1
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
2
|
Tian W, Tan S, Wang J, Shen P, Qin Q, Zi D. Immune-related LncRNAs scores predicts chemotherapeutic responses and prognosis in cervical cancer patients. Discov Oncol 2024; 15:119. [PMID: 38615287 PMCID: PMC11016529 DOI: 10.1007/s12672-024-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) regulating the immune microenvironment of cancer is a hot spot. But little is known about the influence of the immune-related lncRNA (IRlncRs) on the chemotherapeutic responses and prognosis of cervical cancer (CC) patients. The purpose of the study was to identify an immune-related lncRNAs (IRlncRs)-based model for the prospective prediction of clinical outcomes in CC patients. METHODS CC patients' relevant data was acquired from The Cancer Genome Atlas (TCGA). Correlation analysis and Cox regression analyses were applied. A risk score formula was formulated. Prognostic factors were combined into a nomogram, while sensitivity for chemotherapy drugs was analyzed using the OncoPredict algorithm. RESULTS Eight optimal IRlncRs(ATP2A1-AS1, LINC01943, AL158166.1, LINC00963, AC009065.8, LIPE-AS1, AC105277.1, AC098613.1.) were incorporated in the IRlncRs model. The overall survival (OS) of the high-risk group of the model was inferior to those in the low-risk group. Further analysis demonstrated this eight-IRlncRs model as a useful prognostic marker. The Nomogram had a concordance index of survival prediction of 0.763(95% CI 0.746-0.780) and more robust predictive accuracy. Furthermore, patients in the low-risk group were found to be more sensitive to chemotherapy, including Paclitaxel, Rapamycin, Epirubicin, Vincristine, Docetaxel and Vinorelbine. CONCLUSIONS An eight-IRlncRs-based prediction model was identified that has the potential to be an important tool to predict chemotherapeutic responses and prognosis for CC patients.
Collapse
Affiliation(s)
- Weijie Tian
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Songsong Tan
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Jun Wang
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Ping Shen
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Qingfen Qin
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
3
|
Ritu, Chandra P, Das A. Immune checkpoint targeting antibodies hold promise for combinatorial cancer therapeutics. Clin Exp Med 2023; 23:4297-4322. [PMID: 37804358 DOI: 10.1007/s10238-023-01201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Through improving the immune system's ability to recognize and combat tumor cells as well as its receptivity to changes in the tumor microenvironment, immunotherapy has emerged as a highly successful addition to the treatment of cancer. However, tumor heterogeneity poses a significant challenge in cancer therapy as it can undermine the anti-tumor immune response through the manipulation of the extracellular matrix. To address these challenges and improve targeted therapies and combination treatments, the food and drug administration has approved several immunomodulatory antibodies to suppress immunological checkpoints. Combinatorial therapies necessitate the identification of multiple targets that regulate the intricate communication between immune cells, cytokines, chemokines, and cellular responses within the tumor microenvironment. The purpose of this study is to provide a comprehensive overview of the ongoing clinical trials involving immunomodulatory antibodies in various cancer types. It explores the potential of these antibodies to modulate the immune system and enhance anti-tumor responses. Additionally, it discusses the perspectives and prospects of immunomodulatory therapeutics in cancer treatment. Although immunotherapy shows great promise in cancer treatment, it is not exempt from side effects that can arise due to hyperactivity of the immune system. Therefore, understanding the intricate balance between immune activation and regulation is crucial for minimizing these adverse effects and optimizing treatment outcomes. This study aims to contribute to the growing body of knowledge surrounding immunomodulatory antibodies and their potential as effective therapeutic options in cancer treatment, ultimately paving the way for improved patient outcomes and deepening our perception of the intricate interactivity between the immune system and tumors.
Collapse
Affiliation(s)
- Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India.
| |
Collapse
|
4
|
Davis EJ, Martin-Liberal J, Kristeleit R, Cho DC, Blagden SP, Berthold D, Cardin DB, Vieito M, Miller RE, Hari Dass P, Orcurto A, Spencer K, Janik JE, Clark J, Condamine T, Pulini J, Chen X, Mehnert JM. First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors. J Immunother Cancer 2022; 10:jitc-2021-004235. [PMID: 36316061 PMCID: PMC9628691 DOI: 10.1136/jitc-2021-004235] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND OX40 is a costimulatory receptor upregulated on antigen-activated T cells and constitutively expressed on regulatory T cells (Tregs). INCAGN01949, a fully human immunoglobulin G1κ anti-OX40 agonist monoclonal antibody, was designed to promote tumor-specific immunity by effector T-cell activation and Fcγ receptor-mediated Treg depletion. This first-in-human study was conducted to determine the safety, tolerability, and preliminary efficacy of INCAGN01949. METHODS Phase I/II, open-label, non-randomized, dose-escalation and dose-expansion study conducted in patients with advanced or metastatic solid tumors. Patients received INCAGN01949 monotherapy (7-1400 mg) in 14-day cycles while deriving benefit. Safety measures, clinical activity, pharmacokinetics, and pharmacodynamic effects were assessed and summarized with descriptive statistics. RESULTS Eighty-seven patients were enrolled; most common tumor types were colorectal (17.2%), ovarian (8.0%), and non-small cell lung (6.9%) cancers. Patients received a median three (range 1-9) prior therapies, including immunotherapy in 24 patients (27.6%). Maximum tolerated dose was not reached; one patient (1.1%) receiving 350 mg dose reported dose-limiting toxicity of grade 3 colitis. Treatment-related adverse events were reported in 45 patients (51.7%), with fatigue (16 (18.4%)), rash (6 (6.9%)), and diarrhea (6 (6.9%)) being most frequent. One patient (1.1%) with metastatic gallbladder cancer achieved a partial response (duration of 6.3 months), and 23 patients (26.4%) achieved stable disease (lasting >6 months in one patient). OX40 receptor occupancy was maintained over 90% among all patients receiving doses of ≥200 mg, while no treatment-emergent antidrug antibodies were detected across all dose levels. Pharmacodynamic results demonstrated that treatment with INCAGN01949 did not enhance proliferation or activation of T cells in peripheral blood or reduce circulating Tregs, and analyses of tumor biopsies did not demonstrate any consistent increase in effector T-cell infiltration or function, or decrease in infiltrating Tregs. CONCLUSION No safety concerns were observed with INCAGN01949 monotherapy in patients with metastatic or advanced solid tumors. However, tumor responses and pharmacodynamic effects on T cells in peripheral blood and post-therapy tumor biopsies were limited. Studies evaluating INCAGN01949 in combination with other therapies are needed to further evaluate the potential of OX40 agonism as a therapeutic approach in patients with advanced solid tumors. TRIAL REGISTRATION NUMBER NCT02923349.
Collapse
Affiliation(s)
| | | | | | - Daniel C Cho
- Perlmutter Cancer Center, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Dominik Berthold
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Dana B Cardin
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Vieito
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Prashanth Hari Dass
- Early Phase Clinical Trials Unit, Churchill Hospital, University of Oxford, Oxford, UK
| | - Angela Orcurto
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | | | - Jason Clark
- Incyte Corporation, Wilmington, Delaware, USA
| | | | | | - Xuejun Chen
- Incyte Corporation, Wilmington, Delaware, USA
| | | |
Collapse
|
5
|
Zhen Z, Shen Z, Sun P. Dissecting the Role of Immune Checkpoint Regulation Patterns in Tumor Microenvironment and Prognosis of Gastric Cancer. Front Genet 2022; 13:853648. [PMID: 35518357 PMCID: PMC9061997 DOI: 10.3389/fgene.2022.853648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Many studies suggest that immune checkpoint molecules play a vital role in tumor progression and immune responses. However, the impact of the comprehensive regulation pattern of immune checkpoint molecules on immune responses, tumor microenvironment (TME) formation, and patient prognosis is poorly understood. In this study, we evaluated immune checkpoint regulation patterns in 1,174 gastric cancer (GC) samples based on 31 immune checkpoint genes (ICGs). Three distinct immune checkpoint regulation patterns with significant prognostic differences were ultimately identified. Moreover, GC patients were divided into two subgroups according to immune checkpoint score (ICscore). Patients with lower ICscore were characterized by a favorable prognosis and enhanced immune infiltration as well as an increased tumor mutation burden, non-recurrence, and microsatellite instability-high. Collectively, this study indicated that immune checkpoint regulation patterns were essential to forming the diversity of TME and a better understanding of that will contribute to assessing the characteristics of TME in GC, which intends to improve the development of immunotherapy.
Collapse
Affiliation(s)
- Zili Zhen
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhemin Shen
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Peilong Sun
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Abstract
The transformative success of antibodies targeting the PD-1 (programmed death 1)/B7-H1 (B7 homolog 1) pathway (anti-PD therapy) has revolutionized cancer treatment. However, only a fraction of patients with solid tumors and some hematopoietic malignancies respond to anti-PD therapy, and the reason for failure in other patients is less known. By dissecting the mechanisms underlying this resistance, current studies reveal that the tumor microenvironment is a major location for resistance to occur. Furthermore, the resistance mechanisms appear to be highly heterogeneous. Here, we discuss recent human cancer data identifying mechanisms of resistance to anti-PD therapy. We review evidence for immune-based resistance mechanisms such as loss of neoantigens, defects in antigen presentation and interferon signaling, immune inhibitory molecules, and exclusion of T cells. We also review the clinical evidence for emerging mechanisms of resistance to anti-PD therapy, such as alterations in metabolism, microbiota, and epigenetics. Finally, we discuss strategies to overcome anti-PD therapy resistance and emphasize the need to develop additional immunotherapies based on the concept of normalization cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew D Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
8
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
9
|
Kotecki N, Kindt N, Krayem M, Awada A. New horizons in early drugs development in solid cancers. Curr Opin Oncol 2021; 33:513-519. [PMID: 34310410 DOI: 10.1097/cco.0000000000000766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Drug development is the process of bringing new anticancer agents into clinical practice. From the basic research to clinical research each step is essential and intimately linked. The aim of this review is to describe emerging preclinical models and to provide an overview of selected drugs recently developed in oncology. RECENT FINDINGS Preclinical models reproducing human immune-tumor interactions, 3D cell cultures and microfluidic platforms are of great interest for the development of immunotherapies and combination therapies and offer the opportunity to better understand the interplay between cancer and stromal cells.Following a better biological understanding of cancer and advances in precision oncology, new exciting drugs (e.g. antibodies-drugs conjugates [ADCs], immunotherapeutic strategies, molecular-targeted therapies) have entered the field of clinical research and even clinical practice. SUMMARY Recent improvements in preclinical models will allow an accurate selection of drug candidates for clinical research. Innovative drugs are currently being developed from early to later phases of development. An important remaining challenge in drug development is to set up a new model of patient-centered clinical research to facilitate quick access to innovation and target-oriented trials.
Collapse
Affiliation(s)
| | - Nadège Kindt
- Laboratoire d'oncologie clinique et expérimentale (LOCE), Jules Bordet Institute, Brussels, Belgium
| | - Mohammad Krayem
- Laboratoire d'oncologie clinique et expérimentale (LOCE), Jules Bordet Institute, Brussels, Belgium
| | - Ahmad Awada
- Oncology Medicine Department
- Laboratoire d'oncologie clinique et expérimentale (LOCE), Jules Bordet Institute, Brussels, Belgium
| |
Collapse
|
10
|
Tabana Y, Moon TC, Siraki A, Elahi S, Barakat K. Reversing T-cell exhaustion in immunotherapy: a review on current approaches and limitations. Expert Opin Ther Targets 2021; 25:347-363. [PMID: 34056985 DOI: 10.1080/14728222.2021.1937123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction:T cell functions are altered during chronic viral infections and tumor development. This is mainly manifested by significant changes in T cells' epigenetic and metabolic landscapes, pushing them into an 'exhausted' state. Reversing this T cell exhaustion has been emerging as a 'game-changing' therapeutic approach against cancer and chronic viral infection.Areas covered:This review discusses the cellular pathways related to T cell exhaustion, and the clinical development and possible cellular targets that can be exploited therapeutically to reverse this exhaustion. We searched various databases (e.g. Google Scholar, PubMed, Elsevier, and other scientific database sites) using the keywords T cell exhaustion, T cell activation, co-inhibitory receptors, and reversing T cell exhaustion.Expert opinion:The discovery of the immune checkpoints pathways represents a significant milestone toward understanding and reversing T cell exhaustion. Antibodies that target these pathways have already demonstrated promising activities in reversing T cell exhaustion. Nevertheless, there are still many associated limitations. In this context, next-generation alternatives are on the horizon. This includes the use of small molecules to block the immune checkpoints' receptors, combining them with other treatments, and identifying novel, safer and more effective immunotherapeutic targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tae Chul Moon
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Rakova J, Truxova I, Holicek P, Salek C, Hensler M, Kasikova L, Pasulka J, Holubova M, Kovar M, Lysak D, Kline JP, Racil Z, Galluzzi L, Spisek R, Fucikova J. TIM-3 levels correlate with enhanced NK cell cytotoxicity and improved clinical outcome in AML patients. Oncoimmunology 2021; 10:1889822. [PMID: 33758676 PMCID: PMC7946028 DOI: 10.1080/2162402x.2021.1889822] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence indicates that immune checkpoint inhibitors (ICIs) can restore CD8+ cytotoxic T lymphocyte (CTL) functions in preclinical models of acute myeloid leukemia (AML). However, ICIs targeting programmed cell death 1 (PDCD1, best known as PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) have limited clinical efficacy in patients with AML. Natural killer (NK) cells are central players in AML-targeting immune responses. However, little is known on the relationship between co-inhibitory receptors expressed by NK cells and the ability of the latter to control AML. Here, we show that hepatitis A virus cellular receptor 2 (HAVCR2, best known as TIM-3) is highly expressed by NK cells from AML patients, correlating with improved functional licensing and superior effector functions. Altogether, our data indicate that NK cell frequency as well as TIM-3 expression levels constitute prognostically relevant biomarkers of active immunity against AML.
Collapse
Affiliation(s)
| | | | - Peter Holicek
- Sotio, Prague, Czech Republic
- Department of Immunology, Charles University, 2 Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Cyril Salek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | - Monika Holubova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Lysak
- Department of Hematology and Oncology, University Hospital in Pilsen, Czech Republic
| | - Justin P. Kline
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zdenek Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Université de Paris, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Department of Immunology, Charles University, 2 Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Department of Immunology, Charles University, 2 Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
12
|
Affiliation(s)
- Jon Weidanz
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
13
|
Moslehi J, Lichtman AH, Sharpe AH, Galluzzi L, Kitsis RN. Immune checkpoint inhibitor-associated myocarditis: manifestations and mechanisms. J Clin Invest 2021; 131:145186. [PMID: 33645548 DOI: 10.1172/jci145186] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment of various cancers, including malignancies once considered untreatable. These agents, however, are associated with inflammation and tissue damage in multiple organs. Myocarditis has emerged as a serious ICI-associated toxicity, because, while seemingly infrequent, it is often fulminant and lethal. The underlying basis of ICI-associated myocarditis is not completely understood. While the importance of T cells is clear, the inciting antigens, why they are recognized, and the mechanisms leading to cardiac cell injury remain poorly characterized. These issues underscore the need for basic and clinical studies to define pathogenesis, identify predictive biomarkers, improve diagnostic strategies, and develop effective treatments. An improved understanding of ICI-associated myocarditis will provide insights into the equilibrium between the immune and cardiovascular systems.
Collapse
Affiliation(s)
- Javid Moslehi
- Division of Cardiovascular Medicine and Division of Oncology, Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Arlene H Sharpe
- Department of Immunology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Sandra and Edward Meyer Cancer Center, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York, USA.,Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.,Université de Paris, Paris, France
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
14
|
Immune-Checkpoint Inhibitors in B-Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13020214. [PMID: 33430146 PMCID: PMC7827333 DOI: 10.3390/cancers13020214] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immune-based treatment strategies, which include immune checkpoint inhibition, have recently become a new frontier for the treatment of B-cell-derived lymphoma. Whereas checkpoint inhibition has given oncologists and patients hope in specific lymphoma subtypes like Hodgkin lymphoma, other entities do not benefit from such promising agents. Understanding the factors that determine the efficacy and safety of checkpoint inhibition in different lymphoma subtypes can lead to improved therapeutic strategies, including combinations with various chemotherapies, biologics and/or different immunologic agents with manageable safety profiles. Abstract For years, immunotherapy has been considered a viable and attractive treatment option for patients with cancer. Among the immunotherapy arsenal, the targeting of intratumoral immune cells by immune-checkpoint inhibitory agents has recently revolutionised the treatment of several subtypes of tumours. These approaches, aimed at restoring an effective antitumour immunity, rapidly reached the market thanks to the simultaneous identification of inhibitory signals that dampen an effective antitumor response in a large variety of neoplastic cells and the clinical development of monoclonal antibodies targeting checkpoint receptors. Leading therapies in solid tumours are mainly focused on the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) pathways. These approaches have found a promising testing ground in both Hodgkin lymphoma and non-Hodgkin lymphoma, mainly because, in these diseases, the malignant cells interact with the immune system and commonly provide signals that regulate immune function. Although several trials have already demonstrated evidence of therapeutic activity with some checkpoint inhibitors in lymphoma, many of the immunologic lessons learned from solid tumours may not directly translate to lymphoid malignancies. In this sense, the mechanisms of effective antitumor responses are different between the different lymphoma subtypes, while the reasons for this substantial difference remain partially unknown. This review will discuss the current advances of immune-checkpoint blockade therapies in B-cell lymphoma and build a projection of how the field may evolve in the near future. In particular, we will analyse the current strategies being evaluated both preclinically and clinically, with the aim of fostering the use of immune-checkpoint inhibitors in lymphoma, including combination approaches with chemotherapeutics, biological agents and/or different immunologic therapies.
Collapse
|
15
|
Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 2020; 11:1013. [PMID: 33243969 PMCID: PMC7691519 DOI: 10.1038/s41419-020-03221-2] [Citation(s) in RCA: 604] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1 (HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor 2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer.
Collapse
|
16
|
Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell agonists in cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000966. [PMID: 33020242 PMCID: PMC7537335 DOI: 10.1136/jitc-2020-000966] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer cells can evade immune surveillance in the body. However, immune checkpoint inhibitors can interrupt this evasion and enhance the antitumor activity of T cells. Other mechanisms for promoting antitumor T-cell function are the targeting of costimulatory molecules expressed on the surface of T cells, such as 4-1BB, OX40, inducible T-cell costimulator and glucocorticoid-induced tumor necrosis factor receptor. In addition, CD40 targets the modulation of the activation of antigen-presenting cells, which ultimately leads to T-cell activation. Agonists of these costimulatory molecules have demonstrated promising results in preclinical and early-phase trials and are now being tested in ongoing clinical trials. In addition, researchers are conducting trials of combinations of such immune modulators with checkpoint blockade, radiotherapy and cytotoxic chemotherapeutic drugs in patients with advanced tumors. This review gives a comprehensive picture of the current knowledge of T-cell agonists based on their use in recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Yeonjoo Choi
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yaoyao Shi
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cara L Haymaker
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Joud Hajjar
- Section of Immunology, Department of Allergy & Rheumatology, Baylor College of Medicine, Texas and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
17
|
Kuang Z, Pu P, Wu M, Wu Z, Wang L, Li Y, Zhang S, Jing H, Wu W, Chen B, Liu J. A Novel Bispecific Antibody with PD-L1-assisted OX40 Activation for Cancer Treatment. Mol Cancer Ther 2020; 19:2564-2574. [PMID: 32999045 DOI: 10.1158/1535-7163.mct-20-0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Immunotherapy using OX40 agonist antibodies shows great preclinical efficacy in mouse tumor models. But in a clinical setting, OX40 agonist antibody alone or in combination with checkpoint blockade exhibits only modest efficacy due to lack of sufficient activation. We hypothesized that the limited antitumor activity in patients may due to insufficient clustering of OX40 antibody in the tumor. To test this hypothesis, we generated a tetravalent programmed death ligand-1 (PD-L1)/OX40 BsAb by fusing two PD-L1 VHH fragments to the C-terminus of a nonblocking agonistic anti-OX40 antibody. The resulting BsAb had intact function of each parental antibody, including efficiently blocking PD1/PD-L1 interaction and inducing OX40 activation. In addition, this BsAb showed significantly enhanced potency in activation of OX40-expressing T cells when PD-L1-expressing tumor cells or dendrite cells were present, through PD-L1-mediated cross-linking of OX40. Moreover, the BsAb exhibited superior antitumor activities over the parental monospecific antibodies alone or in combination in multiple in vivo tumor models. These results demonstrated a great potential for further clinical development of the potent immunostimulatory PD-L1/OX40 bispecific antibody.
Collapse
Affiliation(s)
- Zhihui Kuang
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Pu Pu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Min Wu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Zhihai Wu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Li Wang
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Yiming Li
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Shaofei Zhang
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Hua Jing
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Weiwei Wu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Bingliang Chen
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Junjian Liu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China.
| |
Collapse
|
18
|
Abramson HN. B-Cell Maturation Antigen (BCMA) as a Target for New Drug Development in Relapsed and/or Refractory Multiple Myeloma. Int J Mol Sci 2020; 21:E5192. [PMID: 32707894 PMCID: PMC7432930 DOI: 10.3390/ijms21155192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
During the past two decades there has been a major shift in the choice of agents to treat multiple myeloma, whether newly diagnosed or in the relapsed/refractory stage. The introduction of new drug classes, such as proteasome inhibitors, immunomodulators, and anti-CD38 and anti-SLAMF7 monoclonal antibodies, coupled with autologous stem cell transplantation, has approximately doubled the disease's five-year survival rate. However, this positive news is tempered by the realization that these measures are not curative and patients eventually relapse and/or become resistant to the drug's effects. Thus, there is a need to discover newer myeloma-driving molecular markers and develop innovative drugs designed to precisely regulate the actions of such putative targets. B cell maturation antigen (BCMA), which is found almost exclusively on the surfaces of malignant plasma cells to the exclusion of other cell types, including their normal counterparts, has emerged as a specific target of interest in this regard. Immunotherapeutic agents have been at the forefront of research designed to block BCMA activity. These agents encompass monoclonal antibodies, such as the drug conjugate belantamab mafodotin; bispecific T-cell engager strategies exemplified by AMG 420; and chimeric antigen receptor (CAR) T-cell therapeutics that include idecabtagene vicleucel (bb2121) and JNJ-68284528.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
19
|
Abstract
Stimulator of interferon response cGAMP interactor 1 (STING1, best known as STING) is an endoplasmic reticulum-sessile protein that serves as a signaling hub, receiving input from several pattern recognition receptors, most of which sense ectopic DNA species in the cytosol. In particular, STING ensures the production of type I interferon (IFN) in response to invading DNA viruses, bacterial pathogens, as well as DNA leaking from mitochondria or the nucleus (e.g., in cells exposed to chemotherapy or radiotherapy). As a type I IFN is critical for the initiation of anticancer immune responses, the pharmaceutical industry has generated molecules that directly activate STING for use in oncological indications. Such STING agonists are being tested in clinical trials with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells (including dendritic cells) to elicit immunostimulatory effects, alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. In this Trial Watch, we discuss preclinical evidence and accumulating clinical experience shaping the design of Phase I and Phase II trials that evaluate the safety and preliminary efficacy of STING agonists in cancer patients.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, USA.,Sandra and Edward Meyer Cancer Center, New York, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Golay J, Andrea AE. Combined Anti-Cancer Strategies Based on Anti-Checkpoint Inhibitor Antibodies. Antibodies (Basel) 2020; 9:E17. [PMID: 32443877 PMCID: PMC7345008 DOI: 10.3390/antib9020017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic monoclonal antibodies for the treatment of cancer came of age in 1997, with the approval of anti-CD20 Rituximab. Since then, a wide variety of antibodies have been developed with many different formats and mechanisms of action. Among these, antibodies blocking immune checkpoint inhibitors (ICI) have revolutionized the field, based on the novelty of their concept and their demonstrated efficacy in several types of cancer otherwise lacking effective immunotherapy approaches. ICI are expressed by tumor, stromal or immune cells infiltrating the tumor microenvironment, and negatively regulate anti-tumor immunity. Antibodies against the first discovered ICI, CTLA-4, PD-1 and PD-L1, have shown significant activity in phase III studies against melanoma and other solid cancers, alone or in combination with chemotherapy or radiotherapy. However, not all cancers and not all patients respond to these drugs. Therefore, novel antibodies targeting additional ICI are currently being developed. In addition, CTLA-4, PD-1 and PD-L1 blocking antibodies are being combined with each other or with other antibodies targeting novel ICI, immunostimulatory molecules, tumor antigens, angiogenic factors, complement receptors, or with T cell engaging bispecific antibodies (BsAb), with the aim of obtaining synergistic effects with minimal toxicity. In this review, we summarize the biological aspects behind such combinations and review some of the most important clinical data on ICI-specific antibodies.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy “G. Lanzani”, UOC Ematologia, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy
- Fondazione per la Ricerca Ospedale Maggiore, 24127 Bergamo, Italy
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut 1100, Lebanon;
| |
Collapse
|
21
|
Glorieux C, Huang P. Regulation of CD137 expression through K-Ras signaling in pancreatic cancer cells. Cancer Commun (Lond) 2019; 39:41. [PMID: 31288851 PMCID: PMC6615207 DOI: 10.1186/s40880-019-0386-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/28/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The interaction between CD137 and its ligand (CD137L) plays a major role in the regulation of immune functions and affects cancer immunotherapy. CD137 is a cell surface protein mainly located on activated T cells, and its regulation and functions in immune cells are well established. However, the expression of CD137 and its regulation in cancer cells remain poorly understood. The main purposes of this study were to examine the expression of CD137 in pancreatic cancer cells and to investigate its underlying mechanisms. METHODS Cells containing inducible K-RasG12V expression vector or with different K-Ras mutational statuses were used as in vitro models to examine the regulation of CD137 expression by K-Ras. Various molecular assays were employed to explore the regulatory mechanisms. Tumor specimens from 15 pancreatic cancer patients and serum samples from 10 patients and 10 healthy donors were used to test if the expression of CD137 could be validated in clinical samples. RESULTS We found that the CD137 protein was expressed on the cell surface in pancreatic cancer tissues and cancer cell lines. Enzyme-linked immunosorbent assay revealed no difference in the levels of secreted CD137 in the sera of patients and healthy donors. By using the K-Ras inducible cell system, we further showed that oncogenic K-Ras up-regulated CD137 through the activation of MAPK (mitogen-activated protein kinases) and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways, as evidenced by significantly reduced CD137 mRNA expression led by genetic silencing of MAPK1 and p65, the key proteins involved in the respective pathways. Furthermore, we also found that the NF-κB pathway was mainly stimulated by the K-Ras-induced secretion of interleukin-1α (IL-1α) which promoted the transcription of the CD137 gene in pancreatic cancer cell lines. Analysis of the TCGA (the cancer genome atlas) database also revealed a significant correlation between IL-1α and CD137 expression (r = 0.274) in tumor samples from pancreatic cancer patients (P < 0.001). CONCLUSIONS The present study has demonstrated that the CD137 protein was expressed on pancreatic cancer cell surface, and has identified a novel mechanism by which K-Ras regulates CD137 in pancreatic cancer cells through MAPK and NF-κB pathways stimulated by IL-1α.
Collapse
Affiliation(s)
- Christophe Glorieux
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
22
|
Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel) 2019; 8:E41. [PMID: 31544847 PMCID: PMC6784091 DOI: 10.3390/antib8030041] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- William R Strohl
- BiStro Biotech Consulting, LLC, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA.
| | - Michael Naso
- Century Therapeutics, 3675 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|