|