1
|
Wongkittichote P, Jonatzke KE, Hyde BT, Peterson LW, He M, McKinstry RC, Antonellis A, Shinawi M. Atypical Presentation of IARS1-Related Disorder: Expanding the Phenotype and Genotype. JIMD Rep 2025; 66:e70020. [PMID: 40365325 PMCID: PMC12069011 DOI: 10.1002/jmd2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/02/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the formation of aminoacyl-tRNA, which is required for protein translation. A growing number of cases are associated with ARS deficiencies. Pathogenic variants in IARS1 (MIM# 600709), encoding cytoplasmic isoleucyl-tRNA synthetase, have been associated with autosomal recessive growth retardation, impaired intellectual development, hypotonia, and hepatopathy (GRIDHH, OMIM# 617093). To date, 11 GRIDHH patients have been described. We identified a patient who presented with recurrent episodes of liver failure in the setting of preceding infection and neurocognitive delay, and who recently presented with a clinical picture consistent with chronic nonbacterial osteomyelitis/chronic recurrent multifocal osteomyelitis. Exome sequencing revealed that this patient is compound heterozygous for two IARS1 variants: c.1193dupC;p.(Cys400LeufsTer32) and c.746A>G;p.(Asp249Gly). The frameshift variant is predicted to cause a loss of function, and functional analysis of the p.Asp249Gly variant was performed using baker's yeast. Wild-type human IARS1 has been shown to support robust yeast growth in the absence of the yeast ortholog, ILS, while human IARS1 harboring p.Asp249Gly could not, indicating a loss-of-function effect. The proband was treated with isoleucine supplementation with subjective clinical improvement. Overall, we expand the molecular and clinical spectra of the IARS1-related disorder, highlight immune dysregulation as a possible novel manifestation of this disorder, and emphasize the utility of a yeast model system for functional studies. A larger cohort of patients is required to validate these observations and evaluate the efficacy of isoleucine supplementation for patients with GRIDHH.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington University School of MedicineSt. LouisMissouriUSA
- Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Kira E. Jonatzke
- Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
| | - Benjamin T. Hyde
- Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
| | - Lance W. Peterson
- Department of Pediatrics, Division of Rheumatology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Mai He
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Robert C. McKinstry
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Anthony Antonellis
- Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
2
|
Zhang H, Ling J. Serine mistranslation induces the integrated stress response through the P stalk. J Biol Chem 2025; 301:108447. [PMID: 40147769 PMCID: PMC12022490 DOI: 10.1016/j.jbc.2025.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that support robust and accurate protein synthesis. A rapidly expanding number of studies show that mutations in aaRSs lead to multiple human diseases, including neurological disorders and cancer. How aaRS mutations impact human health is not fully understood. In particular, our knowledge of how aminoacylation errors affect stress responses and fitness in eukaryotic cells remains limited. The integrated stress response (ISR) is an adaptive mechanism in response to multiple stresses. However, chronic activation of the ISR contributes to the development of multiple diseases such as neuropathies. In this study, we show that Ser misincorporation into Ala and Thr codons, resulting from either aaRS-editing defects or mutations in tRNAs, activates the ISR. We further demonstrate that activation of the ISR by Ser mistranslation does not depend on the accumulation of uncharged tRNAs but rather requires the P stalk associated with the ribosome, implying that ribosome stalling and collision are involved. Our work highlights that certain types of aminoacylation errors can lead to chronic activation of the ISR, potentially affecting fitness and disease progression.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA.
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
3
|
Nangle LA, Xu Z, Siefker D, Burkart C, Chong YE, Zhai L, Geng Y, Polizzi C, Guy L, Eide L, Tong Y, Klopp-Savino S, Ferrer M, Rauch K, Wang A, Hamel K, Crampton S, Paz S, Chiang KP, Do MH, Burman L, Lee D, Zhang M, Ogilvie K, King D, Adams RA, Schimmel P. A human histidyl-tRNA synthetase splice variant therapeutic targets NRP2 to resolve lung inflammation and fibrosis. Sci Transl Med 2025; 17:eadp4754. [PMID: 40073151 DOI: 10.1126/scitranslmed.adp4754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Interstitial lung disease (ILD) consists of a group of immune-mediated disorders that can cause inflammation and progressive fibrosis of the lungs, representing an area of unmet medical need given the lack of disease-modifying therapies and toxicities associated with current treatment options. Tissue-specific splice variants (SVs) of human aminoacyl-tRNA synthetases (aaRSs) are catalytic nulls thought to confer regulatory functions. One example from human histidyl-tRNA synthetase (HARS), termed HARSWHEP because the splicing event resulted in a protein encompassing the WHEP-TRS domain of HARS (a structurally conserved domain found in multiple aaRSs), is enriched in human lung and up-regulated by inflammatory cytokines in lung and immune cells. Structural analysis of HARSWHEP confirmed a well-organized helix-turn-helix motif. This motif bound specifically and selectively to neuropilin-2 (NRP2), a receptor expressed by myeloid cells in active sites of inflammation, to inhibit expression of proinflammatory receptors and cytokines and to down-regulate inflammatory pathways in primary human macrophages. In animal models of lung injury and ILD, including bleomycin treatment, silicosis, sarcoidosis, chronic hypersensitivity pneumonitis, systemic sclerosis, and rheumatoid arthritis-ILD, HARSWHEP reduced lung inflammation, immune cell infiltration, and fibrosis. In patients with sarcoidosis, efzofitimod treatment resulted in down-regulation of gene expression for inflammatory pathways in peripheral immune cells and stabilization of inflammatory biomarkers in serum after steroid tapering. We demonstrate the immunomodulatory activity of HARSWHEP and present preclinical data supporting ongoing clinical development of the biologic efzofitimod based on HARSWHEP in ILD.
Collapse
Affiliation(s)
| | - Zhiwen Xu
- aTyr Pharma, San Diego, CA 92121, USA
| | | | | | | | - Liting Zhai
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Hong Kong, China
| | - Yanyan Geng
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Hong Kong, China
| | | | | | - Lisa Eide
- aTyr Pharma, San Diego, CA 92121, USA
| | - Yao Tong
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | - Darin Lee
- aTyr Pharma, San Diego, CA 92121, USA
| | - Mingjie Zhang
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | - Paul Schimmel
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Devarkar S, Budding C, Pathirage C, Kavoor A, Herbert C, Limbach P, Musier-Forsyth K, Xiong Y. Structural basis for aminoacylation of cellular modified tRNALys3 by human lysyl-tRNA synthetase. Nucleic Acids Res 2025; 53:gkaf114. [PMID: 40036503 PMCID: PMC11878792 DOI: 10.1093/nar/gkaf114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
The average eukaryotic transfer ribonucleic acid (tRNA) contains 13 post-transcriptional modifications; however, their functional impact is largely unknown. Our understanding of the complex tRNA aminoacylation machinery in metazoans also remains limited. Herein, using a series of high-resolution cryo-electron microscopy (cryo-EM) structures, we provide the mechanistic basis for recognition and aminoacylation of fully modified cellular tRNALys3 by human lysyl-tRNA synthetase (h-LysRS). The tRNALys3 anticodon loop modifications S34 (mcm5s2U) and R37 (ms2t6A) play an integral role in recognition by h-LysRS. Modifications in the T-, variable-, and D-loops of tRNALys3 are critical for ordering the metazoan-specific N-terminal domain of LysRS. The two catalytic steps of tRNALys3 aminoacylation are structurally ordered; docking of the 3'-CCA end in the active site cannot proceed until the lysyl-adenylate intermediate is formed and the pyrophosphate byproduct is released. Association of the h-LysRS-tRNALys3 complex with a multi-tRNA synthetase complex-derived peptide shifts the equilibrium toward the 3'-CCA end "docked" conformation and allosterically increases h-LysRS catalytic efficiency. The insights presented here have broad implications for understanding the role of tRNA modifications in protein synthesis, the human aminoacylation machinery, and the growing catalog of metabolic and neurological diseases linked to it.
Collapse
Affiliation(s)
- Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, United States
| | - Christina R Budding
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, United States
| | - Chathuri Pathirage
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, United States
| | - Arundhati Kavoor
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, United States
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, United States
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
5
|
Zhang H, Ling J. Aminoacyl-tRNA synthetase defects in neurological diseases. IUBMB Life 2025; 77:e2924. [PMID: 39487674 PMCID: PMC11611227 DOI: 10.1002/iub.2924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes to support protein synthesis in all organisms. Recent studies, empowered by advancements in genome sequencing, have uncovered an increasing number of disease-causing mutations in aaRSs. Monoallelic aaRS mutations typically lead to dominant peripheral neuropathies such as Charcot-Marie-Tooth (CMT) disease, whereas biallelic aaRS mutations often impair the central nervous system (CNS) and cause neurodevelopmental disorders. Here, we review recent progress in the disease onsets, molecular basis, and potential therapies for diseases caused by aaRS mutations, with a focus on biallelic mutations in cytoplasmic aaRSs.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMarylandUSA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMarylandUSA
| |
Collapse
|
6
|
Devarkar SC, Budding CR, Pathirage C, Kavoor A, Herbert C, Limbach PA, Musier-Forsyth K, Xiong Y. Structural basis for aminoacylation of cellular modified tRNA Lys3 by human lysyl-tRNA synthetase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627298. [PMID: 39677689 PMCID: PMC11643047 DOI: 10.1101/2024.12.07.627298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The average eukaryotic tRNA contains 13 posttranscriptional modifications; however, their functional impact is largely unknown. Our understanding of the complex tRNA aminoacylation machinery in metazoans also remains limited. Herein, using a series of high-resolution cryo-electron microscopy (cryo-EM) structures, we provide the mechanistic basis for recognition and aminoacylation of fully-modified cellular tRNALys3 by human lysyl-tRNA synthetase (h-LysRS). The tRNALys3 anticodon loop modifications S34 (mcm5s2U) and R37 (ms2t6A) play an integral role in recognition by h-LysRS. Modifications in the T-, variable-, and D-loops of tRNALys3 are critical for ordering the metazoan-specific N-terminal domain of LysRS. The two catalytic steps of tRNALys3 aminoacylation are structurally ordered; docking of the 3'-CCA end in the active site cannot proceed until the lysyl-adenylate intermediate is formed and the pyrophosphate byproduct is released. Association of the h-LysRS-tRNALys3 complex with a multi-tRNA synthetase complex-derived peptide shifts the equilibrium towards the 3'-CCA end 'docked' conformation and allosterically enhances h-LysRS catalytic efficiency. The insights presented here have broad implications for understanding the role of tRNA modifications in protein synthesis, the human aminoacylation machinery, and the growing catalog of metabolic and neurological diseases linked to it.
Collapse
Affiliation(s)
- Swapnil C. Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT, 06511, USA
| | - Christina R. Budding
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Chathuri Pathirage
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Arundhati Kavoor
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati OH, 45221, USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati OH, 45221, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT, 06511, USA
| |
Collapse
|
7
|
Douglas J, Cui H, Perona JJ, Vargas‐Rodriguez O, Tyynismaa H, Carreño CA, Ling J, Ribas de Pouplana L, Yang X, Ibba M, Becker H, Fischer F, Sissler M, Carter CW, Wills PR. AARS Online: A collaborative database on the structure, function, and evolution of the aminoacyl-tRNA synthetases. IUBMB Life 2024; 76:1091-1105. [PMID: 39247978 PMCID: PMC11580382 DOI: 10.1002/iub.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
The aminoacyl-tRNA synthetases (aaRS) are a large group of enzymes that implement the genetic code in all known biological systems. They attach amino acids to their cognate tRNAs, moonlight in various translational and non-translational activities beyond aminoacylation, and are linked to many genetic disorders. The aaRS have a subtle ontology characterized by structural and functional idiosyncrasies that vary from organism to organism, and protein to protein. Across the tree of life, the 22 coded amino acids are handled by 16 evolutionary families of Class I aaRS and 21 families of Class II aaRS. We introduce AARS Online, an interactive Wikipedia-like tool curated by an international consortium of field experts. This platform systematizes existing knowledge about the aaRS by showcasing a taxonomically diverse selection of aaRS sequences and structures. Through its graphical user interface, AARS Online facilitates a seamless exploration between protein sequence and structure, providing a friendly introduction to the material for non-experts and a useful resource for experts. Curated multiple sequence alignments can be extracted for downstream analyses. Accessible at www.aars.online, AARS Online is a free resource to delve into the world of the aaRS.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| | - Haissi Cui
- Department of ChemistryUniversity of TorontoCanada
| | - John J. Perona
- Department of ChemistryPortland State UniversityPortlandOregonUSA
| | - Oscar Vargas‐Rodriguez
- Department of Molecular Biology and BiophysicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Lluís Ribas de Pouplana
- Institute for Research in BiomedicineThe Barcelona Institute of Science and TechnologyBarcelonaCataloniaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaCataloniaSpain
| | - Xiang‐Lei Yang
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Michael Ibba
- Biological SciencesChapman UniversityOrangeCaliforniaUSA
| | - Hubert Becker
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Marie Sissler
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Charles W. Carter
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Peter R. Wills
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| |
Collapse
|
8
|
Tennakoon R, Cui H. Aminoacyl-tRNA synthetases. Curr Biol 2024; 34:R884-R888. [PMID: 39378843 DOI: 10.1016/j.cub.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Aminoacyl-tRNA synthetases hold the key to the genetic code and assign nucleic acid-based codons to amino acids, the building blocks of proteins. In their ability to recognize identity elements on transfer RNAs (tRNAs), some as simple as a single base pair, they ensure that the same proteins are formed each time information embedded in DNA is transcribed into messenger RNA (mRNA) and translated into proteins (Figure 1A). Thus, aminoacyl-tRNA synthetase active sites are conserved; however, since their evolutionary origin, their functions have been co-opted, expanded on and played novel roles during evolution. Below, we provide an overview of the many functions of aminoacyl-tRNA synthetases - from their role in translation, one of the most fundamental processes of all life, to newly discovered, diverse functions.
Collapse
Affiliation(s)
| | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Jones JA, Zhou J, Dong J, Huitron-Resendiz S, Boussaty E, Chavez E, Wei N, Dumitru CD, Morodomi Y, Kanaji T, Ryan AF, Friedman R, Zhou T, Kanaji S, Wortham M, Schenk S, Roberts AJ, Yang XL. Murine nuclear tyrosyl-tRNA synthetase deficiency leads to fat storage deficiency and hearing loss. J Biol Chem 2024; 300:107756. [PMID: 39260699 PMCID: PMC11470617 DOI: 10.1016/j.jbc.2024.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.
Collapse
Affiliation(s)
- Julia A Jones
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jiadong Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jianjie Dong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Ely Boussaty
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Eduardo Chavez
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Calin Dan Dumitru
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Allen F Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Rick Friedman
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sachiko Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew Wortham
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
10
|
Ghanbar MI, Danoff SK. Review of Pulmonary Manifestations in Antisynthetase Syndrome. Semin Respir Crit Care Med 2024; 45:365-385. [PMID: 38710221 DOI: 10.1055/s-0044-1785536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antisynthetase syndrome (ASyS) is now a widely recognized entity within the spectrum of idiopathic inflammatory myopathies. Initially described in patients with a triad of myositis, arthritis, and interstitial lung disease (ILD), its presentation can be diverse. Additional common symptoms experienced by patients with ASyS include Raynaud's phenomenon, mechanic's hand, and fever. Although there is a significant overlap with polymyositis and dermatomyositis, the key distinction lies in the presence of antisynthetase antibodies (ASAs). Up to 10 ASAs have been identified to correlate with a presentation of ASyS, each having manifestations that may slightly differ from others. Despite the proposal of three classification criteria to aid diagnosis, the heterogeneous nature of patient presentations poses challenges. ILD confers a significant burden in patients with ASyS, sometimes manifesting in isolation. Notably, ILD is also often the initial presentation of ASyS, requiring pulmonologists to remain vigilant for an accurate diagnosis. This article will comprehensively review the various aspects of ASyS, including disease presentation, diagnosis, management, and clinical course, with a primary focus on its pulmonary manifestations.
Collapse
Affiliation(s)
- Mohammad I Ghanbar
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sonye K Danoff
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
11
|
Zhang H, Ling J. Serine mistranslation induces the integrated stress response without accumulation of uncharged tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578812. [PMID: 38370842 PMCID: PMC10871240 DOI: 10.1101/2024.02.04.578812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that support robust and accurate protein synthesis. A rapidly expanding number of studies show that mutations in aaRSs lead to multiple human diseases, including neurological disorders and cancer. Much remains unknown about how aaRS mutations impact human health. In particular, how aminoacylation errors affect stress responses and fitness in eukaryotic cells remains poorly understood. The integrated stress response (ISR) is an adaptive mechanism in response to multiple stresses. However, chronic activation of the ISR contributes to the development of multiple diseases (e.g., neuropathies). Here we show that Ser misincorporation into Ala and Thr codons, resulting from aaRS editing defects or mutations in tRNAs, constitutively active the ISR. Such activation does not appear to depend on the accumulation of uncharged tRNAs, implicating that Ser mistranslation may lead to ribosome stalling and collision.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
12
|
Zhang H, Murphy P, Yu J, Lee S, Tsai FTF, van Hoof A, Ling J. Coordination between aminoacylation and editing to protect against proteotoxicity. Nucleic Acids Res 2023; 51:10606-10618. [PMID: 37742077 PMCID: PMC10602869 DOI: 10.1093/nar/gkad778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that ligate amino acids to tRNAs, and often require editing to ensure accurate protein synthesis. Recessive mutations in aaRSs cause various neurological disorders in humans, yet the underlying mechanism remains poorly understood. Pathogenic aaRS mutations frequently cause protein destabilization and aminoacylation deficiency. In this study, we report that combined aminoacylation and editing defects cause severe proteotoxicity. We show that the ths1-C268A mutation in yeast threonyl-tRNA synthetase (ThrRS) abolishes editing and causes heat sensitivity. Surprisingly, experimental evolution of the mutant results in intragenic mutations that restore heat resistance but not editing. ths1-C268A destabilizes ThrRS and decreases overall Thr-tRNAThr synthesis, while the suppressor mutations in the evolved strains improve aminoacylation. We further show that deficiency in either ThrRS aminoacylation or editing is insufficient to cause heat sensitivity, and that ths1-C268A impairs ribosome-associated quality control. Our results suggest that aminoacylation deficiency predisposes cells to proteotoxic stress.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Parker Murphy
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jason Yu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Sukyeong Lee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francis T F Tsai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
13
|
Davyt M, Bharti N, Ignatova Z. Effect of mRNA/tRNA mutations on translation speed: Implications for human diseases. J Biol Chem 2023; 299:105089. [PMID: 37495112 PMCID: PMC10470029 DOI: 10.1016/j.jbc.2023.105089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Recent discoveries establish tRNAs as central regulators of mRNA translation dynamics, and therefore cotranslational folding and function of the encoded protein. The tRNA pool, whose composition and abundance change in a cell- and tissue-dependent manner, is the main factor which determines mRNA translation velocity. In this review, we discuss a group of pathogenic mutations, in the coding sequences of either protein-coding genes or in tRNA genes, that alter mRNA translation dynamics. We also summarize advances in tRNA biology that have uncovered how variations in tRNA levels on account of genetic mutations affect protein folding and function, and thereby contribute to phenotypic diversity in clinical manifestations.
Collapse
Affiliation(s)
- Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Nikhil Bharti
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
14
|
Jin D, Wek SA, Cordova RA, Wek RC, Lacombe D, Michaud V, Musier-Forsyth K. Aminoacylation-defective bi-allelic mutations in human EPRS1 associated with psychomotor developmental delay, epilepsy, and deafness. Clin Genet 2023; 103:358-363. [PMID: 36411955 PMCID: PMC9898101 DOI: 10.1111/cge.14269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Aminoacyl-tRNA synthetases are enzymes that ensure accurate protein synthesis. Variants of the dual-functional cytoplasmic human glutamyl-prolyl-tRNA synthetase, EPRS1, have been associated with leukodystrophy, diabetes and bone disease. Here, we report compound heterozygous variants in EPRS1 in a 4-year-old female patient presenting with psychomotor developmental delay, seizures and deafness. Functional studies of these two missense mutations support major defects in enzymatic function in vitro and contributed to confirmation of the diagnosis.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus OH 43210, USA
| | - Sheree A. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Ricardo A. Cordova
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Vincent Michaud
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
- Co-corresponding authors ,
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus OH 43210, USA
- Co-corresponding authors ,
| |
Collapse
|
15
|
Kanaji S, Chen W, Morodomi Y, Shapiro R, Kanaji T, Yang XL. Mechanistic perspectives on anti-aminoacyl-tRNA synthetase syndrome. Trends Biochem Sci 2023; 48:288-302. [PMID: 36280495 PMCID: PMC9974581 DOI: 10.1016/j.tibs.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 02/18/2023]
Abstract
Antisynthetase syndrome (ASSD) is an autoimmune disease characterized by circulating autoantibodies against one of eight aminoacyl-tRNA synthetases (aaRSs). Although these autoantibodies are believed to play critical roles in ASSD pathogenesis, the nature of their roles remains unclear. Here we describe ASSD pathogenesis and discuss ASSD-linked aaRSs - from the WHEP domain that may impart immunogenicity to the role of tRNA in eliciting the innate immune response and the secretion of aaRSs from cells. Through these explorations, we propose that ASSD pathogenesis involves the tissue-specific secretion of aaRSs and that extracellular tRNAs or tRNA fragments and their ability to engage Toll-like receptor signaling may be important disease factors.
Collapse
Affiliation(s)
- Sachiko Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenqian Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
17
|
Preger C, Notarnicola A, Hellström C, Wigren E, Fernandes-Cerqueira C, Kvarnström M, Wahren-Herlenius M, Idborg H, Lundberg IE, Persson H, Gräslund S, Jakobsson PJ. Autoantigenic properties of the aminoacyl tRNA synthetase family in idiopathic inflammatory myopathies. J Autoimmun 2023; 134:102951. [PMID: 36470210 DOI: 10.1016/j.jaut.2022.102951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVES Autoantibodies are thought to play a key role in the pathogenesis of idiopathic inflammatory myopathies (IIM). However, up to 40% of IIM patients, even those with clinical manifestations of anti-synthetase syndrome (ASSD), test seronegative to known myositis-specific autoantibodies. We hypothesized the existence of new potential autoantigens among human cytoplasmic aminoacyl tRNA synthetases (aaRS) in patients with IIM. METHODS Plasma samples from 217 patients with IIM according to 2017 EULAR/ACR criteria, including 50 patients with ASSD, 165 without, and two with unknown ASSD status were identified retrospectively, as well as age and gender-matched sera from 156 population controls, and 219 disease controls. Patients with previously documented ASSD had to test positive for at least one of the five most common anti-aaRS autoantibodies (anti-Jo1, -PL7, -PL12, -EJ, and -OJ) and present with one or more of the following clinical manifestations: interstitial lung disease, myositis, arthritis, Raynaud's phenomenon, fever, or mechanic's hands. Demographics, laboratory, and clinical data of the IIM cohort (ASSD and non-ASSD) were compared. Samples were screened using a multiplex bead array assay for presence of autoantibodies against a panel of 117 recombinant protein variants, representing 33 myositis-related proteins, including all nineteen cytoplasmic aaRS. Prospectively collected clinical data for the IIM cohort were retrieved and compared between groups within the IIM cohort and correlated with the results of the autoantibody screening. Principal component analysis was used to analyze clinical manifestations between ASSD, non-ASSD groups, and individuals with novel anti-aaRS autoantibodies. RESULTS We identified reactivity towards 16 aaRS in 72 of the 217 IIM patients. Twelve patients displayed reactivity against nine novel aaRS. The novel autoantibody specificities were detected in four previously seronegative patients for myositis-specific autoantibodies and eight with previously detected myositis-specific autoantibodies. IIM individuals with novel anti-aaRS autoantibodies (n = 12) all had signs of myositis, and they had either muscle weakness and/or muscle enzyme elevation, 2/12 had mechanic's hands, 3/12 had interstitial lung disease, and 2/12 had arthritis. The individuals with novel anti-aaRS and a pathological muscle biopsy all presented widespread up-regulation of major histocompatibility complex class I. The reactivities against novel aaRS could be confirmed in ELISA and western blot. Using the multiplex bead array assay, we could confirm previously known reactivities to four of the most common aaRS (Jo1, PL12, PL7, and EJ (n = 45)) and identified patients positive for anti-Zo, -KS, and -HA (n = 10) that were not previously tested. A low frequency of anti-aaRS autoantibodies was also detected in controls. CONCLUSION Our results suggest that most, if not all, cytoplasmic aaRS may become autoantigenic. Autoantibodies against new aaRS may be found in plasma of patients previously classified as seronegative with potential high clinical relevance.
Collapse
Affiliation(s)
- Charlotta Preger
- Karolinska Institutet, Division of Rheumatology, Department of Medicine Solna, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
| | - Antonella Notarnicola
- Karolinska Institutet, Division of Rheumatology, Department of Medicine Solna, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Hellström
- KTH Royal Institute of Technology, Department of Protein Science, SciLifeLab, Stockholm, Sweden
| | - Edvard Wigren
- Karolinska Institutet, Division of Rheumatology, Department of Medicine Solna, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
| | | | - Marika Kvarnström
- Karolinska Institutet, Division of Rheumatology, Department of Medicine Solna, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; Academic Specialist Center, Center for Rheumatology, Stockholm Health Services, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Department of Medicine Solna, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Helena Idborg
- Karolinska Institutet, Division of Rheumatology, Department of Medicine Solna, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid E Lundberg
- Karolinska Institutet, Division of Rheumatology, Department of Medicine Solna, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Helena Persson
- KTH Royal Institute of Technology, Department of Protein Science, SciLifeLab, Stockholm, Sweden
| | - Susanne Gräslund
- Karolinska Institutet, Division of Rheumatology, Department of Medicine Solna, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Karolinska Institutet, Division of Rheumatology, Department of Medicine Solna, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Lei L, Yuan X, Fu K, Chen Y, Lu Y, Shou N, Wu D, Chen X, Shi J, Zhang M, Chen Z, Shi Z. Pseudotargeted metabolomics revealed the adaptive mechanism of Draba oreades Schrenk at high altitude. FRONTIERS IN PLANT SCIENCE 2022; 13:1052640. [PMID: 36570906 PMCID: PMC9784223 DOI: 10.3389/fpls.2022.1052640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Strong ultraviolet radiation and low temperature environment on Gangshika Mountain, located in the eastern part of the Qilian Mountains in Qinghai Province, can force plants to produce some special secondary metabolites for resisting severe environmental stress. However, the adaptive mechanism of Draba oreades Schrenk at high altitude are still unclear. In the current study, Draba oreades Schrenk from the Gangshika Mountain at altitudes of 3800 m, 4000 m and 4200 m were collected for comprehensive metabolic evaluation using pseudotargeted metabolomics method. Through KEGG pathway enrichment analysis, we found that phenylpropanoid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism related to the biosynthesis of flavonoids were up-regulated in the high-altitude group, which may enhance the environmental adaptability to strong ultraviolet intensity and low temperature stress in high altitude areas. By TopFc20 distribution diagram, the content of flavonoids gradually increased with the elevation of altitude, mainly including apigenin, luteolin, quercetin, hesperidin, kaempferol and their derivatives. Based on the random forest model, 10 important metabolites were identified as potential biomarkers. L-phenylalanine, L-histidine, naringenin-7-O-Rutinoside-4'-O-glucoside and apigenin related to the flavonoids biosynthesis and plant disease resistance were increased with the elevation of altitude. This study provided important insights for the adaptive mechanism of Draba oreades Schrenk at high altitude by pseudotargeted metabolomics.
Collapse
Affiliation(s)
- Ling Lei
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yijun Lu
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Na Shou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jian Shi
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Minjuan Zhang
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Zhe Chen
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Martin S, Allan KC, Pinkard O, Sweet T, Tesar PJ, Coller J. Oligodendrocyte differentiation alters tRNA modifications and codon optimality-mediated mRNA decay. Nat Commun 2022; 13:5003. [PMID: 36008413 PMCID: PMC9411196 DOI: 10.1038/s41467-022-32766-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
Oligodendrocytes are specialized cells that confer neuronal myelination in the central nervous system. Leukodystrophies associated with oligodendrocyte deficits and hypomyelination are known to result when a number of tRNA metabolism genes are mutated. Thus, for unknown reasons, oligodendrocytes may be hypersensitive to perturbations in tRNA biology. In this study, we survey the tRNA transcriptome in the murine oligodendrocyte cell lineage and find that specific tRNAs are hypomodified in oligodendrocytes within or near the anticodon compared to oligodendrocyte progenitor cells (OPCs). This hypomodified state may be the result of differential expression of key modification enzymes during oligodendrocyte differentiation. Moreover, we observe a concomitant relationship between tRNA hypomodification and tRNA decoding potential; observing oligodendrocyte specific alterations in codon optimality-mediated mRNA decay and ribosome transit. Our results reveal that oligodendrocytes naturally maintain a delicate, hypersensitized tRNA/mRNA axis. We suggest this axis is a potential mediator of pathology in leukodystrophies and white matter disease when further insult to tRNA metabolism is introduced.
Collapse
Affiliation(s)
- Sophie Martin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Otis Pinkard
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Thomas Sweet
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Chen W, Lin Y, Jiang M, Wang Q, Shu Q. Identification of LARS as an essential gene for osteosarcoma proliferation through large-Scale CRISPR-Cas9 screening database and experimental verification. J Transl Med 2022; 20:355. [PMID: 35962451 PMCID: PMC9373537 DOI: 10.1186/s12967-022-03571-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Osteosarcoma is one of the most malignant tumors, and it occurs mostly in children and adolescents. Currently, surgery and chemotherapy are the main treatments. The recurrence rate is high and the prognosis is often poor. Finding an effective target gene therapy for osteosarcoma may effectively improve its prognosis. METHOD In this study, genes essential for the survival of osteosarcoma cells were identified by genome-wide screening of CRISPR-Cas9 based on the DepMap database. The expression of these essential genes in osteosarcoma patients' tissues and normal tissues was identified in the GSE19276 database. Functional pathway enrichment analysis, protein interaction network construction, and LASSO were performed to construct a prognostic risk model based on these essential genes. CCK8 assay was used to detect the effect of essential gene-LARS (Leucyl-TRNA Synthetase 1) on the proliferation of osteosarcoma. RESULTS In this study, 785 genes critical for osteosarcoma cell proliferation were identified from the DepMap. Among these 785 essential genes, 59 DEGs were identified in osteosarcoma tissues. In the functional enrichment analysis, these 59 essential genes were mainly enriched in cell cycle-related signaling pathways. Furthermore, we established a risk score module, including LARS and DNAJC17, screened from these 59 genes, and this module could divide osteosarcoma patients into the low-risk and high-risk groups. In addition, knockdown of LARS expression inhibited the proliferative ability of osteosarcoma cells. A significant correlation was found between LARS expression and Monocytic lineage, T cells, and Fibroblasts. CONCLUSION In conclusion, LARS was identified as an essential gene for survival in osteosarcoma based on the DepMap database. Knockdown of LARS expression significantly inhibited the proliferation of osteosarcoma cells, suggesting that it is involved in the formation and development of osteosarcoma. The results are useful as a foundation for further studies to elucidate a potential osteosarcoma diagnostic index and therapeutic targets.
Collapse
Affiliation(s)
- Wenhao Chen
- Department of Orthopedics, The Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Bingsheng Road, Hangzhou, 310052, Zhejiang Province, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Meichen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Qingshui Wang
- College of Life Sciences, Fujian Normal University, 8 South Xuefu Road, Fuzhou, 350117, Fujian Province, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Bingsheng Road, Hangzhou, 310052, Zhejiang Province, China.
| |
Collapse
|
21
|
Galindo-Feria AS, Notarnicola A, Lundberg IE, Horuluoglu B. Aminoacyl-tRNA Synthetases: On Anti-Synthetase Syndrome and Beyond. Front Immunol 2022; 13:866087. [PMID: 35634293 PMCID: PMC9136399 DOI: 10.3389/fimmu.2022.866087] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
Anti-synthetase syndrome (ASSD) is an autoimmune disease characterized by the presence of autoantibodies targeting one of several aminoacyl t-RNA synthetases (aaRSs) along with clinical features including interstitial lung disease, myositis, Raynaud’s phenomenon, arthritis, mechanic’s hands, and fever. The family of aaRSs consists of highly conserved cytoplasmic and mitochondrial enzymes, one for each amino acid, which are essential for the RNA translation machinery and protein synthesis. Along with their main functions, aaRSs are involved in the development of immune responses, regulation of transcription, and gene-specific silencing of translation. During the last decade, these proteins have been associated with cancer, neurological disorders, infectious responses, and autoimmune diseases including ASSD. To date, several aaRSs have been described to be possible autoantigens in different diseases. The most commonly described are histidyl (HisRS), threonyl (ThrRS), alanyl (AlaRS), glycyl (GlyRS), isoleucyl (IleRS), asparaginyl (AsnRS), phenylalanyl (PheRS), tyrosyl (TyrRS), lysyl (LysRS), glutaminyl (GlnRS), tryptophanyl (TrpRS), and seryl (SerRS) tRNA synthetases. Autoantibodies against the first eight autoantigens listed above have been associated with ASSD while the rest have been associated with other diseases. This review will address what is known about the function of the aaRSs with a focus on their autoantigenic properties. We will also describe the anti-aaRSs autoantibodies and their association to specific clinical manifestations, and discuss their potential contribution to the pathogenesis of ASSD.
Collapse
Affiliation(s)
- Angeles S. Galindo-Feria
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Antonella Notarnicola
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ingrid E. Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Begum Horuluoglu
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
- *Correspondence: Begum Horuluoglu,
| |
Collapse
|
22
|
Giong HK, Lee JS. Systematic expression profiling of neuropathy-related aminoacyl-tRNA synthetases in zebrafish during development. Biochem Biophys Res Commun 2022; 587:92-98. [PMID: 34872004 DOI: 10.1016/j.bbrc.2021.11.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/27/2021] [Indexed: 12/01/2022]
Abstract
Aminoacyl tRNA synthetases (ARSs) are a group of proteins, acting as transporters to transfer and attach the appropriate amino acids onto their cognate tRNAs for translation. So far, 18 out of 20 cytoplasmic ARSs are reported to be connected to different neuropathy disorders with multi-organ defects that are often accompanied with developmental delays. Thus, it is important to understand functions and impacts of ARSs at the whole organism level. Here, we systematically analyzed the spatiotemporal expression of 14 ars and 2 aimp genes during development in zebrafish that have not be previously reported. Not only in the brain, their dynamic expression patterns in several tissues such as in the muscles, liver and intestine suggest diverse roles in a wide range of development processes in addition to neuronal function, which is consistent with potential involvement in multiple syndrome diseases associated with ARS mutations. In particular, hinted by its robust expression pattern in the brain, we confirmed that aimp1 is required for the formation of cerebrovasculature by a loss-of-function approach. Overall, our systematic profiling data provides a useful basis for studying roles of ARSs during development and understanding their potential functions in the etiology of related diseases.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Disease Target Structure Research Center, KRIBB, Daejeon, South Korea; KRIBB School, University of Science and Technology, Daejeon, South Korea; Dementia DTC R&D Convergence Program, KIST, Seoul, South Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, Daejeon, South Korea; KRIBB School, University of Science and Technology, Daejeon, South Korea; Dementia DTC R&D Convergence Program, KIST, Seoul, South Korea.
| |
Collapse
|
23
|
Sissler M. Decoding the impact of disease-causing mutations in an essential aminoacyl-tRNA synthetase. J Biol Chem 2021; 297:101386. [PMID: 34752820 PMCID: PMC8626572 DOI: 10.1016/j.jbc.2021.101386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
Aminoacyl-tRNA synthetases are housekeeping enzymes that catalyze the specific attachment of amino acids onto cognate tRNAs, providing building blocks for ribosomal protein synthesis. Owing to the absolutely essential nature of these enzymes, the possibility that mutations in their sequence could be the underlying cause of diseases had not been foreseen. However, we are learning of patients bearing familial mutations in aminoacyl-tRNA synthetases at an exponential rate. In a recent issue of JBC, Jin et al. analyzed the impact of two such mutations in the very special bifunctional human glutamyl-prolyl-tRNA synthetase and convincingly decode how these mutations elicit the integrated stress response.
Collapse
Affiliation(s)
- Marie Sissler
- ARNA - UMR5320 CNRS - U1212 INSERM, Université de Bordeaux, IECB, Pessac, France.
| |
Collapse
|
24
|
Jin D, Wek SA, Kudlapur NT, Cantara WA, Bakhtina M, Wek RC, Musier-Forsyth K. Disease-associated mutations in a bifunctional aminoacyl-tRNA synthetase gene elicit the integrated stress response. J Biol Chem 2021; 297:101203. [PMID: 34537243 PMCID: PMC8511952 DOI: 10.1016/j.jbc.2021.101203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - Sheree A Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis Indiana, USA
| | - Nathan T Kudlapur
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis Indiana, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA.
| |
Collapse
|
25
|
Morant L, Erfurth ML, Jordanova A. Drosophila Models for Charcot-Marie-Tooth Neuropathy Related to Aminoacyl-tRNA Synthetases. Genes (Basel) 2021; 12:1519. [PMID: 34680913 PMCID: PMC8536177 DOI: 10.3390/genes12101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot-Marie-Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by "dying back" axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.
Collapse
Affiliation(s)
- Laura Morant
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
26
|
Structural analyses of a human lysyl-tRNA synthetase mutant associated with autosomal recessive nonsyndromic hearing impairment. Biochem Biophys Res Commun 2021; 554:83-88. [PMID: 33784510 DOI: 10.1016/j.bbrc.2021.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) catalyze the ligation of amino acids to their cognate tRNAs and therefore play an essential role in protein biosynthesis in all living cells. The KARS gene in human encodes both cytosolic and mitochondrial lysyl-tRNA synthetase (LysRS). A recent study identified a missense mutation in KARS gene (c.517T > C) that caused autosomal recessive nonsyndromic hearing loss. This mutation led to a tyrosine to histidine (YH) substitution in both cytosolic and mitochondrial LysRS proteins, and decreased their aminoacylation activity to different levels. Here, we report the crystal structure of LysRS YH mutant at a resolution of 2.5 Å. We found that the mutation did not interfere with the active center, nor did it cause any significant conformational changes in the protein. The loops involved in tetramer interface and tRNA anticodon binding site showed relatively bigger variations between the mutant and wild type proteins. Considering the differences between the cytosolic and mitochondrial tRNAlyss, we suggest that the mutation triggered subtle changes in the tRNA anticodon binding region, and the interferences were further amplified by the different D and T loops in mitochondrial tRNAlys, and led to a complete loss of the aminoacylation of mitochondrial tRNAlys.
Collapse
|