1
|
Lei J, Tang LL, You HJ. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment. Neurosci Biobehav Rev 2024; 161:105646. [PMID: 38569983 DOI: 10.1016/j.neubiorev.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
In addition to motor symptoms, non-motor manifestations of Parkinson's disease (PD), i.e. pain, depression, sleep disturbance, and autonomic disorders, have received increasing attention. As one of the non-motor symptoms, pain has a high prevalence and is considered an early pre-motor symptom in the development of PD. In relation to pathological pain and its management in PD, particularly in the early stages, it is hypothesized that the loss of dopaminergic neurons causes a functional deficit in supraspinal structures, leading to an imbalance in endogenous descending modulation. Deficits in dopaminergic-dependent pathways also affect non-dopaminergic neurotransmitter systems that contribute to the pathological processing of nociceptive input, the integration, and modulation of pain in PD. This review examines the onset and progression of pain in PD, with a particular focus on alterations in the central modulation of nociception. The discussion highlights the importance of abnormal endogenous descending facilitation and inhibition in PD pain, which may provide potential clues to a better understanding of the nature of pathological pain and its effective clinical management.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China.
| |
Collapse
|
2
|
Chaib S, Vidal B, Bouillot C, Depoortere R, Newman-Tancredi A, Zimmer L, Levigoureux E. Multimodal imaging study of the 5-HT 1A receptor biased agonist, NLX-112, in a model of L-DOPA-induced dyskinesia. Neuroimage Clin 2023; 39:103497. [PMID: 37632990 PMCID: PMC10474496 DOI: 10.1016/j.nicl.2023.103497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
INTRODUCTION The leading treatment for motor signs of Parkinson's disease is L-DOPA, but, upon extended use, it can lead to levodopa-induced dyskinesia (LID). Serotonergic neurons are involved in LID etiology and previous pre-clinical studies have shown that NLX-112, a 5-HT1A biased agonist, has robust antidyskinetic effects. Here, we investigated its effects in hemiparkinsonian (HPK) rats with a unilateral nigrostriatal 6-OHDA lesion. METHODS We compared HPK rats with LID (i.e., sensitized to the dyskinetic effects of chronic L-DOPA) and without LID (HPK-non-LID), using [18F]FDG PET imaging and fMRI functional connectivity following systemic treatment with saline, L-DOPA, NLX-112 or L-DOPA + NLX-112. RESULTS In HPK-non-LID rats, [18F]FDG PET experiments showed that L-DOPA led to hypermetabolism in motor areas (cerebellum, brainstem, and mesencephalic locomotor region) and to hypometabolism in cortical regions. L-DOPA effects were also observed in HPK-LID rats, with the additional emergence of hypermetabolism in raphe nuclei and hypometabolism in hippocampus and striatum. NLX-112 attenuated L-DOPA-induced raphe hypermetabolism and cingulate cortex hypometabolism in HPK-LID rats. Moreover, in fMRI experiments NLX-112 partially corrected the altered neural circuit connectivity profile in HPK-LID rats, through activity in regions rich in 5-HT1A receptors. CONCLUSION This neuroimaging study sheds light for the first time on the brain activation patterns of HPK-LID rats. The 5-HT1A receptor agonist, NLX-112, prevents occurrence of LID, likely by activating pre-synaptic autoreceptors in the raphe nuclei, resulting in a partial restoration of brain metabolic and connectivity profiles. In addition, NLX-112 also rescues L-DOPA-induced deficits in cortical activation, suggesting potential benefit against non-motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Sarah Chaib
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Benjamin Vidal
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Lyon, France; CERMEP-Imaging Platform, Bron, France.
| | - Elise Levigoureux
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
3
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
4
|
Kanel P, Koeppe RA, Kotagal V, Roytman S, Muller ML, Bohnen NI, Albin RL. Regional serotonin terminal density in aging human brain: A [ 11C]DASB PET study. AGING BRAIN 2023; 3:100071. [PMID: 37408789 PMCID: PMC10318302 DOI: 10.1016/j.nbas.2023.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 03/06/2023] Open
Abstract
There are conflicting results regarding regional age-related changes in serotonin terminal density in human brain. Some imaging studies suggest age-related declines in serotoninergic terminals and perikarya. Other human imaging studies and post-mortem biochemical studies suggest stable brain regional serotoninergic terminal densities across the adult lifespan. In this cross-sectional study, we used [11C]3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile positron emission tomography to quantify brain regional serotonin transporter density in 46 normal subjects, ranging from 25 to 84 years of age. Both voxel-based analyses, using sex as a covariate, and volume-of-interest-based analyses were performed. Both analyses revealed age-related declines in [11C]3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile binding in numerous brain regions, including several neocortical regions, striatum, amygdala, thalamus, dorsal raphe, and other subcortical regions. Similar to some other neurotransmitter systems of subcortical origin, we found evidence of age-related declines in regional serotonin terminal density in both cortical and subcortical regions.
Collapse
Affiliation(s)
- Prabesh Kanel
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Robert A. Koeppe
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Vikas Kotagal
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI 48105, United States
- Dept. of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Stiven Roytman
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Martijn L.T.M. Muller
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Nicolaas I. Bohnen
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI 48105, United States
- Dept. of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI 48109, United States
- Dept. of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Roger L. Albin
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI 48105, United States
- Dept. of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
- University of Michigan Morris K. Udall Center for Excellence in Parkinson’s Disease Research, Ann Arbor, MI 48109, United States
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI 48109, United States
| |
Collapse
|
5
|
Ahmad MH, Rizvi MA, Ali M, Mondal AC. Neurobiology of depression in Parkinson's disease: Insights into epidemiology, molecular mechanisms and treatment strategies. Ageing Res Rev 2023; 85:101840. [PMID: 36603690 DOI: 10.1016/j.arr.2022.101840] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is characterized mainly by motor dysfunctions due to the progressive loss of dopaminergic neurons. However, PD patients experience a multitude of debilitating non-motor symptoms, including depression, which may have deleteriously detrimental effects on life. Depression is multifactorial and exhibits a bimodal progression in PD, but its underlying molecular mechanisms are poorly understood. Studies demonstrating the pathophysiology of depression in PD and the specific treatment strategies for depression-like symptoms in PD patients are largely lacking, often underrated, under-recognized and, consequently, inadequately/under-treated. Nevertheless, reports suggest that the incidence of depression is approximately 20-30% of PD patients and may precede the onset of motor symptoms. Diagnosing depression in PD becomes difficult due to the clinical overlap in symptomatology between the two diseases, and the nigrostriatal dysfunction alone is insufficient to explain depressive symptoms in PD. Therefore, the current study provides an overview of the molecular mechanisms underlying the development of depression in PD and new insights into developing current antidepressant strategies to treat depression in PD. This review will identify and understand the molecular pathological mechanisms of depression in PD that will fundamentally help tailoring therapeutic interventions for depressive symptoms in PD.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Müller MLTM, Stephenson DT. Leveraging the regulatory framework to facilitate drug development in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:347-360. [PMID: 36803822 DOI: 10.1016/b978-0-323-85555-6.00015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
There is an exigent need for disease-modifying and symptomatic treatment approaches for Parkinson's disease. A better understanding of Parkinson's disease pathophysiology and new insights in genetics has opened exciting new venues for pharmacological treatment targets. There are, however, many challenges on the path from discovery to drug approval. These challenges revolve around appropriate endpoint selection, the lack of accurate biomarkers, challenges with diagnostic accuracy, and other challenges commonly encountered by drug developers. The regulatory health authorities, however, have provided tools to provide guidance for drug development and to assist with these challenges. The main goal of the Critical Path for Parkinson's Consortium, a nonprofit public-private partnership part of the Critical Path Institute, is to advance these so-called drug development tools for Parkinson's disease trials. The focus of this chapter will be on how the health regulators' tools were successfully leveraged to facilitate drug development in Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Martijn L T M Müller
- Critical Path for Parkinson's Consortium - Critical Path Institute, Tucson, AZ, United States.
| | - Diane T Stephenson
- Critical Path for Parkinson's Consortium - Critical Path Institute, Tucson, AZ, United States
| |
Collapse
|
7
|
Gundlach M, Di Paolo C, Chen Q, Majewski K, Haigis AC, Werner I, Hollert H. Clozapine modulation of zebrafish swimming behavior and gene expression as a case study to investigate effects of atypical drugs on aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152621. [PMID: 34968598 DOI: 10.1016/j.scitotenv.2021.152621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Mental illnesses affect more than 150 million people in Europe and lead to an increasing consumption of neuroactive drugs during the last twenty years. The antipsychotic compound, clozapine, is one of the most used psychotropic drugs worldwide, with potentially negative consequences for the aquatic environment. Hence, the objectives of the study presented here were the quantification of clozapine induced changes in swimming behavior of exposed Danio rerio embryos and the elucidation of the molecular effects on the serotonergic and dopaminergic systems. Yolk-sac larvae were exposed to different concentrations (0.2 mg/L, 0.4 mg/L, 0.8 mg/L, 1.6 mg/L, 3.2 mg/L and 6.4 mg/L) of clozapine for 116 h post-fertilization, and changes in the swimming behavior of the larvae were assessed. Further, quantitative real-time PCR was performed to analyze the expression of selected genes. The qualitative evaluation of changes in the swimming behavior of D. rerio larvae revealed a significant decrease of the average swimming distance and velocity in the light-dark transition test, with more than a 36% reduction at the highest exposure concentration of 6.4 mg/L. Furthermore, the total larval body length was reduced at the highest concentration. An in-depth analysis based on expression of selected target genes of the serotonin (slc6a4a) and dopamine (drd2a) system showed an upregulation at a concentration of 1.6 mg/L and above. In addition, a lower increase in expression was detected for biomarkers of general stress (adra1a and cyp1a2). Our data show that exposure to clozapine during development inhibits swimming activity of zebrafish larvae, which could, in part, be due to disruption of the serotonin- and dopamine system.
Collapse
Affiliation(s)
- Michael Gundlach
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Carolina Di Paolo
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Kendra Majewski
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Ann-Cathrin Haigis
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 131, 8600 Dübendorf, Switzerland
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Yadav D, Kumar P. Restoration and targeting of aberrant neurotransmitters in Parkinson's disease therapeutics. Neurochem Int 2022; 156:105327. [PMID: 35331828 DOI: 10.1016/j.neuint.2022.105327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Neurotransmitters are considered as a fundamental regulator in the process of neuronal growth, differentiation and survival. Parkinson's Disease (PD) occurs due to extensive damage of dopamine-producing neurons; this causes dopamine deficits in the midbrain, followed by the alternation of various other neurotransmitters (glutamate, GABA, serotonin, etc.). It has been observed that fluctuation of neurotransmission in the basal ganglia exhibits a great impact on the pathophysiology of PD. Dopamine replacement therapy, such as the use of L-DOPA, can increase the dopamine level, but it majorly ameliorates the motor symptoms and is also associated with long-term complications (for e.g., LID). While the non-dopaminergic system can efficiently target non-motor symptoms, for instance, the noradrenergic system regulates the synthesis of BDNF via the MAPK pathway, which is important in learning and memory. Herein, we briefly discuss the role of different neurotransmitters, implementation of neurotransmitter receptors in PD. We also illustrate the recent advances of neurotransmitter-based drugs, which are currently under in vivo and clinical studies. Reinstating normal neurotransmitter levels has been believed to be advantageous in the treatment of PD. Thus, there is an increasing demand for drugs that can specifically target the neurotransmission system and reinstate the normal levels of neurotransmitters, which might prevent or delay neurodegeneration in PD.
Collapse
Affiliation(s)
- Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi, India; Delhi Technological University (Formerly Delhi College of Engineering), Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi, India; Delhi Technological University (Formerly Delhi College of Engineering), Delhi, 110042, India.
| |
Collapse
|
9
|
Zaehle T, Galazky I, Krauel K. The LC-NE system as a potential target for neuromodulation to ameliorate non-motor symptoms in Parkinson's disease. Auton Neurosci 2021; 236:102901. [PMID: 34757309 DOI: 10.1016/j.autneu.2021.102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is associated with severe motor symptoms but also with several non-motor symptoms (NMS). A substantial reduction of norepinephrine (NE) levels in various brain regions reflecting an extensive loss of innervation from the LC has been assumed as causal for the development of NMS and specifically of attentional impairments in PD. Transcutaneous auricular vagus nerve stimulation (taVNS) is a new, non-invasive neurostimulation method supposed to modulate the LC-NE system in humans. In the current opinion paper, we introduce taVNS as a systemic approach to directly affect NE neurotransmission in healthy as well as clinical populations and discuss its potential as therapeutic option for the treatment of NMS, specifically attentional deficits, in patients with PD. Here, we first describe the LC-NE system and discuss how LC-NE dysfunction might affects cognition in PD before detailing the mode of action of taVNS and proposing its use to modulate cognitive deficits in these patients.
Collapse
Affiliation(s)
- Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany
| | - Imke Galazky
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Kerstin Krauel
- Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
10
|
Forouzandeh M, Bigdeli MR, Mostafavi H, Nadri S, Eskandari M. Therapeutic potentials of human microfluidic encapsulated conjunctival mesenchymal stem cells on the rat model of Parkinson's disease. Exp Mol Pathol 2021; 123:104703. [PMID: 34619140 DOI: 10.1016/j.yexmp.2021.104703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the destruction of the dopaminergic neurons in the nigrostriatal pathway, leading to motor-behavioral complications. Cell therapy has been proposed as a promising approach for PD treatment using various cellular sources. Despite a few disadvantages mesenchymal stem cells (MSCs) represent, they have more auspicious effects for PD cell therapy. The present study aimed to evaluate a new source of MSCs isolated from human Conjunctiva (CJ-MSCs) impact on PD complications for the first time. MATERIALS AND METHODS Parkinson's was induced by stereotactic injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB). An apomorphine-induced rotation test was used to confirm the model establishment. After PD model confirmation, green fluorescent protein (GFP) labeled CJ-MSCs and induced CJ-MSCs (microfluidic encapsulated and non-capsulated) were transplanted into the rats' right striatum. Then Rotation, Rotarod, and Open-field tests were performed to evaluate the behavioral assessment. Additionally, the immunohistochemistry technique was used for identifying tyrosine hydroxylase (TH). RESULTS According to the obtained data, the cell transplantation caused a reduction in the rats' rotation number and improved locomotion compared to the control group. The previous results were also more pronounced in induced and microfluidic encapsulated cells compared to other cells. Rats recipient CJ-MSCs also have represented more TH-expressed GFP-labeled cell numbers in the striatum than the control group. CONCLUSION It can be concluded that CJ-MSCs therapy can have protective effects against PD complications and nerve induction of cells due to their ability to express dopamine. On the other hand, CJ-MSCs microencapsulating leads to enhance even more protective effect of CJ-MSCs. However, confirmation of this hypothesis requires further studies and investigation of these cells' possible mechanisms of action.
Collapse
Affiliation(s)
| | - Mohammad Reza Bigdeli
- Faculty of Life Sciences, Shahid-Beheshti University, Tehran, Iran; Inistitute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| | - Hossein Mostafavi
- Department of Physiology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran..
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Eskandari
- Department of Physiology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
11
|
Bidesi NSR, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson's disease. J Neurochem 2021; 159:660-689. [PMID: 34532856 PMCID: PMC9291628 DOI: 10.1111/jnc.15516] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.
Collapse
Affiliation(s)
- Natasha S R Bidesi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
Toscano M, Viganò A, Jannini TB, Ruggiero M, Comanducci A, Di Piero V. Intensity-Dependence of Auditory Evoked Potentials (IDAP) as a Neurophysiological Parameter to Predict Anti-Aggressive Responsiveness to SSRI Treatment. Front Pharmacol 2021; 12:716338. [PMID: 34456730 PMCID: PMC8397375 DOI: 10.3389/fphar.2021.716338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Massimiliano Toscano
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | | | - Tommaso B Jannini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marco Ruggiero
- Physical Medicine and Rehabilitation Division, Umberto I Hospital, Rome, Italy
| | | | - Vittorio Di Piero
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
13
|
Vidal B, Levigoureux E, Chaib S, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. Different Alterations of Agonist and Antagonist Binding to 5-HT1A Receptor in a Rat Model of Parkinson’s Disease and Levodopa-Induced Dyskinesia: A MicroPET Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1257-1269. [DOI: 10.3233/jpd-212580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: The gold-standard treatment for Parkinson’s disease is L-DOPA, which in the long term often leads to levodopa-induced dyskinesia. Serotonergic neurons are partially responsible for this, by converting L-DOPA into dopamine leading to its uncontrolled release as a “false neurotransmitter”. The stimulation of 5-HT1A receptors can reduce involuntary movements but this mechanism is poorly understood. Objective: This study aimed to investigate the functionality of 5-HT1A receptors using positron emission tomography in hemiparkinsonian rats with or without dyskinesia induced by 3-weeks daily treatment with L-DOPA. Imaging sessions were performed “off” L-DOPA. Methods: Each rat underwent a positron emission tomography scan with [18F]F13640, a 5-HT1AR agonist which labels receptors in a high affinity state for agonists, or with [18F]MPPF, a 5-HT1AR antagonist which labels all the receptors. Results: There were decreases of [18F]MPPF binding in hemiparkinsonian rats in cortical areas. In dyskinetic animals, changes were slighter but also found in other regions. In hemiparkinsonian rats, [18F]F13640 uptake was decreased bilaterally in the globus pallidus and thalamus. On the non-lesioned side, binding was increased in the insula, the hippocampus and the amygdala. In dyskinetic animals, [18F]F13640 binding was strongly increased in cortical and limbic areas, especially in the non-lesioned side. Conclusion: These data suggest that agonist and antagonist 5-HT1A receptor-binding sites are differently modified in Parkinson’s disease and levodopa-induced dyskinesia. In particular, these observations suggest a substantial involvement of the functional state of 5-HT1AR in levodopa-induced dyskinesia and emphasize the need to characterize this state using agonist radiotracers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Benjamin Vidal
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
| | - Elise Levigoureux
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Sarah Chaib
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | | | - Thierry Billard
- CERMEP-Imaging Platform, Bron, France
- Institute of Chemistry and Biochemistry, Université de Lyon, CNRS, Villeurbanne, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- CERMEP-Imaging Platform, Bron, France
| |
Collapse
|
14
|
Walker M, Kuebler L, Goehring CM, Pichler BJ, Herfert K. Imaging SERT Availability in a Rat Model of L-DOPA-Induced Dyskinesia. Mol Imaging Biol 2021; 22:634-642. [PMID: 31392531 DOI: 10.1007/s11307-019-01418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The development of L-DOPA-induced dyskinesia (LID) is one of the most severe side effects of chronic L-DOPA treatment in Parkinson's disease patients. [11C]DASB positron emission tomography (PET) provides a prominent tool to visualize and quantify serotonin transporter (SERT) pathology in vivo in patients and in animal models. To evaluate the effect of chronic L-DOPA treatment on SERT availability in an animal model of LID, we performed a longitudinal PET study. PROCEDURES Rats received a unilateral 6-hydroxydopamine (6-OHDA) lesion, and striatal and extrastriatal SERT expression levels were studied with [11C]DASB, a marker of SERT availability, before and after daily treatment with L-DOPA. Dyskinesias were evaluated at different time points over a period of 21 days. RESULTS [11C]DASB binding was found to be decreased after 6-OHDA lesions in the striatum, cortex, and hippocampus 5 weeks after 6-OHDA injection in the lesioned hemisphere of the rat brain. Chronic L-DOPA priming resulted in a relative preservation of SERT availability in the lesioned and healthy hemisphere compared to baseline measurements. CONCLUSIONS Our longitudinal PET data support a preservation of SERT availability after the induction of L-DOPA-induced dyskinesia, which is in line with previous reports in dyskinetic PD patients.
Collapse
Affiliation(s)
- Michael Walker
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Laura Kuebler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Chris Marc Goehring
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany.
| |
Collapse
|
15
|
de Natale ER, Wilson H, Politis M. Serotonergic imaging in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:303-338. [PMID: 33785134 DOI: 10.1016/bs.pbr.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive degeneration of monoaminergic central pathways such as the serotonergic. The degeneration of serotonergic signaling in striatal and extrastriatal brain regions is an early feature of PD and is associated with several motor and non-motor complications of the disease. Molecular imaging techniques with Positron Emission Tomography (PET) have greatly contributed to the investigation of biological changes in vivo and to the understanding of the extent of serotonergic pathology in patients or individuals at risk for PD. Such discoveries provide with opportunities for the identification of new targets that can be used for the development of novel disease-modifying drugs or symptomatic treatments. Future studies of imaging serotonergic molecular targets will better clarify the importance of serotonergic pathology in PD, including progression of pathology, target-identification for pharmacotherapy, and relevance to endogenous synaptic serotonin levels. In this article, we review the current status and understanding of serotonergic imaging in PD.
Collapse
Affiliation(s)
| | - Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, United Kingdom.
| |
Collapse
|
16
|
Ahmed S, Kwatra M, Ranjan Panda S, Murty USN, Naidu VGM. Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun 2021; 91:142-158. [PMID: 32971182 DOI: 10.1016/j.bbi.2020.09.017] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular communication linking microglia activation and dopaminergic neuronal loss play an imperative role in the progression of Parkinson's disease (PD); however, underlying molecular mechanisms are not precise and require further elucidation. NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation is extensively studied in context to microglial activation and progressive dopaminergic neuronal loss in PD. Several pathophysiological factors such as oxidative stress, mitochondrial dysfunction impaired mitophagy plays a crucial role in activating NLRP3 inflammasome complex. Hence, regulation of microglial activation through mitophagy could be a valuable strategy in controlling microglia mediated neurodegeneration. In this study we have developed a model of inflammasome activation by combining LPS with a mitochondrial complex-I inhibitor MPP+. The idea of using MPP+ after priming mouse microglia with LPS was to disrupt mitochondria and release reactive oxygen species, which act as Signal 2 in augmenting NLRP3 assembly, thereby releasing potent inflammatory mediators such as active interleukin-1 beta (IL-1β) and IL-18. LPS-MPP+ combination was seen to impaired the mitophagy by inhibiting the initial step of autophagosome formation as evidenced by protein expression and confocal imaging data. Treatment with Andrographolide promoted the parkin-dependent autophagic flux formation in microglia; resulting in the removal of defective mitochondria which in turn inhibit NLRP3 inflammasome activation. Additionally, the neuroprotective role of Andrographolide in inhibiting NLRP3 activation together with salvage ATP level via promoting parkin-dependent mitophagy was seen in the substantial nigra par compacta (SNpc) region of mice brain. Furthermore, Andrographolide rescued the dopaminergic neuron loss and improved the behavioural parameters in animal model. Collectively, our results reveal the role of mitophagy in the regulation of NLRP3 inflammasome by removing defective mitochondria. In addition, andrographolide was seen to abate NLRP3 inflammasome activation in microglia and rescue dopaminergic neuron loss.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - U S N Murty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| |
Collapse
|
17
|
Seo J, Won J, Kim K, Park J, Yeo HG, Kim YG, Baek SH, Lee H, Jeon CY, Choi WS, Lee S, Kim KJ, Park SH, Son Y, Jeong KJ, Lim KS, Kang P, Lee HY, Son HC, Huh JW, Kim YH, Lee DS, Lee SR, Choi JW, Lee Y. Impaired Hand Dexterity Function in a Non-human Primate Model with Chronic Parkinson's Disease. Exp Neurobiol 2020; 29:376-388. [PMID: 33154199 PMCID: PMC7649085 DOI: 10.5607/en20040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Symptoms of Parkinson’s disease (PD) caused by loss of dopaminergic neurons are accompanied by movement disorders, including tremors, rigidity, bradykinesia, and akinesia. Non-human primate (NHP) models with PD play an essential role in the analysis of PD pathophysiology and behavior symptoms. As impairments of hand dexterity function can affect activities of daily living in patients with PD, research on hand dexterity function in NHP models with chronic PD is essential. Traditional rating scales previously used in the evaluation of animal spontaneous behavior were insufficient due to factors related to subjectivity and passivity. Thus, experimentally designed applications for an appropriate apparatus are necessary. In this study, we aimed to longitudinally assess hand dexterity function using hand dexterity task (HDT) in NHP-PD models. To validate this assessment, we analyzed the alteration in Parkinsonian tremor signs and the functionality of presynaptic dopaminergic neuron using positron emission tomography imaging of dopamine transporters in these models. In addition, a significant inverse correlation between HDT and DAT level was identified, but no local bias was found. The correlation with intention tremor signs was lower than the resting tremor. In conclusion, the evaluation of HDT may reflect behavioral symptoms of NHP-PD models. Furthermore, HDT was effectively used to experimentally distinguish intention tremors from other tremors.
Collapse
Affiliation(s)
- Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hoonwon Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sangil Lee
- Primate Resource Center, KRIBB, Jeongeup 56216, Korea
| | - Ki Jin Kim
- Primate Resource Center, KRIBB, Jeongeup 56216, Korea
| | - Sung-Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Yeonghoon Son
- Primate Resource Center, KRIBB, Jeongeup 56216, Korea
| | - Kang Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Philyong Kang
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Hwal-Yong Lee
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Hee-Chang Son
- Futuristic Animal Resource & Research Center, KRIBB, Cheongju 28116, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Woong Choi
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea.,Department of Information and Communication Engineering, DGIST, Daegu 42988, Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
18
|
Narayanaswami V, Tong J, Fiorino F, Severino B, Sparaco R, Magli E, Giordano F, Bloomfield PM, Prabhakaran J, Mann JJ, Vasdev N, Dahl K, Kumar JSD. Synthesis, in vitro and in vivo evaluation of 11C-O-methylated arylpiperazines as potential serotonin 1A (5-HT 1A) receptor antagonist radiotracers. EJNMMI Radiopharm Chem 2020; 5:13. [PMID: 32430632 PMCID: PMC7237647 DOI: 10.1186/s41181-020-00096-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 01/23/2023] Open
Abstract
Background Serotonin 1A (5-HT1A) receptors are implicated in the pathogenesis of several psychiatric and neurodegenerative disorders motivating the development of suitable radiotracers for in vivo positron emission tomography (PET) neuroimaging. The gold standard PET imaging agent for this target is [carbonyl-11C]WAY-100635, labeled via a technically challenging multi-step reaction that has limited its widespread use. While several antagonist and agonist-based PET radiotracers for 5-HT 1A receptors have been developed, their clinical translation has been hindered by methodological challenges and/or and non-specific binding. As a result, there is continued interest in the development of new and more selective 5-HT1A PET tracers having a relatively easier and reliable radiosynthesis process for routine production and with favorable metabolism to facilitate tracer-kinetic modeling. The purpose of the current study was to develop and characterize a radioligand with suitable characteristics for imaging 5-HT1A receptors in the brain. The current study reports the in vitro characterization and radiosyntheses of three candidate 5-HT1A receptor antagonists, DF-100 (1), DF-300 (2) and DF-400 (3), to explore their suitability as potential PET radiotracers. Results Syntheses of 1–3 and corresponding precursors for radiolabeling were achieved from isonicotinic, picolinic acid or picolino nitrile. In vitro binding studies demonstrated nanomolar affinity of the compounds for 5-HT1A receptors. Binding of 1–3 for other biogenic amines, neurotransmitter receptors, and transporters was negligible with the exception of moderate affinities for α1-adrenergic receptors (4–6-fold less potent than that for 5-HT1A receptor). Radioligands [11C]1–3 were efficiently prepared by 11C-O-methylation of the corresponding phenolic precursor in non-decay corrected radiochemical yields of 7–11% with > 99% chemical and radiochemical purities. Dynamic PET studies in rats demonstrated negligible brain uptake of [11C]1 and [11C]2. In contrast, significant brain uptake of [11C]3 was observed with an early peak SUV of 4–5. However, [11C]3 displayed significant off-target binding attributed to α1-adrenergic receptors based on regional distribution (thalamus>hippocampus) and blocking studies. Conclusion Despite efficient radiolabeling, results from PET imaging experiments limit the application of [11C]3 for in vivo quantification of 5-HT1A receptors. Nevertheless, derivatives of compound 3 may provide a scaffold for alternative PET radiotracers with improved selectivity for 5-HT 1A receptors or α1-adrenergic receptors.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada
| | - Ferdinando Fiorino
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Rosa Sparaco
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Elisa Magli
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Flavia Giordano
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Peter M Bloomfield
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada
| | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA.,Department of Psychiatry, Columbia University Medical Center, New York, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T-1R8, Canada
| | - Kenneth Dahl
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada.
| | - J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA.
| |
Collapse
|
19
|
Pereira AG, Poli A, Matheus FC, de Bortoli da Silva L, Fadanni GP, Izídio GS, Latini A, Prediger RD. Temporal development of neurochemical and cognitive impairments following reserpine administration in rats. Behav Brain Res 2020; 383:112517. [DOI: 10.1016/j.bbr.2020.112517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022]
|
20
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
21
|
Mercatelli D, Bezard E, Eleopra R, Zaveri NT, Morari M. Managing Parkinson's disease: moving ON with NOP. Br J Pharmacol 2020; 177:28-47. [PMID: 31648371 PMCID: PMC6976791 DOI: 10.1111/bph.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
The opioid-like neuropeptide nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP receptor) contribute to Parkinson's disease (PD) and motor complications associated with levodopa therapy. The N/OFQ-NOP receptor system is expressed in cortical and subcortical motor areas and, notably, in dopaminergic neurons of the substantia nigra compacta. Dopamine depletion, as in rodent models of PD results in up-regulation of N/OFQ transmission in the substantia nigra and down-regulation of N/OFQ transmission in the striatum. Consistent with this, NOP receptor antagonists relieve motor deficits in PD models by reinstating the physiological balance between excitatory and inhibitory inputs impinging on nigro-thalamic GABAergic neurons. NOP receptor antagonists also counteract the degeneration of nigrostriatal dopaminergic neurons, possibly by attenuating the excitotoxicity or modulating the immune response. Conversely, NOP receptor agonists attenuate levodopa-induced dyskinesia by attenuating the hyperactivation of striatal D1 receptor signalling in neurons of the direct striatonigral pathway. The N/OFQ-NOP receptor system might represent a novel target in the therapy of PD.
Collapse
Affiliation(s)
- Daniela Mercatelli
- Department of Medical Sciences, Section of PharmacologyUniversity of Ferrara and National Institute of NeuroscienceFerraraItaly
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, UMR 5293Université de BordeauxBordeauxFrance
- Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, UMR 5293BordeauxFrance
| | - Roberto Eleopra
- Neurology Unit 1Fondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Nurulain T. Zaveri
- Astraea Therapeutics, Medicinal Chemistry DivisionMountain ViewCaliforniaUSA
| | - Michele Morari
- Department of Medical Sciences, Section of PharmacologyUniversity of Ferrara and National Institute of NeuroscienceFerraraItaly
| |
Collapse
|
22
|
Painous C, Perissinotti A, Martí MJ. Is serotonin pathology a good biomarker in vivo for early Parkinson's disease? ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S351. [PMID: 32016069 DOI: 10.21037/atm.2019.09.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Celia Painous
- Parkinson's Disease & Movement Disorders Unit, Hospital Clínic Barcelona, Barcelona, Spain.,DIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Universitat de Barcelona, Catalonia, Spain
| | - Andres Perissinotti
- Nuclear Medicine Department, Hospital Clínic Barcelona & Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Maria J Martí
- Parkinson's Disease & Movement Disorders Unit, Hospital Clínic Barcelona, Barcelona, Spain.,DIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
da Cruz Moreira-Junior E. Hyper-serotonergic state determines onset and progression of idiopathic Parkinson's disease. Med Hypotheses 2019; 133:109399. [PMID: 31542611 DOI: 10.1016/j.mehy.2019.109399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023]
Abstract
Despite decades of research on Parkinson's disease (PD), the etiology of this disease remains unclear. The present manuscript introduces a new hypothesis proposing a hyper-serotonergic state as the main mechanism leading to axonal impairment both in dopaminergic and serotonergic neurons in PD. The strong serotonergic connection between the raphe nuclei and the dorsal raphe nuclei with the basal ganglia, all important brain structures associated with the pathophysiology of PD, emphasize a potential role for this neurotransmitter in PD. Importantly, a hyper-serotonergic state can lead to axonal growth impairment, an effect that seems to be selective to axons that can respond to this neurotransmitter. Serotonin seems to be a promising candidate to explain several of the poorly understood early symptoms of PD, including sleep impairment, anxiety, altered gastrointestinal motility and hallucinations. The hypothesis proposed here emphasizes that a hyper-serotonergic state would initially cause disruption of axonal transportation, an acute state in which axonal changes are reversible and the neurodegenerative process can be halted. As the hyper-serotonergic state persists, the accumulation of neurotoxic products and a sustained impairment in axonal transportation would lead to axonal death and culminate in an irreversible neurodegenerative process. The potential implications of this hypothesis are discussed, as well as how future research can be employed to further elucidate the role of serotonin on PD progression.
Collapse
Affiliation(s)
- Eliseu da Cruz Moreira-Junior
- Medical School Department of Health Sciences, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Bairro Salobrinho, Ilhéus-Bahia, Brazil.
| |
Collapse
|