1
|
Chen Y, Lai F, Xu H, He Y. Chinese herb pairs for cardiovascular and cerebrovascular diseases: Compatibility effects, pharmacological potential, clinical efficacy, and molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119516. [PMID: 39978448 DOI: 10.1016/j.jep.2025.119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/27/2024] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebrovascular and cardiovascular diseases are pathophysiologically interconnected. In the past, researchers have mainly focused on developing one herbal medicine treatment. Single herb often fails to address the multifactorial pathology of these diseases. The pathogenesis and progression of the disease are complex, making the therapeutic effect of a single herb potentially limiting. Traditional Chinese medicine emphasizes herb pairs, which enhance therapeutic efficacy through synergistic interactions. AIM OF THE REVIEW This review focused on the mechanisms and potential clinical applications of Chinese herb pairs such as Astragali Radix-Carthami Flos, Salviae Miltiorrhizae Radix-Puerariae Lobatae Radix, Salviae Miltiorrhizae Radix-Chuanxiong Rhizoma, Salviae Miltiorrhizae Radix-Notoginseng Radix, Salviae Miltiorrhizae Radix-Carthami Flos, Astragali Radix-Angelicae Sinensis Radix, Notoginseng Radix-Carthami Flos, and Astragali Radix-Salviae Miltiorrhizae Radix, as well as provided a scientific basis for clinical applications of Chinese herb pairs. MATERIALS AND METHODS A systematic search and collection of studies on Chinese herb pairs in cardiovascular and cerebrovascular diseases was carried out using electronic databases such as PubMed, CNKI, Wan Fang Database, Baidu Scholar, and Web of Science. The keywords searched included Chinese herb pairs, cardiovascular disease, cerebrovascular disease, Astragali Radix, Salviae Miltiorrhizae Radix, Angelicae Sinensis Radix, Carthami Flos, Notoginseng Radix, and so on. RESULTS Studies revealed that the Chinese herb pairs had more beneficial effects than single herb and demonstrated a variety of roles in cardiovascular and cerebrovascular diseases. Preclinical studies indicated that Chinese herb pairs are more effective than single herb in treating cardiovascular and cerebrovascular diseases by modulating disease-related pathways and molecular targets. Further research is needed to fully explore their potential. The review also outlined the potential clinical applications of these Chinese herb pairs, highlighting their safety and efficacy. CONCLUSIONS Chinese herb pairs showed good promise as an alternative therapy for cardiovascular and cerebrovascular diseases due to their multi-component and multi-target characteristics. Consequently, further research was necessary to fully explore the potential of Chinese herb pairs in treating cardiovascular and cerebrovascular diseases, based on the current data.
Collapse
Affiliation(s)
- Yajie Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Feifan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, China.
| | - Huaping Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, China.
| |
Collapse
|
2
|
Li C, Ji KB, Choi HY, Liu H, Kim M. Schisandrin B enhances embryo competence and potentially mitigates endoplasmic reticulum stress during porcine preimplantation development. Theriogenology 2024; 220:26-34. [PMID: 38460201 DOI: 10.1016/j.theriogenology.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Endoplasmic reticulum (ER) stress induced by agents such as tunicamycin (TM) substantially impedes the developmental progression of porcine embryos. Lignan compounds such as Schisandrin B (Sch-B), may have the potential to mitigate this stress. However, there are few studies on the effects of Sch-B on embryo development. To address this research gap, this study evaluates the protective efficacy of Sch-B against TM-induced ER stress during pivotal stages of porcine embryogenesis. Notably, embryos treated with Sch-B exhibited pronounced resistance to TM-induced developmental arrest, particularly at the 4-cell stage, facilitating progression to the 8-cell stage and subsequent blastocyst formation. It was also observed that Sch-B effectively reduced reactive oxygen species (ROS) levels and improved mitochondrial membrane potential (MMP). Furthermore, Sch-B positively influenced the expression of several stress-related genes. These findings highlight the promising role of Sch-B in improving porcine embryo development and mitigating ER stress.
Collapse
Affiliation(s)
- Chuang Li
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Kuk Bin Ji
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Ho Yong Choi
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Haixing Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Minkyu Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea; MK Biotech Inc., 99 Daehak-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
3
|
Jung YS, Jin BH, Choi JE, Park MS, Kim YW, Kang HW, Cho S, Kim CO. Assessment of Pharmacokinetic Effects of Herbal Medicines on Escitalopram. Ther Clin Risk Manag 2024; 20:151-160. [PMID: 38434107 PMCID: PMC10906722 DOI: 10.2147/tcrm.s448090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Herbal medicines are occasionally used in combination with conventional antidepressants to mitigate various depression-associated symptoms. However, there is limited information on herb-antidepressant interactions. In this study, we investigated the pharmacokinetic (PK) effects of four herbal medicines (Gami-soyosan, Banhasasim-tang, Ojeok-san, and Bojungikgi-tang) on escitalopram, a commonly used antidepressant. Patients and Methods In this open-label, fixed-sequence, three-period, crossover study, 18 participants were enrolled and divided into two groups. Each group received a 10 mg oral dose of escitalopram in period 1. Participants took escitalopram once daily and their assigned herbal medicines thrice a day for 7 d in periods 2 (group 1: Gami-soyosan, group 2: Ojeok-san) and 3 (group 1: Banhasasim-tang; group 2: Bojungikgi-tang). The primary endpoints were Cmax,ss and AUCtau,ss of escitalopram. Cmax,ss and AUCtau,ss in period 1 were obtained using nonparametric superposition from single-dose data. The PK endpoints were classified according to the CYP2C19 phenotype. Results Of 18 participants, 16 completed the study. Systemic exposure to escitalopram resulted in a minor increase in the presence of each herbal medicine. The geometric mean ratios (GMRs, combination with herbal medicines/escitalopram monotherapy) and their 90% confidence intervals (CIs) for Cmax,ss and AUCtau,ss were as follows: Gamisoyosan- 1.1454 (0.9201, 1.4258) and 1.0749 (0.8084, 1.4291), Banhasasim-tang-1.0470 (0.7779, 1.4092) and 1.0465 (0.7035, 1.5568), Ojeok-san-1.1204 (0.8744, 1.4357) and 1.1267 (0.8466, 1.4996), and Bojungikgi-tang-1.1264 (0.8594, 1.4762) and 1.1400 (0.8515, 1.5261), respectively. Furthermore, no significant differences in the GMRs of Cmax,ss and AUCtau,ss were observed across different CYP2C19 phenotypes in any of the groups. Conclusion The co-administration of escitalopram with Gami-soyosan, Banhasasim-tang, Ojeok-san, or Bojungikgi-tang did not exert significant PK effects on escitalopram. These findings provide valuable insights into the safe use of herbal medicines along with escitalopram.
Collapse
Affiliation(s)
- Yun Seob Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Hak Jin
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Ju Eun Choi
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Min Soo Park
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Young-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju, Korea
| | - Hyung Won Kang
- College of Korean Medicine, Wonkwang University, Iksan, Korea
| | | | - Choon Ok Kim
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
4
|
Wang S, Wang M, Cui J, Lian D, Li L. Inhibition Effect of Okanin Toward Human Cytochrome P450 3A4 and 2D6 with Multi-spectroscopic Studies and Molecular Docking. J Fluoresc 2024; 34:203-212. [PMID: 37191827 DOI: 10.1007/s10895-023-03258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Okanin, a major flavonoid of a popular herb tea, Coreopsis tinctoria Nutt., showed strong inhibition on CYP3A4 and CYP2D6. The strong interaction between okanin and CYPs were determined by enzyme kinetics, multispectral technique and molecular docking. The inhibition type of two enzymes, CYP3A4 and CYP2D6, by okanin are mixed and non-competitive inhibition type, respectively. The IC50 values and the binding constant of okanin to CYP3A4 can be deduced that the interaction was stronger than that of CYP2D6. The Conformations of CYP3A4 and CYP2D6 were changed by okanin. The evidence from fluorescence measurement along with molecular docking verified that these two CYPs were bound with okanin by hydrogen bonds and hydrophobic forces. Our investigation suggested that okanin may lead to interactions between herb and drug by inhibiting CYP3A4 and CYP2D6 activities, thus its consumption should be taken with caution.
Collapse
Affiliation(s)
- Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
5
|
Czigle S, Nagy M, Mladěnka P, Tóth J. Pharmacokinetic and pharmacodynamic herb-drug interactions-part I. Herbal medicines of the central nervous system. PeerJ 2023; 11:e16149. [PMID: 38025741 PMCID: PMC10656908 DOI: 10.7717/peerj.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
Unlike conventional drug substances, herbal medicines are composed of a complex of biologically active compounds. Therefore, the potential occurrence of herb-drug interactions is even more probable than for drug-drug interactions. Interactions can occur on both the pharmacokinetic and pharmacodynamic level. Herbal medicines may affect the resulting efficacy of the concomitantly used (synthetic) drugs, mainly on the pharmacokinetic level, by changing their absorption, distribution, metabolism, and excretion. Studies on the pharmacodynamic interactions of herbal medicines and conventional drugs are still very limited. This interaction level is related to the mechanism of action of different plant constituents. Herb-drug interactions can cause changes in drug levels and activities and lead to therapeutic failure and/or side effects (sometimes toxicities, even fatal). This review aims to provide a summary of recent information on the potential drug interactions involving commonly used herbal medicines that affect the central nervous system (Camellia, Valeriana, Ginkgo, Hypericum, Humulus, Cannabis) and conventional drugs. The survey databases were used to identify primary scientific publications, case reports, and secondary databases on interactions were used later on as well. Search keywords were based on plant names (botanical genera), officinal herbal drugs, herbal drug preparations, herbal drug extracts.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - the OEMONOM.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Zhou N, Zhu Y, Hu M, Zheng R, Sun M, Bian Y, Chen X, Li T. Evaluation potential effects of Picroside II on cytochrome P450 enzymes in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116582. [PMID: 37192720 DOI: 10.1016/j.jep.2023.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Picrorhiza scrophulariiflora Pennell, a well-known Chinese herb, has been traditionally utilized as an antioxidant and anti-inflammatory agent. One of its main bioactive components is Picroside II, a glycoside derivative. However, there is limited information on the effects of Picroside II on the activity of cytochrome P450 (CYP) enzymes nor on potential herb-drug interactions are rarely studied. AIM OF THE STUDY The purpose of the study was to investigate the effects of Picroside II on the activity of cytochrome P450 enzymes in vitro and in vivo and its potential herb-drug interactions. MATERIALS AND METHODS Specific probe substrates were employed to assess the effect of Picroside II on the activity of P450 enzymes. The inhibitory effects of Picroside II on CYP enzymes were assayed both in human (i.e., 1A, 2C9, 2C19, 2D6, 2E1, and 3A) and rat (i.e., 1A, 2C6/11, 2D1, 2E1, and 3A) liver microsomes in vitro. The inductive effects were investigated in rats following oral gavage of 2.5 mg/kg and 10 mg/kg Picroside II. A specific Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) method was developed to determine the formation of specific metabolites. RESULTS Enzyme inhibition results showed that Picroside II (0.5-200 μM) had no evident inhibitory effects on rat and human liver microsomes in vitro. Interestingly, the administration of multiple doses of 10 mg/kg Picroside II inhibited the activity of CYP2C6/11 by reducing the rate of formation of 4-hydroxydiclofenac and 4-hydroxymephenytoin, while Picroside II at 2.5 mg/kg increased the activity of CYP3A by promoting the formation of 1-hydroxymidazolam and 6-hydroxychlorzoxazone in rats. In addition, there were negligible effects on CYP1A, CYP2D1, and CYP2E1 in rats. CONCLUSIONS The results indicated that Picroside II modulated the activities of CYP enzymes and was involved in CYP2C and CYP3A medicated herb-drug interactions. Therefore, careful monitoring is necessary when Picroside II is used in combination with related conventional drugs.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yujie Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Miaorong Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongyao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengqi Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yueying Bian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Xijing Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Tingting Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
7
|
Yasgar A, Bougie D, Eastman RT, Huang R, Itkin M, Kouznetsova J, Lynch C, McKnight C, Miller M, Ngan DK, Peryea T, Shah P, Shinn P, Xia M, Xu X, Zakharov AV, Simeonov A. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS Pharmacol Transl Sci 2023; 6:683-701. [PMID: 37200814 PMCID: PMC10186358 DOI: 10.1021/acsptsci.2c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 05/20/2023]
Abstract
Dietary supplements and natural products are often marketed as safe and effective alternatives to conventional drugs, but their safety and efficacy are not well regulated. To address the lack of scientific data in these areas, we assembled a collection of Dietary Supplements and Natural Products (DSNP), as well as Traditional Chinese Medicinal (TCM) plant extracts. These collections were then profiled in a series of in vitro high-throughput screening assays, including a liver cytochrome p450 enzyme panel, CAR/PXR signaling pathways, and P-glycoprotein (P-gp) transporter assay activities. This pipeline facilitated the interrogation of natural product-drug interaction (NaPDI) through prominent metabolizing pathways. In addition, we compared the activity profiles of the DSNP/TCM substances with those of an approved drug collection (the NCATS Pharmaceutical Collection or NPC). Many of the approved drugs have well-annotated mechanisms of action (MOAs), while the MOAs for most of the DSNP and TCM samples remain unknown. Based on the premise that compounds with similar activity profiles tend to share similar targets or MOA, we clustered the library activity profiles to identify overlap with the NPC to predict the MOAs of the DSNP/TCM substances. Our results suggest that many of these substances may have significant bioactivity and potential toxicity, and they provide a starting point for further research on their clinical relevance.
Collapse
Affiliation(s)
- Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Danielle Bougie
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Richard T Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Misha Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Crystal McKnight
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mitch Miller
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Deborah K Ngan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Tyler Peryea
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
8
|
Maqbool Z, Khalid W, Atiq HT, Koraqi H, Javaid Z, Alhag SK, Al-Shuraym LA, Bader DMD, Almarzuq M, Afifi M, AL-Farga A. Citrus Waste as Source of Bioactive Compounds: Extraction and Utilization in Health and Food Industry. Molecules 2023; 28:1636. [PMID: 36838623 PMCID: PMC9960763 DOI: 10.3390/molecules28041636] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The current research was conducted to extract the bioactive compounds from citrus waste and assess their role in the development of functional foods to treat different disorders. The scientific name of citrus is Citrus L. and it belongs to the Rutaceae family. It is one of the most important fruit crops that is grown throughout the world. During processing, a large amount of waste is produced from citrus fruits in the form of peel, seeds, and pomace. Every year, the citrus processing industry creates a large amount of waste. The citrus waste is composed of highly bioactive substances and phytochemicals, including essential oils (EOs), ascorbic acid, sugars, carotenoids, flavonoids, dietary fiber, polyphenols, and a range of trace elements. These valuable compounds are used to develop functional foods, including baked products, beverages, meat products, and dairy products. Moreover, these functional foods play an important role in treating various disorders, including anti-aging, anti-mutagenic, antidiabetic, anti-carcinogenic, anti-allergenic, anti-oxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective activity. EOs are complex and contain several naturally occurring bioactive compounds that are frequently used as the best substitutes in the food industry. Citrus essential oils have many uses in the packaging and food safety industries. They can also be used as an alternative preservative to extend the shelf lives of different food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hafiz Taimoor Atiq
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan 23546, Pakistan
| | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Rexhep Krasniqi No. 56, 10000 Pristina, Kosovo
| | - Zaryab Javaid
- Department of Pharmacy, University of Central Punjab, Lahore 54590, Pakistan
| | - Sadeq K. Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser 61913, Saudi Arabia
| | - Laila A. Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - D. M. D. Bader
- Chemistry Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed Almarzuq
- Unit of Scientific Research, Applied College, Qassim University, Buraidah 52571, Saudi Arabia
| | - Mohamed Afifi
- Biochemistry Department, Faculty of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21577, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
9
|
Lü J, Zhang D, Zhang X, Sa R, Wang X, Wu H, Lin Z, Zhang B. Network Analysis of the Herb-Drug Interactions of Citrus Herbs Inspired by the "Grapefruit Juice Effect". ACS OMEGA 2022; 7:35911-35923. [PMID: 36249376 PMCID: PMC9558717 DOI: 10.1021/acsomega.2c04579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This study was performed to investigate the herb-drug interactions (HDIs) of citrus herbs (CHs), which was inspired by the "grapefruit (GF) juice effect". Based on network analysis, a total of 249 components in GF and 159 compounds in CHs exhibited great potential as active ingredients. Moreover, 360 GF-related genes, 422 CH-related genes, and 111 genes associated with drug transport and metabolism were collected, while 25 and 26 overlapping genes were identified. In compound-target networks, the degrees of naringenin, isopimpinellin, apigenin, sinensetin, and isoimperatorin were higher, and the results of protein-protein interaction indicated the hub role of UGT1A1 and CYP3A4. Conventional drugs such as erlotinib, nilotinib, tamoxifen, theophylline, venlafaxine, and verapamil were associated with GF and CHs via multiple drug transporters and drug-metabolizing enzymes. Remarkably, GF and CHs shared 48 potential active compounds, among which naringenin, tangeretin, nobiletin, and apigenin possessed more interactions with targets. Drug metabolism by cytochrome P450 stood out in the mutual mechanism of GF and CHs. Molecular docking was utilized to elevate the protein-ligand binding potential of naringenin, tangeretin, nobiletin, and apigenin with UGT1A1 and CYP3A4. Furthermore, in vitro experiments demonstrated their regulating effect. Overall, this approach provided predictions on the HDIs of CHs, and they were tentatively verified through molecular docking and cell tests. Moreover, there is a demand for clinical and experimental evidence to support the prediction.
Collapse
Affiliation(s)
- Jintao Lü
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dan Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaomeng Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rina Sa
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
- Gansu
Province Hospital, Lanzhou 730000, China
| | - Xiaofang Wang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huanzhang Wu
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijian Lin
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bing Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
10
|
Intharuksa A, Arunotayanun W, Yooin W, Sirisa-ard P. A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules 2022; 27:molecules27144479. [PMID: 35889352 PMCID: PMC9316804 DOI: 10.3390/molecules27144479] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has intensively disrupted global health, economics, and well-being. Andrographis paniculata (Burm. f.) Nees has been used as a complementary treatment for COVID-19 in several Asian countries. This review aimed to summarize the information available regarding A. paniculata and its constituents, to provide critical points relating to its pharmacological properties, safety, and efficacy, revealing its potential to serve as a source of lead compounds for COVID-19 drug discovery. A. paniculata and its active compounds possess favorable antiviral, anti-inflammatory, immunomodulatory, and antipyretic activities that could be beneficial for COVID-19 treatment. Interestingly, recent in silico and in vitro studies have revealed that the active ingredients in A. paniculata showed promising activities against 3CLpro and its virus-specific target protein, human hACE2 protein; they also inhibit infectious virion production. Moreover, existing publications regarding randomized controlled trials demonstrated that the use of A. paniculata alone or in combination was superior to the placebo in reducing the severity of upper respiratory tract infection (URTI) manifestations, especially as part of early treatment, without serious side effects. Taken together, its chemical and biological properties, especially its antiviral activities against SARS-CoV-2, clinical trials on URTI, and the safety of A. paniculata, as discussed in this review, support the argument that A. paniculata is a promising natural source for drug discovery regarding COVID-19 post-infectious treatment, rather than prophylaxis.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
- Correspondence:
| | - Wipawadee Yooin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Panee Sirisa-ard
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| |
Collapse
|
11
|
Ginsenoside Rh3 Inhibits Lung Cancer Metastasis by Targeting Extracellular Signal-Regulated Kinase: A Network Pharmacology Study. Pharmaceuticals (Basel) 2022; 15:ph15060758. [PMID: 35745677 PMCID: PMC9229598 DOI: 10.3390/ph15060758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer has a high mortality rate and is very common. One of the main reasons for the poor prognosis of patients with lung cancer is the high incidence of metastasis. Ginsenoside Rh3, a rare ginsenoside extracted from Panax notoginseng, exhibits excellent anti-inflammatory and anti-tumor effects. Nonetheless, the inhibitory potential of Rh3 against lung cancer remains unknown. The target genes of Rh3 were screened by the PharmMapper database; the proliferation of lung cancer cells was detected by MTT assay; the migration and invasion of cells were detected by the Transwell method; and the expression of extracellular signal-regulated kinase (ERK) and EMT-related proteins in vivo and in vitro were detected by Western blotting. In addition, we established a lung metastasis model in nude mice using A549 cells to assess the effect of Rh3 on NSCLC tumor metastasis in vivo. Our findings suggest that Rh3 significantly inhibited lung cancer metastasis both in vivo and in vitro. It was determined by flow cytometry analysis that Rh3 notably inhibited cell proliferation by blocking the G1 phase. In addition, Rh3 inhibited metastasis in lung cancer cells and regulated the expression of metastasis-related proteins under hypoxia. Mechanistic studies suggested that Rh3 targeted ERK to inhibit lung cancer metastasis. The ERK inhibitor U0126 or siRNA-mediated knockdown of ERK had an enhanced effect on Rh3’s ability to inhibit lung cancer metastasis. The studies revealed that the inhibitory effect of Rh3 on the metastatic ability of lung cancer cells may be supported by ERK-related signaling pathways.
Collapse
|
12
|
Zhao X, Yuan Y, wei H, Fei Q, Luan Z, Wang X, Xu Y, Lu J. Identification and Characterization of Higenamine Metabolites in Human Urine by Quadrupole-Orbitrap LC–MS/MS for Doping Control. J Pharm Biomed Anal 2022; 214:114732. [DOI: 10.1016/j.jpba.2022.114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
|
13
|
Wang B, Shi C, Feng L, Pan W, Tian XG, Sun CP, Wang C, Ning J, Lv X, Wang Y, Yuan QH, Guan RX, Zhang HL, Ma XC, Ma TH. Potent Inhibition of Human Cytochrome P450 3A4 by Biflavone Components from Ginkgo Biloba and Selaginella Tamariscina. Front Pharmacol 2022; 13:856784. [PMID: 35295338 PMCID: PMC8920304 DOI: 10.3389/fphar.2022.856784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023] Open
Abstract
CYP3A4-mediated Phase I biotransformation is the rate-limiting step of elimination for many commonly used clinically agents. The modulatory effects of herbal medicines on CYP3A4 activity are one of the risk factors affecting the safe use of drug and herbal medicine. In the present study, the inhibitory effects of nearly hundred kinds of herbal medicines against CYP3A4 were evaluated based on a visual high-throughput screening method. Furthermore, biflavone components including bilobetin (7-demethylginkgetin, DGK), ginkgetin (GK), isoginkgetin (IGK), and amentoflavone (AMF) were identified as the main inhibitory components of Ginkgo biloba L. (GB) and Selaginella tamariscina (P. Beauv.) Spring (ST), which displayed very strong inhibitory effects toward CYP3A4. The inhibitory effects of these biflavones on clinical drugs that mainly undergo CYP3A4-dependent metabolism were evaluated. The IC50 of GK toward tamoxifen, gefitinib and ticagrelor were found to be of 0.478 ± 0.003, 0.869 ± 0.001, and 1.61 ± 0.039 μM, respectively. These results suggest the potential pharmacokinetic interactions between the identified biflavones and clinical drugs undergoing CYP3A4-mediated biotransformation. The obtained information is important for guiding the rational use of herbal medicine in combination with synthetic pharmaceuticals.
Collapse
Affiliation(s)
- Bo Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chao Shi
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Lei Feng
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Second Affiliated Hospital, Dalian Medical University, Dalian, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Wei Pan
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiang-Ge Tian
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jing Ning
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Jing Ning, ; Hou-Li Zhang, ; Tong-Hui Ma,
| | - Xia Lv
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yan Wang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qian-Hui Yuan
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Rui-Xuan Guan
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hou-Li Zhang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Jing Ning, ; Hou-Li Zhang, ; Tong-Hui Ma,
| | - Xiao-Chi Ma
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tong-Hui Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jing Ning, ; Hou-Li Zhang, ; Tong-Hui Ma,
| |
Collapse
|
14
|
Cui Y, Shan Z, Hou L, Wang Q, Loor JJ, Xu C. Effect of Natural Chinese Herbal Supplements (TCMF4) on Lactation Performance and Serum Biomarkers in Peripartal Dairy Cows. Front Vet Sci 2022; 8:801418. [PMID: 35083308 PMCID: PMC8784967 DOI: 10.3389/fvets.2021.801418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
This study examined the effect of mixed medicinal herbs from China in the ground form on milk yield and various blood metabolites before and after parturition in Holstein cows. Crushed Agastache rugosus, Scutellaria barbata, Pericarpium citri reticulate, and Radix glycyrrhizae were used to develop TCMF4. Thirty-two Chinese Holstein cows were randomly divided into a control group or groups receiving 0.1, 0.3, or 0.5 kg TCMF4/cow/d from −7 through 21 d relative to parturition. Blood samples for serum isolation were collected at −7, −1, 1, 7, 14, and 21 d relative to parturition and used to measure glucose, β-hydroxybutyric acid (BHBA), total protein, albumin, globulin, and alkaline phosphatase. Milk production was recorded daily for the first 21 d postpartum, and composition was analyzed at 7, 14, and 21 d. Data were analyzed using a one-way analysis of variance (ANOVA) for multiple comparisons. The average milk production during the first 21-d postpartum was 28.7 ± 6.9, 27.2 ± 7.1, 31.2 ± 6.8, and 38.5 ± 6.1 kg/d for control group and groups receiving 0.1, 0.3, or 0.5 kg TCMF4. Thus, average daily milk production increased between 9 to 34% by supplementation with TCMF4 compared with the control group. Compared with the control group, in the middle dose group, milk concentrations of lactose and total protein decreased by 21 and 19%, respectively, at d 7 around parturition, while total solids increased by 23% at d 21 in the high-dose group. Furthermore, compared with the control group, serum BHBA decreased by 50 and 20% at d −1 and 21 around parturition in the high-dose group. Overall, TCMF4 supplementation improved dry matter intake (DMI) and milk production of dairy cows during the periparturient period without adverse effects on liver function, and plasma BHBA concentrations of dairy cows tended to decrease when dietary TCMF4 increased, which suggested that TCMF4 might be used as potential additives in dairy cows to improve production performance.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhuorui Shan
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lintong Hou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiuju Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Chuang Xu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Chuang Xu
| |
Collapse
|
15
|
Li T, Hu B, Ye L, Feng Z, Huang L, Guo C, Wu X, Tan W, Wang Y, Yang G, Guo C. Clinically Significant Cytochrome P450-Mediated Drug-Drug Interactions in Children Admitted to Intensive Care Units. Int J Clin Pract 2022; 2022:2786914. [PMID: 36081809 PMCID: PMC9427250 DOI: 10.1155/2022/2786914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Children admitted to intensive care units (ICUs) often require multiple medications due to the complexity and severity of their disease, which put them at an increased risk for drug interactions. This study examined cytochrome P450-mediated drug-drug interactions (DDIs) based on the Pediatric Intensive Care (PIC) database, with the aim of analyzing the incidence of clinically significant potential drug-drug interactions (pDDIs) and exploring the occurrence of actual adverse reactions. METHODS The Lexicomp database was used to screen cytochrome P450-mediated DDI pairings with good levels of reliability and clear clinical phenotypes. Patients exposed to the above drug pairs during the same period were screened in the PIC database. The incidence of clinically significant pDDIs was calculated, and the occurrence of adverse reactions was explored based on laboratory measurements. RESULTS In total, 84 (1.21%) of 6920 children who used two or more drugs were exposed to at least one clinically significant pDDI. All pDDIs were based on CYP3A4, with nifedipine + voriconazole (39.60%) being the most common drug pair, and the most frequent being the J02 class of drugs. Based on laboratory measurements, 15 adverse reactions were identified in 12 patients. CONCLUSIONS Clinically significant cytochrome P450-mediated pDDIs existed in the children admitted to ICUs, and some of the pDDIs led to adverse clinical outcomes. The use of clinical decision support systems can guide clinical medication use, and clinical monitoring of patients' needs has to be enhanced.
Collapse
Affiliation(s)
- Tong Li
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Biwen Hu
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Ling Ye
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zeying Feng
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Longjian Huang
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Chengjun Guo
- School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiong Wu
- Easier Data Technologies Co., Ltd, Changsha 410016, China
| | - Wei Tan
- Department of Neonatology, Maternal& Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 53003, Guangxi Zhuang Autonomous Region, China
| | - Yi Wang
- Easier Data Technologies Co., Ltd, Changsha 410016, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Chengxian Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
16
|
Extract from Dioscorea bulbifera L. rhizomes aggravate pirarubicin-induced cardiotoxicity by inhibiting the expression of P-glycoprotein and multidrug resistance-associated protein 2 in the mouse liver. Sci Rep 2021; 11:19720. [PMID: 34611244 PMCID: PMC8492811 DOI: 10.1038/s41598-021-99264-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022] Open
Abstract
Chinese herbal medicine is widely used because it has a good safety profile and few side effects. However, the risk of adverse drug reactions caused by herb-drug interactions (HDIs) is often overlooked. Therefore, the task of identifying possible HDIs and elucidating their mechanisms is of great significance for the prevention and treatment of HDI-related adverse reactions. Since extract from Dioscorea bulbifera L. rhizomes (DB) can cause various degrees of liver damage, it is speculated that HDIs may occur between DB extract and chemicals metabolized or excreted by the liver. Our study revealed that the cardiotoxicity of pirarubicin (THP) was increased by co-administration of DB, and the expression of P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2) in the liver was inhibited by DB extract, which led to the accumulation of THP in heart tissue. In conclusion, there are risks of the co-administration of DB extract and THP. The mechanism of HDIs can be better revealed by targeting the efflux transporters.
Collapse
|
17
|
Liang WF, Gong YX, Li HF, Sun FL, Li WL, Chen DQ, Xie DP, Ren CX, Guo XY, Wang ZY, Kwon T, Sun HN. Curcumin Activates ROS Signaling to Promote Pyroptosis in Hepatocellular Carcinoma HepG2 Cells. In Vivo 2021; 35:249-257. [PMID: 33402471 DOI: 10.21873/invivo.12253] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Curcumin is a polyphenol that exerts a variety of pharmacological activities and plays an anti-cancer role in many cancer cells. It was recently reported that gasdermin E (GSDME) is involved in the progression of pyroptosis. MATERIALS AND METHODS HepG2 cells were treated with various concentrations of curcumin and cell viability was examined using MTT assay, apoptosis was analysed using flow cytometry, reactive oxygen species (ROS) levels using dihydroethidium, LDH release using an LDH cytotoxicity assay, and protein expression using western blot. RESULTS Curcumin increased the expression of the GSDME N-terminus and proteins involved in pyrolysis, promoted HspG2 cell pyrolysis and increased intracellular ROS levels. Moreover, inhibition of the production of intracellular ROS with n-acetylcysteine (NAC) improved the degree of apoptosis and pyrolysis induced by curcumin. CONCLUSION Curcumin induces HspG2 cell death by increasing apoptosis and pyroptosis, and ROS play a key role in this process. This study improves our understanding of the potential anti-cancer properties of curcumin in liver cancer.
Collapse
Affiliation(s)
- Wan-Feng Liang
- Department of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, P.R. China
| | - Yi-Xi Gong
- Department of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, P.R. China
| | - Hai-Feng Li
- Department of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, P.R. China
| | - Fu-Liang Sun
- Department of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, P.R. China
| | - Wei-Long Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Dong-Qin Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Dan-Ping Xie
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Chen-Xi Ren
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Xiao-Yu Guo
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Zi-Yi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China;
| |
Collapse
|
18
|
A Network Pharmacological Approach to Reveal the Pharmacological Targets and Its Associated Biological Mechanisms of Prunetin-5-O-Glucoside against Gastric Cancer. Cancers (Basel) 2021; 13:cancers13081918. [PMID: 33921173 PMCID: PMC8071515 DOI: 10.3390/cancers13081918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Identification of pharmacological targets in cancer provides a major walkthrough toward treatment strategies. The present research adopted a network pharmacology approach utilizing a flavonoid glucoside prunetin-5-O-glucoside (PG) compound against gastric cancer. The correlative targets were analyzed using Swiss target prediction and DiGeNET databases. Functional enrichment and significant pathways enriched were predicted for the targets to associate its biological mechanisms with cancer. Protein interaction network and cluster analysis was performed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Our analysis revealed three core targets among the clustered modules that plays a crucial role in relation with cancer. With this information, the core targets were examined for the binding affinity with PG using molecular docking analysis and validations on the protein targets was performed using western blot analysis and Human Protein Atlas. Our analysis through comprehensive network pharmacology resulted in the prediction of three core targets of PG that can be significant biomarkers against gastric cancer. Abstract Gastric cancer (GC) is an aggressive malignancy with increased mortality rate and low treatment options. Increasing evidence suggests that network pharmacology will be a novel method for identifying the systemic mechanism of therapeutic compounds in diseases like cancer. The current study aimed to use a network pharmacology approach to establish the predictive targets of prunetin-5-O-glucoside (PG) against gastric cancer and elucidate its biological mechanisms. Primarily, genes associated with the pathogenesis of GC was identified from the DiGeNET database and targets of PG was obtained from the Swiss target prediction database. In total, 65 correlative hits were identified as anti-gastric cancer targets of PG. Functional enrichment and pathway analysis revealed significant biological mechanisms of the targets. Interaction of protein network and cluster analysis using STRING resulted in three crucial interacting hub targets namely, HSP90AA1, CDK2, and MMP1. Additionally, the in vitro cytotoxic potential of PG was assessed on three gastric cancer cells (AGS, MKN-28, and SNU-484). Furthermore, the crucial targets were validated using molecular docking, followed by their expressions being evaluated by western blot and Human Protein Atlas. The findings indicate that the pharmacological action of PG against GC might be associated with the regulation of three core targets: HSP90AA1, CDK2, and MMP1. Thus, the network pharmacology undertaken in the current study established the core active targets of PG, which may be extensively applied with further validations for treatment in GC.
Collapse
|
19
|
de Souza ID, Melo ESP, Nascimento VA, Pereira HS, Silva KRN, Espindola PR, Tschinkel PFS, Ramos EM, Reis FJM, Ramos IB, Paula FG, Oliveira KRW, Lima CD, Nunes ÂA, do Nascimento VA. Potential Health Risks of Macro- and Microelements in Commercial Medicinal Plants Used to Treatment of Diabetes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6678931. [PMID: 33869633 PMCID: PMC8032537 DOI: 10.1155/2021/6678931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Information on the content of medicinal plants used in the treatment of diabetes is scarce in the literature. The objectives of this study were to determine the levels of macroelements and microelements in three different medicinal plant species including the dry samples and teas from Bauhinia forficata, Eleusine Indica, and Orthosiphon stamineus and assess the human health risks of ingestion of the tea. The content of the dry samples and teas was obtained using the technique of inductively coupled plasma optical emission spectrometry (ICP OES) after microwave digestion procedure. The hazard quotient (HQ) method was used to access the human health risks posed by heavy metal through tea consumption. The results revealed the presence of K, Mg, Na, P, Al, Fe, Zn, Mn, Cu, Ni, and Se in dry samples and plant teas. The dry plants have high concentration of K and P. All dry plants contain Mg, Na, Al, Fe, Mn, Ni, Zn, and Cu above the limit permissible level set by the World Health Organization (WHO). All the hazard index (HI) values in plant teas were found to be within safe limits for human consumption (HI < 1). The plants may have possible action benefits when used in popular medicine. However, the ingestion through capsules prepared by enclosing a plant powder or teas can be harmful to the health of diabetics. The prescription of this plant for the treatment of diabetes should be treated with caution.
Collapse
Affiliation(s)
- Igor D de Souza
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Elaine S P Melo
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Valdir Aragão Nascimento
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Hugo S Pereira
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Kassia R N Silva
- Institute of Chemistry of the Federal University of Mato Grosso do Sul, Brazil
| | - Paulo R Espindola
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Paula F S Tschinkel
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Eliza M Ramos
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Francisco J M Reis
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Iara B Ramos
- Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Fernanda G Paula
- Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Karla R W Oliveira
- Institute of Chemistry of the Federal University of Mato Grosso do Sul, Brazil
| | - Cleberson D Lima
- Centro de Ortopedia e Traumatologia e Medicina do Esporte, Campo Grande, MS, 79021-250, Brazil
| | - Ângela A Nunes
- Postdoctoral Student in Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS 79117-900, Brazil
| | - Valter Aragão do Nascimento
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| |
Collapse
|
20
|
Karin KN, Poklis JL, Peace MR. Evaluation of extraction methods for pharmacologically active compounds from anticonvulsant traditional Chinese medicines: Gou Teng, Tian Ma, Jiang Can using DART-TOF-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:884-893. [PMID: 33459310 PMCID: PMC8323813 DOI: 10.1039/d0ay02015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Chinese herbal medicines (CHMs) are classified as dietary supplements. Interactions with western medications, the presence of contaminants or adulterants, or a mis-labeled or mis-used CHM may lead to toxicological emergencies that can be undetected in death investigations. Laboratories must be able to efficiently analyze cases in which CHMs are suspected. Five extractions were evaluated for their ability to extract pharmacologically active compounds from herbal matrices: water, ethanol, microwave-assisted (MAE), ethanol : chloroform, and acid-wash. Anticonvulsive and other pharmacologically active compounds in Gou Teng, Tian Ma, and Jiang Can purchased from Beijing, China and New York were compared in the powder and the extracts using Direct Analysis in Real Time-Mass Spectrometry (DART-MS). Approximately 0.25 g of macerated herb was used per extraction. The water and ethanol extractions were simple liquid extractions. For the MAE, powdered herb was soaked in 65% ethanol, microwaved, and concentrated. The ethanol : chloroform extraction involved soaking in 1 : 1 ethanol : chloroform, sonication, and concentration. In the acid-wash extraction, powdered herb was soaked in acetic acid, followed by addition of sodium hydroxide, hexane extraction, and reconstitution in ethyl acetate. The powdered herbs and extracts were analyzed using a Jeol JMS T100LC AccuTOF DART-MS in positive and negative mode. Of the evaluated methods, no single extraction worked for all active compounds from the three CHMs. The MAE extract contained the most pharmacologically active compounds, while the acid-wash contained the least for the three products. Gou Teng purchased from different sources did exhibit a difference in pharmacologically active compounds, potentially from different species.
Collapse
Affiliation(s)
- Kimberly N. Karin
- Department of Forensic Science, Virginia Commonwealth University RichmondVAUSA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University RichmondVAUSA
| | - Michelle R. Peace
- Department of Forensic Science, Virginia Commonwealth University RichmondVAUSA
| |
Collapse
|
21
|
Impacts of Drug Interactions on Pharmacokinetics and the Brain Transporters: A Recent Review of Natural Compound-Drug Interactions in Brain Disorders. Int J Mol Sci 2021; 22:ijms22041809. [PMID: 33670407 PMCID: PMC7917745 DOI: 10.3390/ijms22041809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Natural compounds such as herbal medicines and/or phyto-compounds from foods, have frequently been used to exert synergistic therapeutic effects with anti-brain disorder drugs, supplement the effects of nutrients, and boost the immune system. However, co-administration of natural compounds with the drugs can cause synergistic toxicity or impeditive drug interactions due to changes in pharmacokinetic properties (e.g., absorption, metabolism, and excretion) and various drug transporters, particularly brain transporters. In this review, natural compound–drug interactions (NDIs), which can occur during the treatment of brain disorders, are emphasized from the perspective of pharmacokinetics and cellular transport. In addition, the challenges emanating from NDIs and recent approaches are discussed.
Collapse
|
22
|
Abstract
Ginseng is one of the oldest documented herbs still in use today. It is known as a panacea for many disease states and for the enhancement of wellness affecting most body systems. Very few side effects are experienced, but there are considerations with its use. Three major types of ginseng are described. Asian ginseng is more potent than American ginseng; however, most supplements come from American and Asian types of ginseng. Purchases should be made from reputable sources owing to the lack of standardization of the production of herbal supplements.
Collapse
Affiliation(s)
- Amanda J Flagg
- Middle Tennessee State University (MTSU) School of Nursing, MTSU Box 81, Murfreesboro, TN 37132, USA.
| |
Collapse
|
23
|
Vitis labrusca Extract (HP01) Improves Blood Circulation and Lipid Metabolism in Hyperlipidemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:6180310. [PMID: 33424986 PMCID: PMC7781693 DOI: 10.1155/2020/6180310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Excessive intake of high-lipid foods and lifestyle changes can easily cause hyperlipidemia. Hyperlipidemia is clinically considered a major risk factor for cardiovascular disease, which is the second leading cause of death worldwide. In this study, the effects of a Vitis labrusca extract (HP01) on coagulation, platelet aggregation, and lipid metabolism were investigated in hyperlipidemic rats. A rat model of high-fat diet- (HFD-) induced hyperlipidemia was used. Hemostatic parameters and lipid levels were investigated after HP01 treatment of hyperlipidemic rats. Different doses of HP01 (200 mg/kg/day and 400 mg/kg/day, p.o.) were administered for 3 weeks, and prothrombin time (PT), activated partial thromboplastin time (aPTT), and platelet aggregation and bleed time (BT) were determined. The levels of thromboxane B(2) (TXB(2)) and serotonin were measured using enzyme-linked immunosorbent assay kits. Simultaneously, hepatic function and blood fat indexes, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), malondialdehyde (MDA), and glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were also measured. In comparison with the data obtained for rats in the untreated HFD group, HP01 (200 mg/kg) treatment prolonged PT but did not affect aPTT. HP01 treatment did not alter plasma TXB(2), PGI2, or serotonin levels. However, HP01 showed some effects in improving liver function by reducing the levels of hepatic lipids. ALT, MDA, and hepatic TG levels significantly decreased, whereas GSH, GPx, CAT, and SOD levels significantly increased. These results confirm the HP01 extract will improve thromboplastic and the liver metabolic disorders in hyperlipidemia by oxidative stress response.
Collapse
|
24
|
Cao W, Yang Q, Zhang W, Xu Y, Wang S, Wu Y, Zhao Y, Guo Z, Li R, Gao R. Drug-drug interactions between salvianolate injection and aspirin based on their metabolic enzymes. Biomed Pharmacother 2021; 135:111203. [PMID: 33401223 DOI: 10.1016/j.biopha.2020.111203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND It is unclear whether the combination of traditional Chinese medicine and Western medicine leads to interactions in pharmacokinetics (PKs) and pharmacodynamics (PDs). In this study, the influence of salvianolate and aspirin on metabolic enzymes, and the relationship between the blood concentration and pharmacodynamic indexes, were determined. METHOD In this, randomized, parallel-grouped, single-center clinical trial, 18 patients with coronary heart disease were randomly allocated into three groups: aspirin (AP) group, salvianolate (SV) group, and combination (A + S) group. All treatment courses lasted for 10 days, and blood samples were acquired before and after administration at different timepoints. The expression of catechol-O-methyltransferase (COMT), CD62p, procaspase-activating compound 1 (PAC-1), P2Y12, phosphodiesterase, and mitogen-activated protein kinase 8 (MAPK8) were compared with variance analysis The blood concentrations were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS Sixteen subjects completed the study. No significant difference in COMT was found among groups, although there was a decrease in the SV group. The PK results indicated that the absorption time of salicylic acid was shortened and the AUC0-∞ decreased and the elimination time of salvianolic acid B was prolonged and the AUC0-∞ decreased. The PD results declined after administration. A significant difference was found in MAPK8, CD62p, and P2Y12 expression. Compared with the SV group, a significant difference in P2Y12 in the A + S group was found. CONCLUSION A pharmacokinetic drug-drug interaction was found in the aspirin and salvianolate combination. Pharmacodynamically, there was no difference between the A + S and AP groups. However, P2Y12 expression in the combination group was superior to that in the SV group. TRIAL REGISTRATION NUMBERS The trial was registered on October 9, 2017, ClinicalTrials.gov, NCT03306550. https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S0007D8H&selectaction=Edit&uid=U0003QY8&ts=2&cx=oiuc9g.
Collapse
Affiliation(s)
- Weiyi Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wantong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yonggang Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shuge Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yi Wu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yang Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhongning Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Rui Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Rui Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| |
Collapse
|
25
|
Wang S, Li W, Yang J, Yang Z, Yang C, Jin H. Research Progress of Herbal Medicines on Drug Metabolizing Enzymes: Consideration Based on Toxicology. Curr Drug Metab 2020; 21:913-927. [PMID: 32819254 DOI: 10.2174/1389200221999200819144204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022]
Abstract
The clinical application of herbal medicines is increasing, but there is still a lack of comprehensive safety data and in-depth research into mechanisms of action. The composition of herbal medicines is complex, with each herb containing a variety of chemical components. Each of these components may affect the activity of metabolizing enzymes, which may lead to herb-drug interactions. It has been reported that the combined use of herbs and drugs can produce some unexpected interactions. Therefore, this study reviews the progress of research on safety issues caused by the effects of herbs on metabolizing enzymes with reference to six categories of drugs, including antithrombotic drugs, non-steroidal anti-inflammatory drugs, anti-diabetic drugs, statins lipid-lowering drugs, immunosuppressants, and antineoplastic drugs. Understanding the effects of herbs on the activity of metabolizing enzymes could help avoid the toxicity and adverse drug reactions resulting from the co-administration of herbs and drugs, and help doctors to reduce the risk of prescription incompatibility.
Collapse
Affiliation(s)
- Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Zengyan Yang
- Guangxi International Zhuang Medicine Hospital, Nanning, 530001, China
| | - Cuiping Yang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
26
|
Li M, Wang C. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the fruit of Tetradium ruticarpum: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113231. [PMID: 32758577 DOI: 10.1016/j.jep.2020.113231] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Tetradium ruticarpum (FTR) known as Tetradii fructus or Evodiae fructus (Wu-Zhu-Yu in Chinese) is a versatile herbal medicine which has been prescribed in Chinese herbal formulas and recognized in Japanese Kampo. FTR has been clinically used to treat various diseases such as headache, vomit, diarrhea, abdominal pain, dysmenorrhea and pelvic inflammation for thousands of years. AIM OF THE REVIEW The present paper aimed to provide comprehensive information on the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, drug interaction and toxicology of FTR in order to build up a foundation on the mechanism of ethnopharmacological uses as well as to explore the trends and perspectives for further studies. MATERIALS AND METHODS This review collected the literatures published prior to July 2020 on the phytochemistry, pharmacology, pharmacokinetics and toxicity of FTR. All relevant information on FTR was gathered from worldwide accepted scientific search engines and databases, including Web of Science, PubMed, Elsevier, ACS, ResearchGate, Google Scholar, and Chinese National Knowledge Infrastructure (CNKI). Information was also obtained from local books, PhD. and MSc. Dissertations as well as from Pharmacopeias. RESULTS FTR has been used as an herbal medicine for centuries in East Asia. A total of 165 chemical compounds have been isolated so far and the main chemical compounds of FTR include alkaloids, terpenoids, flavonoids, phenolic acids, steroids, and phenylpropanoids. Crude extracts, processed products (medicinal slices) and pure components of FTR exhibit a wide range of pharmacological activities such as antitumor, anti-inflammatory, antibacterial, anti-obesity, antioxidant, insecticide, regulating central nervous system (CNS) homeostasis, cardiovascular protection. Furthermore, bioactive components isolated from FTR can induce drug interaction and hepatic injury. CONCLUSIONS Therapeutic potential of FTR has been demonstrated with the pharmacological effects on cancer, inflammation, cardiovascular diseases, CNS, bacterial infection and obesity. Pharmacological and pharmacokinetic studies of FTR mostly focus on its main active alkaloids. Further in-depth studies on combined medication and processing approaches mechanisms, pharmacological and toxic effects not limited to the alkaloids, and toxic components of FTR should be designed.
Collapse
Affiliation(s)
- Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
27
|
Yokotani K, Yamazaki Y, Shimura F, Umegaki K. Comparison of CYP Induction by Coleus forskohlii Extract and Recovery in the Small Intestine and Liver of Mice. Biol Pharm Bull 2020; 43:116-123. [PMID: 31902916 DOI: 10.1248/bpb.b19-00632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined CYP induction and recovery at various doses of Coleus forskohlii extract (CFE) to assess potential drug interactions by a mechanism involving intestinal CYP. Mice were administered diets with various doses of CFE up to 0.5% (equivalent to 700-800 mg/kg body weight) for 2 weeks, then CFE was withdrawn for 3 d. Changes in CYP activities and mRNA expression in the small intestine and liver were then evaluated. CFE induced CYP in the small intestine at a higher dose compared to the liver; CYP3A was induced at 0.5% and 0.005% CFE in the small intestine and liver, respectively. There was no sex difference in CFE dose for CYP induction. CYP induction quickly reverted after withdrawal of CFE, especially for CYP3A, in the small intestine; whereas, a gradual recovery was observed in the liver. In conclusion, CFE induced CYP in the small intestine and liver; however, a higher dose of CFE was needed for the small intestine. Moreover, the induction was soon recovered, suggesting actual interactions of CFE with prescription drugs are unlikely to occur through CYP in the small intestine.
Collapse
Affiliation(s)
- Kaori Yokotani
- Department of Food Safety and Management, Showa Women's University
| | | | - Fumio Shimura
- Graduate Schoool of Human Life Sciences, Jumonji University
| | - Keizo Umegaki
- Department of Food Safety and Management, Showa Women's University
| |
Collapse
|
28
|
Don CG, Smieško M. In Silico Pharmacogenetics CYP2D6 Study Focused on the Pharmacovigilance of Herbal Antidepressants. Front Pharmacol 2020; 11:683. [PMID: 32477141 PMCID: PMC7237870 DOI: 10.3389/fphar.2020.00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/27/2020] [Indexed: 01/27/2023] Open
Abstract
The annual increase in depression worldwide together with an upward trend in the use of alternative medicine as treatment asks for developing reliable safety profiles of herbal based medicine. A considerable risk on adverse reactions exists when herbal remedies are combined with prescription medication. Around 25% of the drugs, including many antidepressants, depend on the activity of CYP2D6 for their metabolism and corresponding efficacy. Therefore, probing CYP2D6 inhibition by the active substances in herbal based medicine within the wild-type enzyme and clinically relevant allelic variants is crucial to avoid toxicity issues. In this in silico study several compounds with herbal origin suggested to have antidepressant activity were analyzed on their CYP2D6 wild-type and CYP2D6*53 inhibition potential using molecular docking. In addition, several pharmacokinetic properties were evaluated to assess their probability to cross the blood brain barrier and subsequently reach sufficient brain bioavailability for the modulation of central nervous system targets as well as characteristics which may hint toward potential safety issues.
Collapse
|
29
|
Zhang D, Lv J, Zhang B, Zhang X, Jiang H, Lin Z. The characteristics and regularities of cardiac adverse drug reactions induced by Chinese materia medica: A bibliometric research and association rules analysis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112582. [PMID: 31972324 DOI: 10.1016/j.jep.2020.112582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese materia medica (CMM) has been widely used as an approach of ethnomedicine worldwide. Recently, there are growing concerns related to the potential cardiotoxicity of herbal medicines but comprehensive studies are limited. METHODS Comprehensive literature retrieval via publicly available electronic databases was performed to identify the case reports that focused on cardiac adverse reactions (ADRs) triggered by oral CMMs. And a bibliometric survey was conducted to analyze the most commonly suspected risk factors in terms of responsible CMMs, susceptible patients and clinical administration of cardiac ADRs. Moreover, the techniques of data mining were utilized to investigate the regularities and association between the ADRs status and major contributory factors. RESULTS The available evidence of current research indicated that many influential factors were strongly associated with cardiac ADRs caused by oral CMMs inevitably, including pediatric patients, poisonous CMMs (especially herbs of Aconitum species), overdose and self-medication. Specifically, the timely and effective resuscitation could attribute their favorable capacity to reduce mortality for cardiac ADRs. Notably, the cardiac ADRs cases had often concomitant the ADRs of the nervous system and digestive system. CONCLUSION The comprehensive features and risk factors of cardiac ADRs induced by oral CMMs can be discovered and elucidated through the approaches of bibliometric research, association rules analysis, and data mining technology, which raise the profile and awareness of the rational applications of CMMs and pharmacovigilance within relevant heart side effects.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| | - Jintao Lv
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China; Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| | - Hao Jiang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| | - Zhijian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| |
Collapse
|
30
|
Gao S, Zhou X, Lang L, Liu H, Li J, Li H, Wei S, Wang D, Xu Z, Cai H, Zhao Y, Zou W. Simultaneous Determination of Schisandrin and Promethazine with Its Metabolite in Rat Plasma by HPLC-MS/MS and Its Application to a Pharmacokinetic Study. Int J Anal Chem 2019; 2019:3497045. [PMID: 31885590 PMCID: PMC6925819 DOI: 10.1155/2019/3497045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
This study aimed to develop a selective, simple, and sensitive HPLC-MS/MS method for the simultaneous determination of schisandrin and promethazine (PMZ) with its metabolite in rat plasma, which was further used for a pharmacokinetic herb-drug interaction study. HPLC-MS/MS analyses were performed on an Agilent Technologies 1290 LC and a 6410 triple quadrupole mass spectrometer. The following parameters, the lower limit of quantification (LLOQ), calibration curve, accuracy, precision, stability, matrix effect, and recovery, were validated. The linear range of the developed method for PMZ, its metabolite promethazine sulfoxide (PMZSO), and schisandrin in rat plasma was 0.5-200 ng/mL (R 2 > 0.995), with an LLOQ of 0.5 ng/mL, which completely met the determination requirements of biosamples. The intra- and interday precision (RSD, %) was below 13.31% (below 16.67% for the LLOQ) in various plasma, whose accuracy (bias, %) was from -8.52% to 11.40%, which were both within an acceptable range. This method was successfully applied to a pharmacokinetic herb-drug interaction study after oral administration of PMZ with or without S. chinensis water extract. The results demonstrated that coadministration with the S. chinensis water extract might affect the pharmacokinetic behaviors of PMZ. In turn, when taken together with PMZ, the pharmacokinetic parameters of schisandrin, the main active component of S. chinensis, were also affected. The method established in the current study was selective, simple, sensitive, and widely available with good linearity, high accuracy and precision, and a stable sample preparation process. Moreover, this analytical method provides a significant approach for the investigation of herb-drug interaction between S. chinensis and PMZ. The potential pharmacokinetic herb-drug interaction of PMZ- and schisandrin-containing preparations should be noted.
Collapse
Affiliation(s)
- Sijia Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Liwei Lang
- The Center of Clinical Research, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Honghong Liu
- Department of Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Jianyu Li
- Department of Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Dan Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Zhuo Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Huadan Cai
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
31
|
Wu CS, Chen YH, Chen CL, Chien SK, Syifa N, Hung YC, Cheng KJ, Hu SC, Lo PT, Lin SY, Wu TH. Constructing a bilingual website with validated database for Herb and Western medicine interactions using Ginseng, Ginkgo and Dong Quai as examples. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:335. [PMID: 31775730 PMCID: PMC6881993 DOI: 10.1186/s12906-019-2731-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022]
Abstract
Background Concerns have been raised regarding the efficacy and safety resulting from the potential interactions of herbs with Western medications due to the use of both herbs and Western medicine by the general public. Information obtained from the web must be critically evaluated prior to its use in making decisions. Description This study aimed to construct an herb-drug interaction (HDI) website (https://drug-herb-interaction.netlify.com) with a critically reviewed database. Node.js was used to store the database by running JavaScript. Vue.js is a front-end framework used for web interface development. A total of 135 sets of information related to the interactions of ginseng, ginkgo and dong quai with Western medicine from the literature identified in Medline were collected, followed by critical reviews to prepare nineteen items of information for each HDI monograph. A total of 80 sets of validated HDIs met all criteria and were further assessed at the individual reliability level (likely, possible, and unevaluable) and labeled with the “interaction” item. This query system of the website can be operated in both the Chinese and English languages to obtain all monographs on HDIs in the database, including bilingual interaction data. The database of HDI monographs can be updated by simply uploading a new version of the information Excel file. The designed “smart search” module, in addition to the “single search”, is convenient for requesting multiple searches. Among the “likely” interactions (n = 26), 50% show negative HDIs. Ten of these can increase the effect of the Western drug, and the others (n = 3) imply that the HDI can be beneficial. Conclusions The current study provides a website platform and 80 sets of validated bilingual HDIs involving ginseng, ginkgo and dong quai in an online database. A search of HDI monographs related to these three herbs can be performed with this bilingual, easy-to-use query website, which is feasible for professionals and the general public. The identified reliability level for each HDI may assist readers’ decisions regarding whether taking Western medications concomitant with one of three herbal medicinal foods is safe or whether caution is required due to potentially serious outcomes.
Collapse
|
32
|
Dai L, Zhong LLD, Ji G. Irritable bowel syndrome and functional constipation management with integrative medicine: A systematic review. World J Clin Cases 2019. [DOI: 10.12998/wjcc.v7.i21.3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
33
|
Dai L, Zhong LLD, Ji G. Irritable bowel syndrome and functional constipation management with integrative medicine: A systematic review. World J Clin Cases 2019; 7:3486-3504. [PMID: 31750331 PMCID: PMC6854423 DOI: 10.12998/wjcc.v7.i21.3486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/05/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) and functional constipation (FC) are two commonly encountered functional gastrointestinal disorders in clinical practice and are usually managed with Western medicines in cooperation with traditional Chinese medicine (TCM) interventions. Although clinical practice guidelines (CPGs) have been developed to assist clinicians with their decisions, there are still gaps in management with regard to integrative medicine (IM) recommendations.
AIM To comprehensively review the currently available CPGs and to provide a reference for addressing the gaps in IBS and FC management.
METHODS We searched mainstream English and Chinese databases and collected data from January 1990 to January 2019. The search was additionally enriched by manual searches and the use of publicly available resources. Based on the development method, the guidelines were classified into evidence-based (EB) guidelines, consensus-based (CB) guidelines, and consensus-based guidelines with no comprehensive consideration of the EB (CB-EB) guidelines. With regard to the recommendations, the strength of the interventions was uniformly converted to a 4-point grading scale.
RESULTS Thirty CPGs met the inclusion criteria and were captured as data extraction sources. Most Western medicine (WM) CPGs were developed as EB guidelines. All TCM CPGs and most IM CPGs were identified as CB guidelines. Only the 2011 IBS and IM CPG was a CB-EB set of guidelines. Antispasmodics and peppermint oil for pain, loperamide for diarrhea, and linaclotide for constipation were relatively common in the treatment of IBS. Psyllium bulking agents, polyethylene glycol and lactulose as osmotic laxatives, bisacodyl and sodium picosulfate as stimulant laxatives, lubiprostone and linaclotide as prosecretory agents, and prucalopride were strongly recommended or recommended in FC. TCM interventions were suggested based on pattern differentiation, while the recommendation level was considered to be weak or insufficient.
CONCLUSION WM CPGs generally provide a comprehensive management algorithm, although there are still some gaps that could be addressed with TCM. Specific high-quality trials are needed to enrich the evidence.
Collapse
Affiliation(s)
- Liang Dai
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Linda LD Zhong
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
34
|
Effect of Naoxintong Capsules on the Activities of CYP450 and Metabolism of Metoprolol Tartrate in Rats Evaluated by Probe Cocktail and Pharmacokinetic Methods. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5242605. [PMID: 31662775 PMCID: PMC6778862 DOI: 10.1155/2019/5242605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022]
Abstract
Naoxintong capsule (NXT), a prescribed Chinese medicine, has been used clinically for more than 20 years and is widely received by patients. We determined five probe drugs, namely, omeprazole (CYP2C19), midazolam (CYP3A4), phenacetin (CYP1A2), tolbutamide (CYP2C9), and dextromethorphan (CYP2D6) to study the potential influences of NXT on the activities of CYP enzymes and assessed the pharmacokinetics effect of NXT on metoprolol tartrate in rat plasma. The study showed that AUC(0–24) and AUC(0–∞) of midazolam (CYP3A4) in NXT coadministration group (283.7 ± 65.2 h·ng·mL−1 and 292.0 ± 75.1 h·ng·mL−1 in group B; 295.7 ± 62.7 h·ng·mL−1 and 299.5 ± 60.0 h·ng·mL−1 in group C) were significantly decreased as compared to another group (416.8 ± 82.3 h·ng·mL−1 and 424.9 ± 77.9 h·ng·mL−1 in group A), while that of dextromethorphan (CYP2D6) showed an opposite tendency (540.7 ± 119.7 h·ng·mL−1 and 595.3 ± 122.2 h·ng·mL−1 in group A, 760.6 ± 184.9 h·ng·mL−1 and 788.7 ± 211.0 h·ng·mL−1 in group B, and 734.3 ± 118.5 h·ng·mL−1 and 757.2 ± 105.4 h·ng·mL−1 in group C). Moreover, NXT preadministration can enhance the metabolism of metoprolol tartrate and reduce the metabolism of O-demethylmetoprolol. The results indicated that NXT had potential effects in inducing CYP3A4 and inhibiting CYP2D6 in the metabolism of metoprolol tartrate. It suggests that patients who coadministered NXT and metoprolol tartrate should be advised of potential herb-drug interactions (HDIs) to reduce therapeutic failure or accelerated toxicity of conventional drug treatment.
Collapse
|
35
|
Li J, Guo C, Lu X, Tan W. Anti-colorectal cancer biotargets and biological mechanisms of puerarin: Study of molecular networks. Eur J Pharmacol 2019; 858:172483. [DOI: 10.1016/j.ejphar.2019.172483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
|
36
|
Guilmetdinov EF, Al-Khalaf M, Bhatt J, Parsons R, Sim TF. Complementary medicines use amongst elective surgery patients at a public tertiary hospital: A prospective observational cohort study in Australia. Complement Ther Clin Pract 2019; 35:284-289. [PMID: 31003671 DOI: 10.1016/j.ctcp.2019.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND and purpose. Complementary medicines (CM) use may result in untoward effects perioperatively. The study purpose is to identify CM pattern of use amongst elective surgery patients, and improve effectiveness of information collection relating to CM use. MATERIALS AND METHODS This is a prospective observational cohort study. CM questionnaire was administered alongside standard hospital forms at pre-admission clinic over eight weeks. RESULTS 992 patients attended pre-admission clinic; 317 patients were included in analysis. Introduction of CM questionnaire increased disclosure rate by 11.7% giving a total prevalence of 44.2%. CM use was significantly higher in females and in older patients. Top CM reported were vitamin D (12%) and omega-3 (12%). Majority of patients did not plan to withhold CM before surgery, and were not concerned about perioperative risks. CONCLUSION Pre-admission clinics need to encourage CM disclosure. Patient education of potential risks and greater engagement of clinicians in patient assessment is required.
Collapse
Affiliation(s)
| | - Marwah Al-Khalaf
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia.
| | - Jilna Bhatt
- Pharmacy Department, Royal Perth Hospital, Perth, Australia.
| | - Richard Parsons
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia.
| | - Tin Fei Sim
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia.
| |
Collapse
|
37
|
Spanakis M, Sfakianakis S, Sakkalis V, Spanakis EG. PharmActa: Empowering Patients to Avoid Clinical Significant Drug⁻Herb Interactions. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E26. [PMID: 30781500 PMCID: PMC6473432 DOI: 10.3390/medicines6010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022]
Abstract
Herbal medicinal products (HMPs) are the subject of increasing interest regarding their benefits for health. However, a serious concern is the potential appearance of clinically significant drug⁻herb interactions in patients. This work provides an overview of drug⁻herb interactions and an evaluation of their clinical significance. We discuss how personalized health services and mobile health applications can utilize tools that provide essential information to patients to avoid drug⁻HMP interactions. There is a specific mention to PharmActa, a dedicated mobile app for personalized pharmaceutical care with information regarding drug⁻HMPs interactions. Several studies over the years have shown that for some HMPs, the potential to present clinically significant interactions is evident, especially for many of the top selling HMPs. Towards that, PharmActa presents how we can improve the way that information regarding potential drug⁻herb interactions can be disseminated to the public. The utilization of technologies focusing on medical information and context awareness introduce a new era in healthcare. The exploitation of eHealth tools and pervasive mobile monitoring technologies in the case of HMPs will allow the citizens to be informed and avoid potential drug⁻HMPs interactions enhancing the effectiveness and ensuring safety for HMPs.
Collapse
Affiliation(s)
- Marios Spanakis
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, GR-70013 Crete, Greece.
| | - Stelios Sfakianakis
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, GR-70013 Crete, Greece.
| | - Vangelis Sakkalis
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, GR-70013 Crete, Greece.
| | - Emmanouil G Spanakis
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, GR-70013 Crete, Greece.
| |
Collapse
|
38
|
Lee H, Lee S, Kang JW, Lee JD. Liver enzyme abnormalities of inpatients with rheumatic diseases: A 10-year retrospective study in a Korean medicine hospital. Phytother Res 2018; 32:1784-1794. [DOI: 10.1002/ptr.6111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Hyeonhoon Lee
- Department of Acupuncture and Moxibustion Medicine; Kyung Hee University Korean Medicine Hospital; 23 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
- Department of Clinical Korean Medicine, Graduate School; Kyung Hee University; 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Seunghoon Lee
- Department of Acupuncture and Moxibustion Medicine; Kyung Hee University Korean Medicine Hospital; 23 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Jung Won Kang
- Department of Acupuncture and Moxibustion Medicine; Kyung Hee University Korean Medicine Hospital; 23 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
- Department of Clinical Korean Medicine, Graduate School; Kyung Hee University; 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Jae-Dong Lee
- Department of Acupuncture and Moxibustion Medicine; Kyung Hee University Korean Medicine Hospital; 23 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
- Department of Clinical Korean Medicine, Graduate School; Kyung Hee University; 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| |
Collapse
|
39
|
Wu R, Xiao Z, Zhang X, Liu F, Zhou W, Zhang Y. The Cytochrome P450-Mediated Metabolism Alternation of Four Effective Lignans From Schisandra chinensis in Carbon Tetrachloride-Intoxicated Rats and Patients With Advanced Hepatocellular Carcinoma. Front Pharmacol 2018; 9:229. [PMID: 29593545 PMCID: PMC5861220 DOI: 10.3389/fphar.2018.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 12/18/2022] Open
Abstract
It is highly valuable to study the pharmacokinetics of herbal components under the pathological condition of liver dysfunction for safe and rational use of herbal medicines. In this study, the pharmacokinetic profiles of four effective lignans from Schisandra chinensis (SC), schisandrin, schisantherin A, deoxyshisandrin and γ-schisandrin, were investigated in carbon tetrachloride (CCl4)-intoxicated rats. The metabolism of the four lignans was also studied using microsomes from patients with advanced hepatocellular carcinoma. In situ intestinal and hepatic perfusions were conducted to clarify the contributions from impairments of gut and liver on the pharmacokinetics of the four schisandra lignans in CCl4-intoxicated rats. The metabolism in rat and human liver microsomes and transport in Caco-2 monolayer cell model were studied to reveal the key factors for the in vivo disposition of the four lignans. When SC alcoholic extract was orally administrated to CCl4-intoxicated rat for a short term (4 days), the pharmacokinetics of four active SC lignans was significantly changed while its hepatotherapeutic effect was not obviously observed. The plasma concentrations of the four schisandra lignans were dramatically elevated compared with the control. The Cmax, AUC and MRT were all increased or prolonged significantly while parameter CLz/F was obviously reduced in rat pretreated with CCl4. In hepatic perfusion study and liver microsomes incubation, it was found that the hepatic metabolism of the four lignans was markedly decreased mainly due to the activity reduction of multiple CYP450 isoenzymes involved the metabolism, which, eventually, might lead to the alternation of their pharmacokinetic profiles in CCl4-intoxicated rats or patients with advanced hepatocellular carcinoma. The pharmacokinetic studies of SC components in pathological situation of liver dysfunction are expected to provide useful data for rational and safe application of SC preparations in clinic or further pharmacological and toxicological research.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Zhiyong Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaorui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Feng Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenxia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongxiang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|