1
|
Sampath R, Vaeth K, Mikalayeva V, Skeberdis VA, Prekeris R, Han KJ. Rab40 GTPases regulate AMBRA1-mediated transcription and cell migration. J Cell Sci 2025; 138:jcs263707. [PMID: 40110710 PMCID: PMC12045048 DOI: 10.1242/jcs.263707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
The Rab40 subfamily of proteins consists of unique small monomeric GTPases that form CRL5-based ubiquitin E3 ligase complexes and regulate ubiquitylation of specific target proteins. Recent studies have shown that Rab40 proteins play an important role in regulating cell migration, but the underlying mechanisms of how the Rab40-CRL5 complex functions are still not fully understood. In this study, we identified AMBRA1 as a novel binding partner of Rab40 GTPases and show that this interaction mediates a bidirectional crosstalk between the CRL4 and CRL5 E3 ligases. Importantly, we found that Rab40-CRL5 ubiquitylates AMBRA1, which does not result in AMBRA1 degradation but, instead, appears to induce AMBRA1-dependent regulation of gene transcription. The global transcriptional profiles identified by RNA sequencing showed that AMBRA1 regulates transcription of genes related to cell adhesion and migration. Additionally, we show that AMBRA1-dependent transcription regulation does not require the enzymatic activity of AMBRA1-CRL4, and that Rab40-induced AMBRA1 ubiquitylation leads to dissociation of the AMBRA1-CRL4 complex. Taken together, our findings reveal a novel function of the Rab40-CRL5 complex as an important regulator of AMBRA1-dependent transcription of genes involved in cell migration.
Collapse
Affiliation(s)
- Revathi Sampath
- The Laboratory of Cell Culture, Lithuanian University of Health Sciences, Kaunas, 50103, Lithuania
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katherine Vaeth
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Valeryia Mikalayeva
- The Laboratory of Cell Culture, Lithuanian University of Health Sciences, Kaunas, 50103, Lithuania
| | | | - Rytis Prekeris
- The Laboratory of Cell Culture, Lithuanian University of Health Sciences, Kaunas, 50103, Lithuania
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Sampath R, Vaeth K, Mikalayeva V, Skeberdis VA, Prekeris R, Han KJ. Rab40 GTPases regulate AMBRA1-mediated transcription and cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622540. [PMID: 39574679 PMCID: PMC11580987 DOI: 10.1101/2024.11.07.622540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The Rab40 subfamily are unique small monomeric GTPases that form CRL5-based ubiquitin E3 ligase complex and regulate ubiquitylation of specific target proteins. Recent studies have shown that Rab40s play an important role in regulating cell migration, but the underlying mechanisms of Rab40/CRL5 complex function are still not fully understood. In this study we identified AMBRA1 as a novel binding partner of Rab40 GTPases and showed that this interaction mediates a bi-directional crosstalk between CRL4 and CRL5 E3 ligases. Importantly, we found that Rab40/CRL5 ubiquitylates AMBRA1, which does not result in AMBRA1 degradation, but instead it seems to induce AMBRA1-dependent regulation of gene transcription. The global transcriptional profiles identified by RNA-seq showed that AMBRA1 regulates transcription of genes related to cell adhesion and migration. Additionally, we have shown that AMBRA1-dependent transcription regulation does not require the enzymatic activity of AMBRA1/CRL4, and that Rab40-induced AMBRA1 ubiquitylation leads to dissociation of AMBRA1/CRL4 complex. Taken together, our findings reveal a novel function of Rab40/CRL5 complex as an important regulator for AMBRA1-dependent transcription of genes involved in cell migration.
Collapse
Affiliation(s)
- Revathi Sampath
- Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Katherine Vaeth
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | | | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
3
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
4
|
Faienza F, Polverino F, Rajendraprasad G, Milletti G, Hu Z, Colella B, Gargano D, Strappazzon F, Rizza S, Vistesen MV, Luo Y, Antonioli M, Cianfanelli V, Ferraina C, Fimia GM, Filomeni G, De Zio D, Dengjel J, Barisic M, Guarguaglini G, Di Bartolomeo S, Cecconi F. AMBRA1 phosphorylation by CDK1 and PLK1 regulates mitotic spindle orientation. Cell Mol Life Sci 2023; 80:251. [PMID: 37584777 PMCID: PMC10432340 DOI: 10.1007/s00018-023-04878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.
Collapse
Affiliation(s)
- Fiorella Faienza
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy
| | | | - Giacomo Milletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Barbara Colella
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Deborah Gargano
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Flavie Strappazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène, Univ Lyon, Univ Lyon 1, CNRS, INSERM, 69008, Lyon, France
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Mette Vixø Vistesen
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Shenzhen, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Manuela Antonioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases, IRCSS "L. Spallanzani", Rome, Italy
| | - Valentina Cianfanelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Science, University "ROMA TRE", 00146, Rome, Italy
- Department of Woman and Child Health and Public Health, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Caterina Ferraina
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases, IRCSS "L. Spallanzani", Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Redox Biology Group, Danish Cancer Institute, Copenhagen, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Institute, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University Of Copenhagen, Copenhagen, Denmark
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy
| | | | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Li X, Lyu Y, Li J, Wang X. AMBRA1 and its role as a target for anticancer therapy. Front Oncol 2022; 12:946086. [PMID: 36237336 PMCID: PMC9551033 DOI: 10.3389/fonc.2022.946086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The activating molecule in Beclin1-regulated autophagy protein 1 (AMBRA1) is an intrinsically disordered protein that regulates the survival and death of cancer cells by modulating autophagy. Although the roles of autophagy in cancer are controversial and context-dependent, inhibition of autophagy under some circumstances can be a useful strategy for cancer therapy. As AMBRA1 is a pivotal autophagy-associated protein, targeting AMBRA1 similarly may be an underlying strategy for cancer therapy. Emerging evidence indicates that AMBRA1 can also inhibit cancer formation, maintenance, and progression by regulating c-MYC and cyclins, which are frequently deregulated in human cancer cells. Therefore, AMBRA1 is at the crossroad of autophagy, tumorigenesis, proliferation, and cell cycle. In this review, we focus on discussing the mechanisms of AMBRA1 in autophagy, mitophagy, and apoptosis, and particularly the roles of AMBRA1 in tumorigenesis and targeted therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
| | - Yuan Lyu
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Junqi Li
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xinjun Wang,
| |
Collapse
|
6
|
AMBRA1 p.Gln30Arg Mutation, Identified in a Cowden Syndrome Family, Exhibits Hyperproliferative Potential in hTERT-RPE1 Cells. Int J Mol Sci 2022; 23:ijms231911124. [PMID: 36232425 PMCID: PMC9570079 DOI: 10.3390/ijms231911124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cowden syndrome (CS) is a rare autosomal dominant disorder associated with multiple hamartomatous and neoplastic lesions in various organs. Most CS patients have been found to have germline mutations in the PTEN tumor suppressor. In the present study, we investigated the causative gene of CS in a family of PTEN (phosphatase and tensin homolog deleted on chromosome 10) -negative CS patients. Whole exome sequencing analysis revealed AMBRA1 (Autophagy and Beclin 1 Regulator 1) as a novel candidate gene harboring two germline variants: p.Gln30Arg (Q30R) and p.Arg1195Ser (R1195S). AMBRA1 is a key regulator of the autophagy signaling network and a tumor suppressor. To functionally validate the role of AMBRA1 in the clinical manifestations of CS, we generated AMBRA1 depletion and Q30R mutation in hTERT-RPE1 (humanTelomerase Reverse Transcriptase-immortalized Retinal Pigmented Epithelial cells) using the CRISPR-Cas9 gene editing system. We observed that both AMBRA1-depleted and mutant cells showed accumulation in the S phase, leading to hyperproliferation, which is a characteristic of hamartomatous lesions. Specifically, the AMBRA1 Q30R mutation disturbed the G1/S transition of cells, leading to continuous mitotic entry of mutant cells, irrespective of the extracellular condition. From our analysis of primary ciliogenesis in these cells, we speculated that the mitotic entry of AMBRA1 Q30R mutants could be due to non-functional primary cilia that lead to impaired processing of extracellular sensory signals. Additionally, we observed a situs inversus phenotype in ambra1-depleted zebrafish, a developmental abnormality resulting from dysregulated primary ciliogenesis. Taken together, we established that the AMBRA1 Q30R mutation that we observed in CS patients might play an important role in inducing the hyperproliferative potential of cells through regulating primary ciliogenesis.
Collapse
|
7
|
Yang M, Wang S, Fu S, Wu NN, Xu X, Sun S, Zhang Y, Ren J. Deletion of the E3 ubiquitin ligase, Parkin, exacerbates chronic alcohol intake-induced cardiomyopathy through an Ambra1-dependent mechanism. Br J Pharmacol 2021; 178:964-982. [PMID: 33300167 DOI: 10.1111/bph.15340] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic alcohol consumption contributes to contractile dysfunction and unfavourable geometric changes in myocardium, accompanied by altered autophagy and disturbed mitochondrial homeostasis. The E3 ubiquitin ligase Parkin encoded by PARK2 gene maintains a fundamental role in regulating mitophagy and mitochondrial homeostasis, although little is known of its role in the aetiology of alcoholic cardiomyopathy. Here we assessed the effects of Parkin deletion in chronic alcohol-evoked cardiotoxicity. EXPERIMENTAL APPROACH Following alcohol (4%) or control diet intake for 8 weeks, adult male wild-type (WT) and PARK2 knockout (Parkin-/- ) mice were examined using echocardiography. Cardiomyocyte mechanical properties, morphology of myocardium, and mitochondrial damage were also evaluated. Autophagy and mitophagy levels were assessed by LC3B and GFP-LC3 puncta, and lysosome-dependent autophagic flux was scrutinized using GFP-mRFP-LC3 puncta and Bafilomycin A1 treatment. KEY RESULTS Chronic alcohol exposure provoked unfavourable geometric changes in myocardium and led to mitochondrial dysfunction and cardiac contractile defects, effects further exacerbated by Parkin knockout. Chronic alcohol exposure provoked autophagy and PINK1/Parkin-mediated mitophagy without affecting lysosome-dependent autophagic flux, the effects of which were diminished by Parkin deletion. Parkin adenovirus infection in neonatal rat cardiomyocytes further increased autophagy and protected against alcohol-induced myocardial injury, effects blocked by siRNA for Ambra1 (Autophagy and Beclin1 regulator 1). Immunofluorescence staining and co-immunoprecipitation assays showed interactions between Parkin and Ambra1. CONCLUSIONS AND IMPLICATIONS Parkin was essential for cardiac homeostasis in alcohol challenge, accompanied by increased autophagy/mitophagy and maintenance of mitochondrial integrity through its interaction with Ambra1.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| | - Shuyi Wang
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shouzhi Fu
- Department of ICU/Emergency Wuhan Third Hospital, Wuhan University, Wuhan, China
| | - Ne N Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| | - Xihui Xu
- Cytokinetics Inc, South San Francisco, California, USA
| | - Shiqun Sun
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai, China
| |
Collapse
|
8
|
Ambra1 Alleviates Hypoxia/Reoxygenation Injury in H9C2 Cells by Regulating Autophagy and Reactive Oxygen Species. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3062689. [PMID: 33083461 PMCID: PMC7563064 DOI: 10.1155/2020/3062689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 11/24/2022]
Abstract
Reperfusion therapy is the most important method for treating acute myocardial infarction. However, myocardial ischemia reperfusion injury (MIRI) can offset the benefit of reperfusion therapy and worsen the outcome. In both ischemia and reperfusion, autophagy remains problematic. Activating molecule in Beclin1-regulated autophagy (Ambra1) is an important protein in autophagy regulation, and its function in MIRI remains unclear. Thus, we used H9C2 cells to investigate the function of Ambra1 in MIRI and the underlying mechanisms involved. Hypoxia and reoxygenation of H9C2 cells were used to mimic MIRI in vitro. During hypoxia, autophagy flux was blocked, then recovered in reoxygenation. Ambra1 overexpression increased autophagy in the H9C2 cells, as the LC3B II/I ratio increased, and alleviated cellular necrosis and apoptosis during hypoxia and reoxygenation. This effect was counteracted by an autophagy inhibitor. Knocking down Ambra1 can block autophagy which P62 sediment/supernatant ratio increased while the ratio of LC3B II/I decreased, and worsen outcomes. Ambra1 enhances autophagy in H9C2 cells by improving the stability and activity of the ULK1 complex. Reactive oxygen species (ROS) are an important cause of MIRI. ROS were reduced when Ambra1 was overexpressed and increased when Ambra1 was knocked down, indicating that Ambra1 can protect against hypoxia and reoxygenation injury in H9C2 cells by promoting autophagy and reducing ROS.
Collapse
|
9
|
Zhou J, Zhao Y, Li Z, Zhu M, Wang Z, Li Y, Xu T, Feng D, Zhang S, Tang F, Yao J. miR-103a-3p regulates mitophagy in Parkinson's disease through Parkin/Ambra1 signaling. Pharmacol Res 2020; 160:105197. [PMID: 32942015 DOI: 10.1016/j.phrs.2020.105197] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
Parkin is a crucial protein that promotes the clearance of damaged mitochondria via mitophagy in neuron, and parkin mutations result in autosomal-recessive Parkinson's disease (AR-PD). However, the exact mechanisms underlying the regulation of Parkin-mediated mitophagy in PD remain unclear. In this study, PD models were generated through incubation of SH-SY5Y cells with 1-methyl-4-phenylpyridinium ion (MPP+, 1.5 mM for 24 h) and intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg for five consecutive days) in mice. A Bioinformatics database was used to identify Parkin-targeting microRNAs (miRNAs). Then, miR-103a-3p agomir, miR-103a-3p antagomir and Parkin siRNA were used to assess the effects of miR-103a-3p/Parkin/Ambra1 signaling-mediated mitophagy in PD in vitro and in vivo. The protein and mRNA levels of Parkin and Ambra1 were significantly decreased, while miR-103a-3p, which is a highly expressed miRNA in the human brain, was obviously increased in PD mouse and SH-SY5Y cell models. Moreover, miR-103a-3p suppressed Parkin expression by targeting a conserved binding site in the 3'-untranslated region (UTR) of Parkin mRNA. Importantly, miR-103a-3p inhibition resulted in neuroprotective effects and improved mitophagy in vitro and in vivo, whereas Parkin siRNA strongly abolished these effects. These findings suggested that miR-103a-3p inhibition has neuroprotective effects in PD, which may be involved in regulating mitophagy through the Parkin/Ambra1 pathway. Modulating miR-103a-3p levels may be an applicable therapeutic strategy for PD.
Collapse
Affiliation(s)
- Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhenlu Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meiyang Zhu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yang Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ting Xu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Dongcheng Feng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Su Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| |
Collapse
|
10
|
Fairlie WD, Tran S, Lee EF. Crosstalk between apoptosis and autophagy signaling pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:115-158. [DOI: 10.1016/bs.ircmb.2020.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Kønig SM, Rissler V, Terkelsen T, Lambrughi M, Papaleo E. Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level. PLoS Comput Biol 2019; 15:e1007485. [PMID: 31825969 PMCID: PMC6927658 DOI: 10.1371/journal.pcbi.1007485] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/23/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is an essential defensive mechanism against tumorigenesis. Proteins of the B-cell lymphoma-2 (Bcl-2) family regulate programmed cell death by the mitochondrial apoptosis pathway. In response to intracellular stress, the apoptotic balance is governed by interactions of three distinct subgroups of proteins; the activator/sensitizer BH3 (Bcl-2 homology 3)-only proteins, the pro-survival, and the pro-apoptotic executioner proteins. Changes in expression levels, stability, and functional impairment of pro-survival proteins can lead to an imbalance in tissue homeostasis. Their overexpression or hyperactivation can result in oncogenic effects. Pro-survival Bcl-2 family members carry out their function by binding the BH3 short linear motif of pro-apoptotic proteins in a modular way, creating a complex network of protein-protein interactions. Their dysfunction enables cancer cells to evade cell death. The critical role of Bcl-2 proteins in homeostasis and tumorigenesis, coupled with mounting insight in their structural properties, make them therapeutic targets of interest. A better understanding of gene expression, mutational profile, and molecular mechanisms of pro-survival Bcl-2 proteins in different cancer types, could help to clarify their role in cancer development and may guide advancement in drug discovery. Here, we shed light on the pro-survival Bcl-2 proteins in breast cancer using different bioinformatic approaches, linking -omics with structural data. We analyzed the changes in the expression of the Bcl-2 proteins and their BH3-containing interactors in breast cancer samples. We then studied, at the structural level, a selection of interactions, accounting for effects induced by mutations found in the breast cancer samples. We find two complexes between the up-regulated Bcl2A1 and two down-regulated BH3-only candidates (i.e., Hrk and Nr4a1) as targets associated with reduced apoptosis in breast cancer samples for future experimental validation. Furthermore, we predict L99R, M75R as damaging mutations altering protein stability, and Y120C as a possible allosteric mutation from an exposed surface to the BH3-binding site.
Collapse
Affiliation(s)
- Simon Mathis Kønig
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Vendela Rissler
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Di Rita A, Peschiaroli A, D Acunzo P, Strobbe D, Hu Z, Gruber J, Nygaard M, Lambrughi M, Melino G, Papaleo E, Dengjel J, El Alaoui S, Campanella M, Dötsch V, Rogov VV, Strappazzon F, Cecconi F. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun 2018; 9:3755. [PMID: 30217973 PMCID: PMC6138665 DOI: 10.1038/s41467-018-05722-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/27/2018] [Indexed: 01/18/2023] Open
Abstract
The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells. Mitophagy is crucial for mitochondrial quality control and maintenance of cellular homeostasis. Here the authors identify an E3 ubiquitin ligase, HUWE1, that collaborates with LC3-interacting protein AMBRA1 to induce mitochondrial clearance.
Collapse
Affiliation(s)
- Anthea Di Rita
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.,Department of Paediatric Haematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,IRCCS FONDAZIONE SANTA LUCIA, 00143, Rome, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy (CNR), Institute of Translational Pharmacology IFT, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Pasquale D Acunzo
- Department of Paediatric Haematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniela Strobbe
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.,IRCCS- Regina Elena, National Cancer Institute, 00133, Rome, Italy
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jens Gruber
- Institute of Biophysical and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Mads Nygaard
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Michelangelo Campanella
- IRCCS- Regina Elena, National Cancer Institute, 00133, Rome, Italy.,Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.,University College London Consortium for Mitochondrial Research, University College London, London, WC1 6BT, UK
| | - Volker Dötsch
- Institute of Biophysical and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Vladimir V Rogov
- Institute of Biophysical and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Flavie Strappazzon
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy. .,IRCCS FONDAZIONE SANTA LUCIA, 00143, Rome, Italy.
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy. .,Department of Paediatric Haematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy. .,Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|
13
|
Roles of ubiquitin in autophagy and cell death. Semin Cell Dev Biol 2018; 93:125-135. [PMID: 30195063 PMCID: PMC6854449 DOI: 10.1016/j.semcdb.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 01/12/2023]
Abstract
The balance between cell survival and cell death is often lost in human pathologies such as inflammation and cancer. Autophagy plays a critical role in cell survival: essential nutrients are generated by autophagy-dependent degradation and recycling of cellular garbage. On the other hand, cell death is induced by different programs, such as apoptosis, pyroptosis, and necroptosis. Emerging evidence is revealing how cell survival and cell death pathways are coordinated to determine cell fate. For instance, posttranslational modification of proteins with ubiquitin regulates many steps of autophagy and cell death pathways. In this review article, we will discuss how the ubiquitin system influences cell death and autophagy.
Collapse
|
14
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|
15
|
Chu CW, Yang MC, Chou CH, Huang WS, Hsiao BX, Wang YT, Chiou SJ, Loh JK, Hong YR. GSK3β‑mediated Ser156 phosphorylation modulates a BH3‑like domain in BCL2L12 during TMZ‑induced apoptosis and autophagy in glioma cells. Int J Mol Med 2018; 42:905-918. [PMID: 29749471 PMCID: PMC6034918 DOI: 10.3892/ijmm.2018.3672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/10/2018] [Indexed: 01/06/2023] Open
Abstract
BH3 domains, classified initially as BCL2 homology domains, participate in both apoptosis and autophagy. Beclin-1 contains a BH3 domain, which is required for binding to antiapoptotic BCL2 homologs and BCL2-mediated inhibition of autophagy. BCL2-like 12 (BCL2L12) also harbors a BH3-like domain, which is 12 residues long and contains a LXXXAE/D motif. In a yeast two-hybrid system performed in the present study, BCL2L12 shared similar binding partnerships to antiapoptotic BCL2 homologs, such as Beclin-1. In addition, this BH3-like domain was involved in antiapoptosis and drug-induced autophagy in glioma cell lines. Mutations in S156 and hydrophobic L213 to alanine counteracted the antiapoptotic properties of BCL2L12 and downregulated the activation of microtubule associated protein 1 light chain 3B (LC3B), autophagy-related (ATG)12-ATG5 conjugates and Beclin-1, compared with a BCL2L12 wild-type group. Molecular dynamics simulations revealed that phosphorylation at Ser156 of BCL2L12 (within α-6 and α-7 helices) influenced the BH3-like domain conformation (α-9 helix), indicating that glycogen synthase kinase (GSK) 3β-mediated Ser156 phosphorylation modulated a BH3-like domain in BCL2L12. Altogether, the present findings indicated that BCL2L12 may participate in anti-apoptosis and autophagy via a BH3-like domain and GSK3β-mediated phosphorylation at Ser156. Furthermore, blockade of temozolomide (TMZ)-induced autophagy by 3-methyladenine (3-MA) resulted in enhanced activation of apoptotic markers, as well as tumor suppresor protein p53 (p53) expression in U87MG cells. The present results suggested that p53 and O6-methylguanine DNA methyltransferase activation, and BCL2, BCL-extra large, Beclin-1 and BCL2L12 expression may be used as a detection panel to determine which patients can benefit from TMZ and ABT-737 combination treatment.
Collapse
Affiliation(s)
- Cheng-Wei Chu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Ming-Chang Yang
- Laboratories of Medical Research, Center for Education and Faculty Development, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C
| | - Chia-Hua Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Wen-Sheng Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bo-Xiu Hsiao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yeng-Tseng Wang
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Shean-Jaw Chiou
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Joon-Khim Loh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|
16
|
Annunziata I, Sano R, d'Azzo A. Mitochondria-associated ER membranes (MAMs) and lysosomal storage diseases. Cell Death Dis 2018; 9:328. [PMID: 29491402 PMCID: PMC5832421 DOI: 10.1038/s41419-017-0025-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
Lysosomal storage diseases (LSDs) comprise a large group of disorders of catabolism, mostly due to deficiency of a single glycan-cleaving hydrolase. The consequent endo-lysosomal accumulation of undigested or partially digested substrates in cells of virtually all organs, including the nervous system, is diagnostic of these diseases and underlies pathogenesis. A subgroup of LSDs, the glycosphingolipidoses, are caused by deficiency of glycosidases that process/degrade sphingolipids and glycosphingolipids (GSLs). GSLs are among the lipid constituents of mammalian membranes, where they orderly distribute and, together with a plethora of membrane proteins, contribute to the formation of discrete membrane microdomains or lipid rafts. The composition of intracellular membranes enclosing organelles reflects that at the plasma membrane (PM). Organelles have the tendencies to tether to one another and to the PM at specific membrane contact sites that, owing to their lipid and protein content, resemble PM lipid rafts. The focus of this review is on the MAMs, mitochondria associated ER membranes, sites of juxtaposition between ER and mitochondria that function as biological hubs for the exchange of molecules and ions, and control the functional status of the reciprocal organelles. We will focus on the lipid components of the MAMs, and highlight how failure to digest or process the sialylated GSL, GM1 ganglioside, in lysosomes alters the lipid conformation and functional properties of the MAMs and leads to neuronal cell death and neurodegeneration.
Collapse
Affiliation(s)
- Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
17
|
Kim JH, Lee H, Shin EA, Kim DH, Choi JB, Kim SH. Implications of Bcl-2 and its interplay with other molecules and signaling pathways in prostate cancer progression. Expert Opin Ther Targets 2017; 21:911-920. [PMID: 28816549 DOI: 10.1080/14728222.2017.1369044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Among several genetic alterations involved in the progression of prostate cancer, B cell lymphoma gene number 2 (BCL-2) is an important target molecule in the progression of androgen-independent prostate cancer (AIPC) after androgen ablation or castration. Nevertheless, the molecular mechanism of BCL-2 in prostate cancer progression remains elusive and controversial. In the current review, we discuss the critical role of BCL-2 in the carcinogenesis of prostate cancer with experimental evidences on the BCL-2 molecular networks in AIPC and androgen-dependent prostate cancer (ADPC) and subsequently suggest perspective research targeting BCL-2. Areas covered: This review focused on the molecular implications of BCL-2 in association with other molecules and signaling pathways involved in the progression and carcinogenesis of prostate cancer. Expert opinion: BCL-2 plays a pivotal role in the progression of AIPC than in ADPC since androgen represses BCL-2. BCL-2 acts as a pro-survival molecule in association with androgen-related signaling in the progression of ADPC, while BCL-2 upregulation, PTEN loss, PI3K/AKT phosphorylation and receptor tyrosine kinase (RTK) activation are primarily involved in AIPC. To identify more effective prostate cancer therapy, further mechanistic studies are required with BCL-2 inhibitors in AIPC and ADPC, considering a multi-target therapy against BCL-2 and its related signaling.
Collapse
Affiliation(s)
- Ju-Ha Kim
- a Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine , Kyung Hee University , Seoul , South Korea
| | - Hyemin Lee
- a Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine , Kyung Hee University , Seoul , South Korea
| | - Eun Ah Shin
- a Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine , Kyung Hee University , Seoul , South Korea
| | - Dong Hee Kim
- b Department of East West Medical Science, Graduate School of East West Medical Science , Kyung Hee University , Yongin , South Korea
| | - Jhin Baek Choi
- b Department of East West Medical Science, Graduate School of East West Medical Science , Kyung Hee University , Yongin , South Korea
| | - Sung-Hoon Kim
- a Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine , Kyung Hee University , Seoul , South Korea
| |
Collapse
|