1
|
Li YW, Liu Y, Luo SZ, Huang XJ, Shen Y, Wang WS, Lang ZC. The significance of calcium ions in cerebral ischemia-reperfusion injury: mechanisms and intervention strategies. Front Mol Biosci 2025; 12:1585758. [PMID: 40421420 PMCID: PMC12104078 DOI: 10.3389/fmolb.2025.1585758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) represents a multifaceted pathological phenomenon characterized by an array of molecular and cellular mechanisms, which significantly contribute to neurological dysfunction. Evidence suggests that calcium ions play an indispensable role in this context, as abnormal elevations in calcium concentrations exacerbate neuronal injury and intensify functional deficits. These ions are integral not only for intracellular signaling pathways but also for various pathological processes, such as programmed cell death, inflammatory responses, and oxidative stress. This review article elucidates the physiological framework of calcium homeostasis and the precise mechanisms through which calcium ions influence CIRI. Moreover, it addresses potential intervention strategies, including calcium channel blockers, calmodulin (CaM) inhibitors, antioxidants, and anti-inflammatory agents. Despite the proposal of certain intervention strategies, their effectiveness and safety in clinical settings warrant further scrutiny. In conclusion, the article highlights the limitations of current research and anticipates future investigative trajectories, aiming to provide a theoretical foundation and reference for the development of more efficacious treatment modalities.
Collapse
|
2
|
Alipour M, Abdolmaleki M, Shabanpour Y, Zali A, Ashrafi F, Nohesara S, Hajipour-Verdom B. Advances in magnetic field approaches for non-invasive targeting neuromodulation. Front Hum Neurosci 2025; 19:1489940. [PMID: 40356879 PMCID: PMC12066545 DOI: 10.3389/fnhum.2025.1489940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Neuromodulation, the targeted regulation of nerve activity, has emerged as a promising approach for treating various neurological and psychiatric disorders. While deep brain stimulation has shown efficacy, its invasive nature poses substantial risks, including surgical complications and high costs. In contrast, non-invasive neuromodulation techniques, particularly those utilizing magnetic fields (MFs), have gained increasing attention as safer, more accessible alternatives. Magnetothermal stimulation has emerged as an innovative method that enables precise modulation of neuronal ion channels through localized heating induced by interaction of MF with biological tissues. This review discusses the principles of MF-based neuromodulation and highlights the critical role of ion channels in synaptic transmission, and the therapeutic potential of these advanced techniques. Additionally, it highlights key challenges such as spatial targeting precision, safety considerations, and the long-term effects of magnetic exposure on brain function. The findings presente the promise of MF-based neuromodulation as a non-invasive, highly targeted therapeutic strategy for conditions such as epilepsy, movement disorders, and neurodegenerative diseases, with potential applications in chronic pain management and future clinical interventions.
Collapse
Affiliation(s)
- Mozhgan Alipour
- Functional Neurosurgery Research Center, Research Institute of Functional Neurosurgery, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abdolmaleki
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaser Shabanpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Research Institute of Functional Neurosurgery, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Ashrafi
- Functional Neurosurgery Research Center, Research Institute of Functional Neurosurgery, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
3
|
Abhale K, Addepalli V, Desai S, Sanap A, Bhonde R. Effects of Mesenchymal Stem Cell-conditioned Media with Natural Immunomodulatory Agent Resveratrol on Type 1 Diabetes. Curr Drug Discov Technol 2025; 22:e080324227818. [PMID: 38468534 DOI: 10.2174/0115701638276524240305054259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is a condition marked by elevated blood sugar levels and primarily recognized by the destruction of beta cells caused by an autoimmune attack, which is a significant characteristic of T1DM. Recent studies have demonstrated the regenerative potential of conditioned medium therapy. In light of this, the current research sought to assess the impact of Mesenchymal Stem Cell conditioned media (CM) and CM with resveratrol (CM+ Resveratrol) on the management of T1DM in Swiss albino mice. By leveraging and modifying existing conditioned medium therapy, this study aims to evaluate its effectiveness in treating T1DM. MATERIALS & METHODS Diabetes was induced in animals using the diabetes-inducing agent streptozotocin (STZ). The animals were then divided into five groups: Normal control, Disease Control, Resveratrol, Condition Media, and CM + Resveratrol. Treatments were given to the animals accordingly. The study period was 28 days. During this time, the animals were monitored for foodwater intake twice a week, blood glucose levels, and body weight. At the conclusion of the 28-day study period, biochemical estimations were performed for serum insulin levels, C-peptide levels, anti-inflammatory cytokines levels and pro-inflammatory cytokines levels. Additionally, histopathology of the pancreas was performed. RESULTS The test groups showed a significant decrease in blood glucose levels, an increase in Cpeptide levels, and a decrease in pro-inflammatory cytokine levels compared to the disease group. However, no statistically significant change within groups was observed in terms of serum insulin and anti-inflammatory cytokine levels. The improvement in diabetic symptoms, such as polyphagia, polydipsia, and weight loss, was observed in the treatment group, along with pancreatic regeneration, which indicated improved insulin secretion. CONCLUSION In the current investigation, we concluded that CM and CM+ Resveratrol, as natural immunomodulators, have the capacity to regenerate injured pancreatic beta cells and have antidiabetic action, together with immunomodulating impact. Nonetheless, future studies on this therapy appear to be promising.
Collapse
Affiliation(s)
- Krushna Abhale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | | | - Shivani Desai
- Clinical Research and Pharmacovigilance, Serum Institute of India Pvt. Ltd., Hadapsar, Pune
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune, India
| |
Collapse
|
4
|
Ahmad Hairi H, Ibrahim NI, Sadikan MZ, Jayusman PA, Shuid AN. Deciphering the role of classical oestrogen receptor in insulin resistance and type 2 diabetes mellitus: From molecular mechanism to clinical evidence. BIOIMPACTS : BI 2024; 15:30378. [PMID: 40256228 PMCID: PMC12008500 DOI: 10.34172/bi.30378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 04/22/2025]
Abstract
The biological actions of oestrogen are mediated by the oestrogen receptor α or β (ERα or ERβ), which are members of a broad nuclear receptor superfamily. Numerous in vivo and in vitro studies have demonstrated that loss of circulating oestrogen modulated by classical ERα and ERβ led to rapid changes in pancreatic β-cell and islet function, GLUT4 expression, insulin sensitivity and glucose tolerance, dysfunctional lipid homeostasis, oxidative stress, and inflammatory cascades. Remarkably, 17β-oestradiol (E2) can completely reverse these effects. This review evaluates the current understanding of the protective role of classical ER in critical pathways and molecular mechanisms associated with insulin resistance and type 2 diabetes mellitus (T2DM). It also examines the effectiveness of menopausal hormone therapy (MHT) in reducing the risk of developing T2DM in menopausal women. Clinical trials have shown the protective effects of MHT on glucose metabolism, which may be useful to treat T2DM in perimenopausal women. However, there are concerns about E2's potential side effects of obesity and hyperlipidaemia in menopausal women. Further studies are warranted to gain understanding and find other oestrogen alternatives for treatment of insulin resistance and T2DM in postmenopausal women.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150 Melaka, Malaysia
| | - Nurul Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150 Melaka, Malaysia
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
5
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. A Review of Fetal Development in Pregnancies with Maternal Type 2 Diabetes Mellitus (T2DM)-Associated Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation: Possible Links to Pregestational Prediabetes. Biomedicines 2024; 12:1372. [PMID: 38927579 PMCID: PMC11201628 DOI: 10.3390/biomedicines12061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Research has identified fetal risk factors for adult diseases, forming the basis for the Developmental Origins of Health and Disease (DOHaD) hypothesis. DOHaD suggests that maternal insults during pregnancy cause structural and functional changes in fetal organs, increasing the risk of chronic diseases like type 2 diabetes mellitus (T2DM) in adulthood. It is proposed that altered maternal physiology, such as increased glucocorticoid (GC) levels associated with a dysregulated hypothalamic-pituitary-adrenal (HPA) axis in maternal stress and T2DM during pregnancy, exposes the fetus to excess GC. Prenatal glucocorticoid exposure reduces fetal growth and programs the fetal HPA axis, permanently altering its activity into adulthood. This programmed HPA axis is linked to increased risks of hypertension, cardiovascular diseases, and mental disorders in adulthood. With the global rise in T2DM, particularly among young adults of reproductive age, it is crucial to prevent its onset. T2DM is often preceded by a prediabetic state, a condition that does not show any symptoms, causing many to unknowingly progress to T2DM. Studying prediabetes is essential, as it is a reversible stage that may help prevent T2DM-related pregnancy complications. The existing literature focuses on HPA axis dysregulation in T2DM pregnancies and its link to fetal programming. However, the effects of prediabetes on HPA axis function, specifically glucocorticoid in pregnancy and fetal outcomes, are not well understood. This review consolidates research on T2DM during pregnancy, its impact on fetal programming via the HPA axis, and possible links with pregestational prediabetes.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4001, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
6
|
Zhao X, Deng L, Ren L, Yang H, Wang B, Zhu X, Zhang X, Guo C, Zhang Y, Liu Y. VPAC2 receptor mediates VIP-potentiated insulin secretion via ion channels in rat pancreatic β cells. Exp Cell Res 2023; 423:113471. [PMID: 36642263 DOI: 10.1016/j.yexcr.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Vasoactive intestinal peptide (VIP), a small neuropeptide composing of 28 amino acids, functions as a neuromodulator with insulinotropic effect on pancreatic β cells, in which it is of vital importance in regulating the levels of blood glucose. VIP potently agonizes VPAC2 receptor (VPAC2-R). Agonists of VPAC2-R stimulate glucose-dependent insulin secretion. The purpose of this study was to further investigate the possible ion channel mechanisms in VPAC2-R-mediated VIP-potentiated insulin secretion. The results of insulin secretion experiments showed that VIP augmented insulin secretion in a glucose-dependent manner. The insulinotropic effect was mediated by VPAC2-R rather than VPAC1 receptor (VPAC1-R), through the adenylyl cyclase (AC)/protein kinase A (PKA) signalling pathway. The calcium imaging analysis demonstrated that VIP increased intracellular Ca2+ concentration ([Ca2+]i). In addition, in the whole-cell voltage-clamp mode, we found that VIP blocked the voltage-dependent potassium (Kv) channel currents, while this effect was reversed by inhibiting the VPAC2-R, AC or PKA respectively. Taken together, these findings suggest that VIP stimulates insulin secretion by inhibiting the Kv channels, activating the Ca2+ channels, and increasing [Ca2+]i through the VPAC2-R and AC/PKA signalling pathway. These findings provide theoretical basis for the research of VPAC2-R as a novel therapeutic target.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huanhuan Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Bin Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaochan Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoli Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chao Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
7
|
Adebayo OG, Aduema W, Iwueke AV, Asiwe JN, Onyeleonu I, Akpotu AE, Wopara I, Adebayo OR, Onuoha OG, Eleazar ES, Onwuka FC. Treatment with Ginkgo biloba supplement modulates oxidative disturbances, inflammation and vascular functions in oxygen deprived hypothyroid mice: Involvement of endothelin-1/NO signaling pathways. J Food Biochem 2022; 46:e14477. [PMID: 36226765 DOI: 10.1111/jfbc.14477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
A double-hit biological alteration involving exposure to oxygen deprivation in hypothyroid condition may exacerbate cellular oxidative and inflammatory disturbances comparative to a one-hit biological exposure. This study investigated the therapeutic effect of Ginkgo biloba as cardioprotective against aortic oxido-inflammatory disturbances following oxygen deprivation in hypothyroid mice. Male Swiss mice were partitioned into 5 groups (n = 6) for hypothyroidism (Carbimazole 1.2 mg/kg) and hypoxia induction. Group 1 (normal control), group 2 (hypoxic stress control), group 3 (hypoxic and hypothyroid stress), group 4 (hypoxic and hypothyroid stress and Ginkgo biloba 20 mg/kg; p.o) and group 5 (hypoxic and hypothyroid stress and Levothyroxine 10 μg/kg; p.o) for 14 days. Thereafter, serum and aorta was collected for biochemical evaluation. GBS did not up-regulate the serum thyroid hormone imbalances (tri-iodothyronine (T3), thyroxin (T4)) but maintains the TSH levels. The blood glucose level was reduced with decrease oxidative stress and inflammatory mediators in the serum/aorta indicated by inhibited redox status following treatment with GBS. Moreover, endothelin-1/nitric oxide signaling pathways were markedly regulated in the aorta. Conclusively, GBS acts as a therapeutic agent and may be consider as a potential vasodilator candidate in the management and control of hypoxic stress in hypothyroid condition. PRACTICAL APPLICATIONS: Treatment with Gingko biloba supplement abated endothelial abnormalities via elevation of nitric oxide release and suppression of endothelin activity in hypothyroid mice exposed to hypoxic hypoxia. The activity of myeloperoxidase enzyme and redo-inflammatory status was downregulated following treatment with Gingko biloba supplement in hypothyroid mice exposed to hypoxic hypoxia. Treatment with Gingko biloba supplement modulates hypothalamic-pituitary-adrenal (HPA) axis by inhibiting corticosterone release in hypothyroid mice exposed to hypoxic hypoxia.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Department of Physiology, Faculty of Basic Medical Sciences, Bayelsa Medical University, Yenagoa, Nigeria
| | - Adaku V Iwueke
- Department of Biochemistry, Faculty of Science and Computing, University of Agriculture and Environmental Sciences, Umuagwo, Nigeria
| | - Jerome N Asiwe
- Cardiorespiratory Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Ijeoma Onyeleonu
- Department of Anatomy, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Ajirioghene E Akpotu
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | - Oluwakemi Rachael Adebayo
- Department of Human Nutrition and Dietetics, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| | - Ogechukwu G Onuoha
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Emeka Spiff Eleazar
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Favour C Onwuka
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| |
Collapse
|