1
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 PMCID: PMC11688550 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Gotheridge H, Eccles FJR, Murray C, Henderson R, Simpson J. A systematic review of the factors associated with the psychological wellbeing of people with Parkinson's in the COVID-19 pandemic. Disabil Rehabil 2025; 47:2234-2245. [PMID: 39258822 DOI: 10.1080/09638288.2024.2395460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/21/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE The lockdown and social distancing measures introduced as a result of the COVID-19 pandemic impacted the ability of people with Parkinson's to engage in normal health management practices. This led to documented reductions in psychological wellbeing. The aim of the present review was to identify factors associated with the psychological wellbeing of people with Parkinson's during the acute stage of the pandemic. MATERIALS AND METHODS Five academic databases (PsycINFO, MEDLINE, Embase, CINAHL, and Web of Science) were searched and 23 articles were identified using pre-defined inclusion and exclusion criteria. The findings are stratified by risk factor and analysed using a narrative synthesis. RESULTS Worsening of motor symptoms, poor motor-related daily living experiences and motor symptoms during "off time" (when symptom suppressing medication has worn off) as well as less physical activity emerged as the most consistent risk factors of worsened or poorer psychological wellbeing. A deviation from pre-pandemic risk factors was identified, with age and gender not identified as consistent risk factors. CONCLUSIONS The implications of this review are not limited to preparing for future pandemics but can also be applied to more common concerns with comparable contextual characteristics such as yearly flu outbreaks, social isolation, and economic uncertainty.
Collapse
Affiliation(s)
- H Gotheridge
- Division of Health Research, Lancaster University, Lancaster, UK
| | - F J R Eccles
- Division of Health Research, Lancaster University, Lancaster, UK
| | - C Murray
- Division of Health Research, Lancaster University, Lancaster, UK
| | - R Henderson
- Division of Health Research, Lancaster University, Lancaster, UK
| | - J Simpson
- Division of Health Research, Lancaster University, Lancaster, UK
| |
Collapse
|
3
|
Wei CY, Tzeng RC, Tai HC, Su CH, Chiu PY. Walking reduces the risk of dementia in patients with Parkinson's disease: a longitudinal follow-up study. Ther Adv Neurol Disord 2025; 18:17562864251330251. [PMID: 40291756 PMCID: PMC12033631 DOI: 10.1177/17562864251330251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Background Physical activity, particularly regular aerobic exercise, is effective in preventing dementia. However, such activities are less feasible for patients with Parkinson's disease (PD) or other motor dysfunctions. Objectives In this study, we investigated whether the minimal amount of exercise (MAE) through walking, which is practical for individuals with motor dysfunction, can reduce the risk of dementia in patients with PD. Design For this retrospective longitudinal study, we enrolled 470 patients with PD without dementia from 3 centers in Taiwan. Methods In total, 187 (39.8%) subsequently developed dementia, whereas 283 (60.2%) did not; the mean follow-up periods for these cohorts were 3.1 (range 0.3-6.1) and 2.4 (range 0.3-6.0) years, respectively. MAE was defined as walking approximately 1500-3000 steps or for 15-30 min. The patients were further stratified by the weekly frequency of MAE into MAE-no (frequency: 0), MAE-weekly (frequency: 1 or 2), and MAE-daily (frequency: ⩾3) groups, respectively. The incidence rates of dementia were compared among the three groups. Cox proportional-hazards analyses were performed to measure the effect of MAE on the incidence of dementia. The statistical model was adjusted for age, sex, education level, cognition level, activities of daily living, neuropsychiatric symptoms, vascular risk factors, and relevant medications. Results The MAE-weekly and MAE-daily groups were 0.69 (95% confidence interval (CI): 0.41-1.17) and 0.59 (95% CI: 0.41-0.84) times, respectively, less likely to develop dementia than the MAE-no group. When the MAE-weekly and MAE-daily groups were combined, the hazard ratio for dementia was 0.62 (95% CI: 0.45-0.85). Cox regression revealed that older age, female sex, atrial fibrillation, antidiabetic drug use, and poor daily function were associated with an increased incidence of dementia. Conclusion MAE may help prevent dementia in patients with PD. This finding highlights the benefits of walking for patients with PD and, potentially, older adults with motor dysfunction due to various disorders.
Collapse
Affiliation(s)
- Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Ray-Chang Tzeng
- Department of Neurology, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
| | - Hsu-Chih Tai
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
| | - Chun-Hsien Su
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, No. 542, Sec. 1, Chung-Shan Road, Changhua 500, Taiwan
- Department of Applied Mathematics, Tunghai University, Taichung, Taiwan
| |
Collapse
|
4
|
Jo MG, Hong J, Kim J, Kim SH, Lee B, Choi HN, Lee SE, Kim YJ, Park H, Park DH, Roh GS, Kim CS, Yun SP. Physiological change of striatum and ventral midbrain's glia cell in response to different exercise modalities. Behav Brain Res 2025; 479:115342. [PMID: 39571940 DOI: 10.1016/j.bbr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Exercise not only regulates neurotransmitters and synapse formation but also enhances the function of multiple brain regions, beyond cortical activation. Prolonged aerobic or resistance exercise modality has been widely applied to reveal the beneficial effects on the brain, but few studies have investigated the direct effects of different exercise modalities and variations in exercise intensity on the neuroinflammatory response in the brain and overall health. Therefore, in this study, we investigated changes in brain cells and the immune environment of the brain according to exercise modalities. This study was conducted to confirm whether different exercise modalities affect the location and function of dopaminergic neurons, which are responsible for regulating voluntary movement, before utilizing animal models of disease. The results showed that high-intensity interval exercise (HIE) increased the activity of A2-reactive astrocytes in the striatum (STR), which is directly involved in movement control, resulting in neuroprotective effects. Both HIE and combined exercises (CE) increased the expression of dopamine transporter (DAT) in the STR without damaging dopamine neurons in the ventral midbrain (VM). This means that exercise training can help improve and maintain exercise capacity. In conclusion, specific exercise modalities or intensity of exercise may contribute to preventing neurodegenerative diseases such as Parkinson's disease or enhancing therapeutic effects when combined with medication for patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Gi Jo
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jiyeon Kim
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - So Eun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Heejung Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea; Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Gu Seob Roh
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Anatomy, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chang Sun Kim
- Department of Physical Education, Dongduk Women's University, Seoul 02748, Republic of Korea.
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
| |
Collapse
|
5
|
Cosentino M, Pinoli M, Uslenghi M, Pennisi M, Maldacea G, Comi C, Marino F. Deterioration of people with Parkinson's symptoms during COVID-19 lockdown: results of a web-based survey in Northwestern Italy. Aging Ment Health 2025; 29:299-306. [PMID: 39113597 DOI: 10.1080/13607863.2024.2388770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/30/2024] [Indexed: 01/01/2025]
Abstract
OBJECTIVES COVID-19 lockdowns were introduced to control the pandemic, however, they resulted in a global disruption of daily life and of individual and global health. Reduced accessibility of health services, unavailability of food and drugs, and mental health challenges had a huge impact on older people and on people living with disabling conditions such as Parkinson's disease (PD). We assessed whether and to what extent the more disabled and vulnerable people with Parkinson's (PwP) were affected by lockdowns. METHOD We analysed responses collected through a web-based survey of PwP according to their self-sufficiency [self-sufficient (SS); nearly self-sufficient (nSS); non-self-sufficient, cared for by family (NSS/F); non-self-sufficient, needs professional care (NSS/PC)]. RESULTS Fears due to COVID-19 and difficulties with food supply were highest in NSS/F PwP. Difficulties with the supply of Parkinson's medication or other drugs were apparently not an issue, while problems accessing primary care physicians and neurologists were similar across all patient groups. On the contrary, difficulties with daily and motor activities were higher in NSS/F and NSS/PC PwP. PwP symptoms worsened in all groups, with NSS/F and NSS/PC participants experiencing the worst deterioration. Notably, the deterioration of PwP symptoms was specifically related to changes in daily and motor activities, with participants who reported less engagement in daily and motor activities experiencing the worst deterioration. CONCLUSION Findings strongly support the need for decision-makers and healthcare providers to carefully re-evaluate the risk-benefit ratio of limiting healthcare accessibility for PwP, since evidence shows that lockdown measures primarily impact the groups who are most fragile and vulnerable.
Collapse
Affiliation(s)
- Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Monica Pinoli
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | | | - Mario Pennisi
- Associazione Parkinson Insubria-As.P.I, Varese, Italy
| | - Giulio Maldacea
- Comitato Italiano Parkinson - Progetto PDInfo - Care by Data, Rome, Italy
| | - Cristoforo Comi
- Neurology Unit, S. Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Razavi SM, Esmaealzadeh N, Ataei M, Afshari N, Saleh M, Amini Y, Hasrati S, Ghazizadeh Hashemi F, Mortazavi A, Mohaghegh Shalmani L, Abdolghaffari AH. The effects of ursodeoxycholic acid on Parkinson's disease, a mechanistic review of the recent evidence. Metab Brain Dis 2025; 40:115. [PMID: 39891787 DOI: 10.1007/s11011-025-01542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
INTRODUCTION Parkinson`s disease stands as the second-most widespread neurodegenerative disorder. Parkinson`s disease is relentless in progression and irreversible in nature, for which there is no cure. Therapies are only used to attenuate motor symptoms. As Parkinson`s disease is primarily defined by degeneration of dopaminergic neurons in the substantia nigra, and considering that neuroinflammation and mitochondrial dysfunction in these neurons are key factors contributing to disease progression, alternative therapies should aim to preserve healthy mitochondria. Method. Eligible studies on the effect of Ursodeoxycholic acid (UDCA) on Parkinson`s disease were collected from PubMed, Google Scholar, Scopus, Web of Science and Cochrane library for clinical, in-vivo, and in-vitro studies. Result. UDCA and its taurine conjugate (TUDCA), which are endogenous bile acids, have exhibited neuroprotective potential in various neurological conditions, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, in both animal experimental models and clinical investigations. This is attributed to three significant properties, in addition to their capability to cross the blood-brain barrier. First, their anti-inflammatory properties are manifested through the reduction of significant inflammatory factors such as tumor necrosis factor-α, interleukin 1β and other related elements. Second, their antioxidant property is marked by an increase in the expression of superoxide dismuthase, glutathione peroxidase and other antioxidant enzymes. The third property is the antiapoptotic activity, characterized by decreased caspase-3 activity and lower expression of pro-apoptotic Bax in the striatum. Conclusion. Based on this comprehensive review, UDCA and TUDCA have the potential to be considered as a therapeutic agent in the management of the Parkinson's disease.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazyar Ataei
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nadia Afshari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moloud Saleh
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasaman Amini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sadaf Hasrati
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Abolghasem Mortazavi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| |
Collapse
|
7
|
Kerdiles O, Oye Mintsa Mi-mba MF, Coulombe K, Tremblay C, Émond V, Saint-Pierre M, Rouxel C, Berthiaume L, Julien P, Cicchetti F, Calon F. Additive neurorestorative effects of exercise and docosahexaenoic acid intake in a mouse model of Parkinson's disease. Neural Regen Res 2025; 20:574-586. [PMID: 38819068 PMCID: PMC11317935 DOI: 10.4103/nrr.nrr-d-23-00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00033/figure1/v/2024-05-28T214302Z/r/image-tiff There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson's disease after diagnosis. Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids, such as docosahexaenoic acid, and exercise in Parkinson's disease, we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway. First, mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation. Four weeks after lesion, animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks. During this period, the animals had access to a running wheel, which they could use or not. Docosahexaenoic acid treatment, voluntary exercise, or the combination of both had no effect on (i) distance traveled in the open field test, (ii) the percentage of contraversive rotations in the apomorphine-induction test or (iii) the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta. However, the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum. Compared to docosahexaenoic acid treatment or exercise alone, the combination of docosahexaenoic acid and exercise (i) improved forelimb balance in the stepping test, (ii) decreased the striatal DOPAC/dopamine ratio and (iii) led to increased dopamine transporter levels in the lesioned striatum. The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Olivier Kerdiles
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Méryl-Farelle Oye Mintsa Mi-mba
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Katherine Coulombe
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Cyntia Tremblay
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Vincent Émond
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Martine Saint-Pierre
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Clémence Rouxel
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
| | - Line Berthiaume
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Pierre Julien
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Francesca Cicchetti
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Quebec, QC, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| |
Collapse
|
8
|
Wang J, Liu M, Zhao J, Hu P, Gao L, Tian S, Zhang J, Liu H, Xu X, He Z. Oxidative stress and dysregulated long noncoding RNAs in the pathogenesis of Parkinson's disease. Biol Res 2025; 58:7. [PMID: 39871377 PMCID: PMC11770960 DOI: 10.1186/s40659-025-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
Parkinson's disease (PD) is a progressive age-related neurodegenerative disease whose annual incidence is increasing as populations continue to age. Although its pathogenesis has not been fully elucidated, oxidative stress has been shown to play an important role in promoting the occurrence and development of the disease. Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length, are also involved in the pathogenesis of PD at the transcriptional level via epigenetic regulation, or at the post-transcriptional level by participating in physiological processes, including aggregation of the α-synuclein, mitochondrial dysfunction, oxidative stress, calcium stabilization, and neuroinflammation. LncRNAs and oxidative stress are correlated during neurodegenerative processes: oxidative stress affects the expression of multiple lncRNAs, while lncRNAs regulate many genes involved in oxidative stress responses. Oxidative stress and lncRNAs also affect other processes associated with neurodegeneration, including mitochondrial dysfunction and increased neuroinflammation that lead to neuronal death. Therefore, modulating the levels of specific lncRNAs may alleviate pathological oxidative damage and have neuroprotective effects. This review discusses the general mechanisms of oxidative stress, pathological mechanism underlying the role of oxidative stress in the pathogenesis of PD, and teases out the mechanisms through which lncRNAs regulate oxidative stress during PD pathogenesis, as well as identifies the possible neuroprotective mechanisms of lncRNAs. Reviewing published studies will help us further understand the mechanisms underlying the role of lncRNAs in the oxidative stress process in PD and to identify potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Meitong Liu
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Pan Hu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Lianbo Gao
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Shen Tian
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jin Zhang
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Huayan Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiaoxue Xu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Zhenwei He
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
9
|
Palm D, Swarowsky A, Kelly M, Grugel S, Stiers C, Wolden M. Effect of group exercise on quality of life for Parkinson disease: systematic review and meta-analysis. Disabil Rehabil 2025:1-13. [PMID: 39865595 DOI: 10.1080/09638288.2025.2453636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE Motor and non-motor symptoms can negatively affect quality of life (QoL) for people with Parkinson Disease (PD). Our purpose was to investigate the effects of group exercise (GE) compared to individual exercise (IE) and usual care (UC) on QoL for people with PD. A systematic review and meta-analysis were performed with randomized controlled trials that studied the effects of GE compared to IE and UC on QoL for people with PD. MATERIALS AND METHODS The systematic search was performed in EBSCO, PubMed, and Science Direct databases. Quality of methodology was assessed using the Cochrane GRADE approach. Thirteen studies met all inclusion criteria and were included in the analysis. RESULTS No significant difference was found on QoL between GE and IE; however, QoL was significantly improved with GE compared to UC. Results were based on low to moderate quality of evidence. CONCLUSIONS Based on low to moderate quality of evidence, GE has a similar effect on QoL when compared to IE and has a small and statistically significant effect when compared to UC, regardless of the patient reported outcome measure used or the total volume of exercise prescribed. GE may be an appropriate option for people with PD to improve their QoL.
Collapse
Affiliation(s)
- Diana Palm
- Physical Therapy Program, University of Jamestown, Fargo, ND, USA
| | | | | | - Samuel Grugel
- Physical Therapy Program, University of Jamestown, Fargo, ND, USA
| | - Connor Stiers
- Physical Therapy Program, University of Jamestown, Fargo, ND, USA
| | - Mitch Wolden
- Physical Therapy Program, University of Jamestown, Fargo, ND, USA
| |
Collapse
|
10
|
Buetow S, Zawaly K. Integrating deliberate shaking into daily living: a paradoxical exercise for Parkinsonian tremor. Disabil Rehabil 2025:1-7. [PMID: 39838648 DOI: 10.1080/09638288.2025.2454300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 12/15/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
PURPOSE Medication often falls short in controlling tremors in Parkinson's disease. While physical activities suggest potential benefits, current exercise regimes have limitations. This paper explores the concept of deliberate shaking as an intervention to aid exercise uptake and potentially leverage synergies between medication and physical activity. It examines the rationale for and mechanisms of deliberate shaking before exploring its further examination and implementation for tremor rehabilitation. METHOD This conceptual article draws on relevant literature using the SANRA guide to explore the potential of deliberate shaking to relieve tremors in Parkinson's disease. RESULTS Deliberate shaking is a controlled exercise where an individual consciously initiates and partially surrenders to rhythmic movements while maintaining the ability to stop at will. Integrated into daily activities, this practice may target and stimulate specific muscle groups. It may alleviate tremor through various mechanisms: neurobiological, physiological, and cognitive and psychological. Before implementation, empirical research is needed to assess its feasibility, safety, and effectiveness. Implementation requires assessing eligibility for a shaking prescription, setting personalized goals, providing guidance as needed, and ensuring appropriate safety measures are in place. CONCLUSIONS Deliberate shaking is a potential adjunct treatment for Parkinsonian tremor. However, it requires further testing.
Collapse
Affiliation(s)
- Stephen Buetow
- Department of General Practice and Primary Health Care, University of Auckland, Auckland, New Zealand
| | - Kristina Zawaly
- Department of General Practice and Primary Health Care, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Song H, Ge S, Li J, Jiao C, Ran L. Effects of aerobic and resistance training on walking and balance abilities in older adults with Parkinson's disease: A systematic review and meta-analysis. PLoS One 2025; 20:e0314539. [PMID: 39787155 PMCID: PMC11717240 DOI: 10.1371/journal.pone.0314539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVE To explore the impact of aerobic and resistance training on walking and balance abilities (UPDRS-III, Gait Velocity, Mini-BESTest, and TUG) in individuals with Parkinson's disease (PD). METHOD All articles published between the year of inception and July 2024 were obtained from PubMed, Embase, and Web of Science. Meta-analysis was conducted with RevMan 5.4. RESULT Research from 15 randomized controlled trials, comprising 792 older patients with a diagnosis of PD, was included in the analysis. Aerobic training (AT) and Resistance training (RT) significantly improved UPDRS-III (AT, SMD = -5.69, 95% CI: -8.67 to -2.71, p = 0.0002, I2 = 82%; RT, SMD = -3.01, 95% CI: -4.89 to -1.12, p = 0.002, I2 = 0%) and Gait Velocity(AT, SMD = 0.88, 95% CI: 0.58 to 1.18, p < 0.00001, I2 = 42%; RT, SMD = 0.52, 95% CI: 0.10 to 0.94, p = 0.01, I2 = 55%). AT showed no difference in Mini-BESTest (AT, SMD = 2.12, 95% CI: -0.70 to 4.94, p = 0.14, I2 = 90%). RT showed no change in TUG (RT, SMD = -0.03, 95% CI: -1.60 to 1.54, p = 0.97, I2 = 63%). CONCLUSIONS Resistance training stood out as the most effective approach to boost performance on the mini-BESTest. Conversely, aerobic exercise proved to be superior for improving the UPDRS-III, gait velocity and TUG scores.
Collapse
Affiliation(s)
- Huishan Song
- School of Sports Science, Harbin Normal University, Harbin, China
| | - Sheng Ge
- Central Hospital of Heilongjiang Provincial Prison Administration, Harbin, China
| | - Ji Li
- School of Sports Science, Harbin Normal University, Harbin, China
| | - Chendao Jiao
- School of Sports Science, Harbin Normal University, Harbin, China
| | - Linghua Ran
- School of Sports Science, Harbin Normal University, Harbin, China
| |
Collapse
|
12
|
Zhou XH, Luo YX, Yao XQ. Exercise-driven cellular autophagy: A bridge to systematic wellness. J Adv Res 2025:S2090-1232(24)00613-1. [PMID: 39756575 DOI: 10.1016/j.jare.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood. AIM OF REVIEW This review explores the molecular mechanisms of exercise-induced autophagy in various tissues, focusing on key transduction pathways. It examines how different types of exercise trigger specific autophagic responses, supporting cellular balance and addressing systemic dysfunctions. The review also highlights the signaling pathways involved, their roles in protecting organ function, reducing disease risk, and promoting longevity, offering a clear understanding of the link between exercise and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Exercise-induced autophagy is governed by highly coordinated and dynamic pathways integrating direct and indirect mechanical forces and biochemical signals, linking physical activity to cellular and systemic health across multiple organ systems. Its activation is influenced by exercise modality, intensity, duration, and individual biological characteristics, including age, sex, and muscle fiber composition. Aerobic exercises primarily engage AMPK and mTOR pathways, supporting mitochondrial quality and cellular homeostasis. Anaerobic training activates PI3K/Akt signaling, modulating molecules like FOXO3a and Beclin1 to drive muscle autophagy and repair. In pathological contexts, exercise-induced autophagy enhances mitochondrial function, proteostasis, and tissue regeneration, benefiting conditions like sarcopenia, neurodegeneration, myocardial ischemia, metabolic disorders, and cancer. However, excessive exercise may lead to autophagic overactivation, leading to muscle atrophy or pathological cardiac remodeling. This underscores the critical need for balanced exercise regimens to maximize therapeutic efficacy while minimizing risks. Future research should prioritize identifying reliable biomarkers, optimizing exercise protocols, and integrating exercise with pharmacological strategies to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xiao-Han Zhou
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
13
|
Panunggal B, Yeh TH, Tsao SP, Pan CH, Shih WT, Lin YT, Faradina A, Fang CL, Huang HY, Huang SY. Treadmill intervention attenuates motor deficit with 6-OHDA-induced Parkinson's disease rat via changes in lipid profiles in brain and muscle. Aging (Albany NY) 2025; 17:232-250. [PMID: 39754647 PMCID: PMC11810068 DOI: 10.18632/aging.206181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/15/2024] [Indexed: 01/06/2025]
Abstract
One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD. PD was induced by injecting 6-hydroxy dopamine (6-OHDA) into the medial forebrain bundle (MFB). For 10 weeks, rats underwent treadmill training on a four-lane motorized treadmill. Motor function deficits were evaluated through behavioral tests. Lipidomic analysis was performed through ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC MS/MS). Treadmill intervention significantly improved motor function and restored altered brain and muscle lipid profiles in PD rats. Among the lipid species identified in PD rats, brain abundance was highest for phosphatidylethanolamine (PE), correlating positively with the beam-walking scores; muscle abundance peaked with lysophosphatidylethanolamine (LysoPE), correlating positively with grip strength scores. In the brain, the levels of diacylglycerol (DG), triacylglycerol (TG), and lysophosphatidylcholine (PC) correlated positively with grip strength and rotarod scores, while only phosphatidylethanolamine (PE) linked to beam-walking scores. In the muscle, the levels of phosphatidylinositol (PI), lysophosphatidylethanolamine (PE), lysophosphatidic acid (PA), ceramide (Cer), and ganglioside were positively correlated with grip strength and rotarod scores. In conclusion, treadmill may protect the cortex, mitigating motor deficits via change lipid profiles in the brain and muscle.
Collapse
Affiliation(s)
- Binar Panunggal
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Central Java, Indonesia
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ting Shih
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Lang Fang
- Department of Pathology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Centre for Digestive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Neuroscience Research Centre, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
14
|
Chen Y, Chen Y. The impact of combined aerobic and resistance exercise on the prognosis of early Parkinson's disease patients. Technol Health Care 2025; 33:205-214. [PMID: 39177624 DOI: 10.3233/thc-240821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Although literature suggests that exercise can improve symptoms in Parkinson's Disease (PD) patients, research on the effects of aerobic exercise and resistance training (AE&RT) in early-stage PD remains limited. Understanding the synergistic effects of these exercise modalities can provide valuable insights for optimizing exercise interventions for PD patients, particularly in the early stages of the disease, where interventions may have the greatest impact on long-term functional outcomes. OBJECTIVE This study aimed to investigate the effects of a combined AE&RT program on motor function, postural stability, and cognitive processing speed in early stage PD patients. METHODS A total of 236 participants with early-stage PD were assigned to either the Aerobic Exercise Group (AE group) (n= 112) or the AE&RT Group (n= 124) inthis controlled randomized trial. The study employed a one-year supervised exercise program, with the AE Group participating in aerobic activities and the AE&RT Group engaging in combined AE&RT. Outcome measures included symptom improvement, motor function, postural stability, cognitive processing speed, peak oxygen consumption, quality of life evaluation, and the incidence of adverse events. RESULTS The AE&RT Group demonstrated greater improvements in tremor, muscle rigidity, gait instability, sleep problems, and hyposmia compared to the AE Group. Additionally, the combined exercise group exhibited better cognitive processing speed, as well as enhanced motor function and postural stability. Peak oxygen consumption was significantly higher in the AE&RT Group. However, the quality of life evaluation indicated a statistically higher quality of life in the AE Group. There was no significant difference in the incidence of adverse events between the two groups. CONCLUSION The findings suggest that the integration of AE&RT in early-stage PD patients leads to more comprehensive improvements in motor symptoms, cognitive function, postural stability, and cardiovascular fitness compared to aerobic exercise alone. These results have important implications for developing tailored exercise interventions to enhance the physical and cognitive well-being of individuals with early-stage PD.
Collapse
|
15
|
Cantón-Suárez A, Sánchez-Valdeón L, Bello-Corral L, Cuevas MJ, Estébanez B. Understanding the Molecular Impact of Physical Exercise on Alzheimer's Disease. Int J Mol Sci 2024; 25:13576. [PMID: 39769339 PMCID: PMC11677557 DOI: 10.3390/ijms252413576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease is one of the most common neurodegenerative diseases, characterized by a wide range of neurological symptoms that begin with personality changes and psychiatric symptoms, progress to mild cognitive impairment, and eventually lead to dementia. Physical exercise is part of the non-pharmacological treatments used in Alzheimer's disease, as it has been shown to delay the neurodegenerative process by improving the redox state in brain tissue, providing anti-inflammatory effects or stimulating the release of the brain-derived neurotrophic factor that enhances the brain structure and cognitive performance. Here, we reviewed the results obtained from studies conducted in both animal models and human subjects to comprehend how physical exercise interventions can exert changes in the molecular mechanisms underlying the pathophysiological processes in Alzheimer's disease: amyloid β-peptide pathology, tau pathology, neuroglial changes, mitochondrial dysfunction, and oxidative stress. Physical exercise seems to have a protective effect against Alzheimer's disease, since it has been shown to induce positive changes in some of the biomarkers related to the pathophysiological processes of the disease. However, additional studies in humans are necessary to address the current lack of conclusive evidence.
Collapse
Affiliation(s)
| | - Leticia Sánchez-Valdeón
- Health Research Nursing Group (GREIS), University of Leon, 24071 Leon, Spain; (L.S.-V.); (L.B.-C.)
- Department of Nursing and Physiotherapy, University of Leon, 24071 Leon, Spain
| | - Laura Bello-Corral
- Health Research Nursing Group (GREIS), University of Leon, 24071 Leon, Spain; (L.S.-V.); (L.B.-C.)
- Department of Nursing and Physiotherapy, University of Leon, 24071 Leon, Spain
| | - María J. Cuevas
- Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain;
| | - Brisamar Estébanez
- Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain;
| |
Collapse
|
16
|
Clark CE, Gold J, Rigby BR. Sleep duration in middle-aged years of life predicts the age of diagnosis of Parkinson's disease. Sleep Med X 2024; 8:100123. [PMID: 39263596 PMCID: PMC11388711 DOI: 10.1016/j.sleepx.2024.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction Chronic short sleep duration (i.e., <7 h sleep daily) could reduce the brain's ability to attenuate toxin and protein accumulation, which may contribute to Parkinson's disease (PD). The purpose of this study was to characterize the relationship between self-reported sleep duration from adolescence to adulthood and the age of diagnosis in people with PD. A secondary purpose was to characterize the interaction between sleep duration and physical activity through the lifespan on the age of PD diagnosis. Methods A secondary data analysis was performed using the Fox Insight data set. Multiple regression analysis was used to determine the age range that sleep duration best predicted the age of diagnosis of PD. Hierarchical linear multiple regression was performed to assess if self-reported sleep duration, physical activity, and their interaction predicted the age of diagnosis for PD, after accounting for sociodemographic factors. Results Both sleep (p < 0.001) and physical activity time (p = 0.013) significantly predicted the of age of onset of PD. In contrast, there was no evidence to support an interaction of sleep by physical activity on the age of diagnosis of PD. Sleep duration at 46-55 years maintained significance after controlling for education, income, race, ethnicity, and sex (p < 0.001). Weekly duration of time spent performing moderate-intensity physical activity was added as an input variable. Conclusion Sleep duration significantly predicts the age of diagnosis of PD, with shorter sleep duration associated with a younger age of diagnosis of PD.
Collapse
|
17
|
Gong X, Tan Z, Xu H, Jiang X, Chen L. Paeoniflorin Attenuates Oxidative Stress and Inflammation in Parkinson's Disease by Activating the HSF1-NRF1 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2131-2159. [PMID: 39663263 DOI: 10.1142/s0192415x24500824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This study is to explore the effects of paeoniflorin (PF) on oxidative stress (OS) and inflammation in Parkinson's disease (PD) via the HSF1-NRF1 axis. SH-SY5Y cells were pretreated with PF and induced with α-synuclein preformed fibrils (PFF), followed by gain- and loss-of-function assays. Afterward, detection was conducted on cell viability, mitochondrial membrane potential ([Formula: see text]m), and reactive oxygen species (ROS), cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) levels. The binding of HSF1 to NRF1 promoter was evaluated. HSF1 and NRF1 expression was examined. Lastly, PD mouse models were established, followed by observation of the behavioral features of mice. Apoptosis; cleaved-Caspase 3, cleaved-Caspase 8, repulsive guidance molecule A (RGMa), GAP-43, and brain-derived neurotrophic factor (BDNF) expression; and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT), tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-6, and IL-10 levels were determined in mice and cells. HSF1 and NRF1 were downregulated, and HSF1 promoted NRF1 transcription and PF dose-dependently augmented HSF1 and NRF1 expression. PF dose-dependently reduced RGMa expression, ROS, MDA, TNF-α, IL-2, and IL-6 levels; mitigated apoptosis; and lowered cleaved-Caspase 3, cleaved-Caspase 8, COX-2, and iNOS expression while improving cell viability; increasing [Formula: see text]m, GAP-43, and BDNF expression; and raising SOD, GSH-Px, CAT, and IL-10 levels in PFF-induced SH-SY5Y cells. These effects were neutralized by HSF1 knockdown. In conclusion, PF dose-dependently activated the HSF1-NRF1 axis and alleviated OS and inflammation in PFF-treated mice, thereby impeding PD progression in mice.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Zhijian Tan
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Henghui Xu
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Xu Jiang
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| |
Collapse
|
18
|
Xu Y, Liu Q, Pang J, Zeng C, Ma X, Li P, Ma L, Huang J, Xie H. Assessment of Personalized Exercise Prescriptions Issued by ChatGPT 4.0 and Intelligent Health Promotion Systems for Patients with Hypertension Comorbidities Based on the Transtheoretical Model: A Comparative Analysis. J Multidiscip Healthc 2024; 17:5063-5078. [PMID: 39539514 PMCID: PMC11559245 DOI: 10.2147/jmdh.s477452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Exercise is a vital adjunct therapy for patients with hypertension comorbidities. However, medical personnel and patients face significant obstacles in implementing exercise prescription recommendations. AI has been developed as a beneficial tool in the healthcare field. The performance of intelligent tools such as ChatGPT 4.0 and Intelligent Health Promotion Systems (IHPS) in issuing exercise prescriptions for patients with hypertension comorbidities remains to be verified. Patients and Methods After collecting patient information through IHPS hardware and questionnaire systems, the data were input into the software terminals of ChatGPT 4.0 and IHPS according to the five stages of the Transtheoretical Model, resulting in exercise prescriptions. Subsequently, experts from various fields scored the accuracy, comprehensiveness, and applicability of each prescription, along with providing professional recommendations based on their expertise. By comparing the performance of both systems, their capability to serve this specific group was evaluated. Results In most cases, ChatGPT scored significantly higher than IHPS in terms of accuracy, comprehensiveness, and applicability. However, when patients exhibited certain functional movement disorders, GPT's exercise prescriptions involved higher health risks, whereas the more conservative approach of IHPS was advantageous. Conclusion The path of generating exercise prescriptions using artificial intelligence, whether via ChatGPT or IHPS, cannot achieve a completely satisfactory state.But can serve as a supplementary tool for professionals issuing exercise prescriptions to patients with hypertension comorbidities, especially in alleviating the financial burden of consulting costs. Future research could further explore the performance of AI in issuing exercise prescriptions, harmonize it with physiological indicators and phased feedback, and develop an interactive user experience.
Collapse
Affiliation(s)
- Yang Xu
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Qiankun Liu
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Jiaxue Pang
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Chunlu Zeng
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Xiaoqing Ma
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Pengyao Li
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Li Ma
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Juju Huang
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Hui Xie
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| |
Collapse
|
19
|
Amadio E, Mencio M, Carlizza A, Panuccio F, Sellitto G, Ruotolo I, Simeon R, Berardi A, Galeoto G. An Exploratory Study on the Effects of Souchard Postural Gymnastics in Parkinson's Disease Patients with Camptocormia: A Quasi-Experimental Approach. J Clin Med 2024; 13:6166. [PMID: 39458116 PMCID: PMC11508808 DOI: 10.3390/jcm13206166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objective: Parkinson's disease (PD), a prevalent neurodegenerative disorder, leads to motor and non-motor impairments, affecting quality of life. Camptocormia can be one of the motor signs of PD, characterized by a severe and abnormal forward flexion of the thoracolumbar spine that typically occurs when walking or standing. The following study aims to verify whether postural gymnastics can be an effective treatment for trunk control, balance, activities of daily living, and general well-being in patients with early-stage PD and camptocormia. Methods: Nine participants (mean age 67.7 ± 7.8) with early PD (Hoehn and Yahr Scale ≤ 2) received 10 biweekly physiotherapy sessions. Outcomes were measured using the Parkinson's Disease Questionnaire (PDQ-39) and Berg Balance Scale (BBS) along with trunk mobility and muscle tests according to the Medical Research Council (MRC) scale. Results: Statistically significant results were noted in the PDQ-39 mobility, ADLs and emotional well-being subscales and in the BBS; statistically significant improvements were also seen in trunk mobility and muscle strength. Conclusions: This study shows that the postural gymnastic treatment, according to Souchard, in patients with PD's camptocormia has obtained good results and has the potential timprove mobility and balance, encouraging and motivating patients in their rehabilitation journeys.
Collapse
Affiliation(s)
- Emanuele Amadio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (E.A.); (F.P.); (G.S.); (I.R.); (R.S.); (A.B.)
| | - Matteo Mencio
- UniCamillus University of Rome, Via di Sant’Alessandro, 8, 00131 Rome, Italy; (M.M.); (A.C.)
| | - Alessandra Carlizza
- UniCamillus University of Rome, Via di Sant’Alessandro, 8, 00131 Rome, Italy; (M.M.); (A.C.)
| | - Francescaroberta Panuccio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (E.A.); (F.P.); (G.S.); (I.R.); (R.S.); (A.B.)
| | - Giovanni Sellitto
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (E.A.); (F.P.); (G.S.); (I.R.); (R.S.); (A.B.)
| | - Ilaria Ruotolo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (E.A.); (F.P.); (G.S.); (I.R.); (R.S.); (A.B.)
| | - Rachele Simeon
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (E.A.); (F.P.); (G.S.); (I.R.); (R.S.); (A.B.)
| | - Anna Berardi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (E.A.); (F.P.); (G.S.); (I.R.); (R.S.); (A.B.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
| | - Giovanni Galeoto
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (E.A.); (F.P.); (G.S.); (I.R.); (R.S.); (A.B.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
| |
Collapse
|
20
|
Guidetti M, Marceglia S, Bocci T, Duncan R, Fasano A, Foote K, Hamani C, Krauss J, Kühn AA, Lena F, Limousin P, Lozano A, Maiorana N, Modugno N, Moro E, Okun M, Oliveri S, Santilli M, Schnitzler A, Temel Y, Timmermann L, Visser-Vandewalle V, Volkmann J, Priori A. Physical therapy in patients with Parkinson's disease treated with Deep Brain Stimulation: a Delphi panel study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24314037. [PMID: 39399050 PMCID: PMC11469472 DOI: 10.1101/2024.09.20.24314037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Although deep brain stimulation of the subthalamic nucleus (STN-DBS) induces motor benefits in people with Parkinson's disease (PwPD), the size and duration of the effects of STN-DBS on motor axial (e.g., postural instability, trunk posture alterations) and gait impairments (e.g., freezing of gait - FOG) are still ambiguous. Physical therapy (PT) effectively complements pharmacological treatment to improve postural stability, gait performance, and other dopamine-resistant symptoms (e.g. festination, hesitation, axial motor dysfunctions, and FOG) in PwPD who are non-surgically treated. Despite the potential for positive adjuvant effects of PT following STN-DBS surgery, there is a paucity of science available on the topic. In such a scenario, gathering the opinion and expertise of leading investigators worldwide was pursued to study motor rehabilitation in PwPD following STN-DBS. After summarizing the few available findings through a systematic review, we identified clinical and academically experienced DBS clinicians (n=21) to discuss the challenges related to PT following STN-DBS. A 5-point Likert scale questionnaire was used and based on the results of the systematic review along with a Delphi method. Thirty-nine questions were submitted to the panel - half related to general considerations on PT following STN-DBS, half related to PT treatments. Despite the low-to-moderate quality, the few available rehabilitative studies suggested that PT could improve dynamic and static balance, gait performance and posture. Similarly, panellists strongly agreed that PT might help in improving motor symptoms and quality of life, and it may be possibly prescribed to maximize the effects of the stimulation. The experts agreed that physical therapists could be part of the multidisciplinary team taking care of the patients. Also, they agreed on prescribing of conventional PT, but not massage or manual therapy. Our results will inform the rehabilitation and the DBS community to engage, publish and deepen this area of research. Such efforts may spark guidelines for PT following STN-DBS.
Collapse
Affiliation(s)
- M. Guidetti
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - S. Marceglia
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - T. Bocci
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - R. Duncan
- Washington University in St. Louis, School of Medicine, Program in Physical Therapy, St. Louis, MO, USA
- Washington University in St. Louis, School of Medicine, Department of Neurology, St. Louis, MO, USA
| | - A. Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson’s Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - K.D. Foote
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL 32608, USA
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - C. Hamani
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, M5T 1P5, ON, Canada
| | - J.K. Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - A. A. Kühn
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - F. Lena
- Department of Medicine and Health, University of Molise, 86100 Campobasso, Italy
- IRCCS INM Neuromed, 86077 Pozzilli, Italy
| | - P. Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - A.M. Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - N.V. Maiorana
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - N. Modugno
- IRCCS INM Neuromed, 86077 Pozzilli, Italy
| | - E. Moro
- Division of Neurology, CHU of Grenoble, Grenoble Institute of Neurosciences, INSERM U1216, Grenoble Alpes University, Grenoble, France
| | - M.S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
| | - S. Oliveri
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | | | - A. Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Y. Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - L. Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - V. Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - J. Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - A. Priori
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| |
Collapse
|
21
|
Danics K, Visanji NP, Ichimata S, Mathur S, Sára-Klausz G, Kovacs GG. Prevalence and Distribution of Lewy Pathology in a Homeless Population. Can J Neurol Sci 2024; 51:496-502. [PMID: 37793895 DOI: 10.1017/cjn.2023.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
BACKGROUND The homeless population experience significant inequalities in health, and there is an increasing appreciation of the potential of lifestyle factors in the development of neurodegenerative diseases, including Parkinson's disease. We performed a study on the prevalence and distribution of pathological alpha-synuclein deposition throughout the central and peripheral nervous systems in a homeless population. METHODS Forty-four homeless individuals consecutively available for autopsy were recruited. Immunohistochemistry was performed using 5G4 antibody recognizing disease-associated forms of alpha-synuclein, complemented by phospho-synuclein antibody on autopsy tissues collected from 18 regions of the brain and spinal cord, as well as the right and left olfactory bulb, the cauda equina, the extramedullary portion of the vagus nerve, and 27 sites of peripheral organs. RESULTS The study cohort consisted of 38 males and 6 females, median age 58 years (range 32-67). Lewy-related pathology was present in the brains of three male cases. One showed Braak stage 2 (60 years old), and two stage 4 (56 and 59 years old). One of the Braak stage 4 cases had Lewy-related pathology in the spinal cord, the cauda equina, and the extramedullary portion of the vagus nerve. Examination of 27 sites of peripheral organs found that all three cases with Lewy-related pathology present in the brain were devoid of peripheral organ alpha-synuclein pathology. Multiple system-type alpha-synuclein pathology was not found. CONCLUSION Our study, representing a snapshot of the homeless population that came to autopsy, suggests that alpha-synuclein pathology is prevalent in the homeless supporting further study of this vulnerable population.
Collapse
Affiliation(s)
- Krisztina Danics
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Naomi P Visanji
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - Sarika Mathur
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - Gabriella Sára-Klausz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
22
|
Wang Q, Bian J, Sun Y, Shi Y, Zhao Z, Zhao H. Motor dysfunction in Parkinson's patients: depression differences in a latent growth model. Front Aging Neurosci 2024; 16:1393887. [PMID: 38887609 PMCID: PMC11181910 DOI: 10.3389/fnagi.2024.1393887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Objective This study aims to utilize latent growth model (LGM) to explore the developmental trajectory of motor dysfunction in Parkinson's disease (PD) patients and investigate the relationship between depression and motor dysfunction. Methods Four-year follow-up data from 389 PD patients were collected through the Parkinson's Progression Marker Initiative (PPMI). Firstly, a univariate LGM was employed to examine the developmental trajectory of motor dysfunction in PD patients. Subsequently, depression levels were introduced as covariates into the model, and depression was further treated as a parallel growth latent variable to study the longitudinal relationship between motor dysfunction and depression. Results In the trajectory analysis of motor dysfunction, the fit indices for the quadratic growth LGM model were χ2 = 7.419, df = 6, CFI = 0.998, TLI = 0.997, SRMR = 0.019, and RMSEA = 0.025, indicating that the growth trend of motor dysfunction follows a quadratic curve rather than a simple linear pattern. Introducing depression symptoms as time-varying covariates to explore their effect on motor dysfunction revealed significant positive correlations (β = 0.383, p = 0.026; β = 0.675, p < 0.001; β = 0.385, p = 0.019; β = 0.415, p = 0.014; β = 0.614, p = 0.003), suggesting that as depression levels increase, motor dysfunction scores also increase. Treating depression as a parallel developmental process in the LGM, the regression coefficients for depression intercept on motor dysfunction intercept, depression slope on motor dysfunction slope, and depression quadratic factor on motor dysfunction quadratic factor were 0.448 (p = 0.046), 1.316 (p = 0.003), and 1.496 (p = 0.038), respectively. These significant regression coefficients indicate a complex relationship between depression and motor dysfunction, involving not only initial level associations but also growth trends over time and possible quadratic effects. Conclusion This study indicates a quadratic growth trajectory for motor dysfunction in PD, suggesting a continuous increase in severity with a gradual deceleration in growth rate. The relationship between depression and motor dysfunction is complex, involving initial associations, evolving trends over time, and potential quadratic effects. Exacerbation of depressive symptoms may coincide with motor function deterioration.
Collapse
Affiliation(s)
- QiuShuang Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Bian
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Sun
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - YaoZhou Shi
- Department of Orthopedics, First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - ZiXuan Zhao
- Department of Public Administration, School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, China
| | - HuaShuo Zhao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Bautista CJ, Reyes-Castro LA, Lomas-Soria C, Ibáñez CA, Zambrano E. Late-in-life Exercise Ameliorates the Aging Trajectory Metabolism Programmed by Maternal Obesity in Rats: It is Never Too Late. Arch Med Res 2024; 55:103002. [PMID: 38735235 DOI: 10.1016/j.arcmed.2024.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Maternal obesity (MO) has been shown to adversely affect metabolic, oxidative, reproductive, and cognitive function in offspring. However, it is unclear whether lifestyle modification can ameliorate the metabolic and organ dysfunction programmed by MO and prevent the effects of metabolic syndrome in adulthood. This study aimed to evaluate whether moderate voluntary exercise in the offspring of rats born to obese mothers can ameliorate the adverse effects of MO programming on metabolism and liver function in mid-adulthood. METHODS Offspring of control (CF1) and MOF1 mothers were fed with a control diet from weaning. Adult males and females participated in 15 min exercise sessions five days/week. Metabolic parameters were analyzed before and after the exercise intervention. Liver oxidative stress biomarkers and antioxidant enzymes were analyzed before and after the intervention. RESULTS Males showed that CF1ex ran more than MOF1ex and increased the distance covered. In contrast, females in both groups ran similar distances and remained constant but ran more distance than males. At PND 300 and 450, male and female MOF1 had higher leptin, triglycerides, insulin, and HOMA-IR levels than CF1. However, male MOF1ex had lower triglycerides, insulin, and HOMA-IR levels than MOF1. Improvements in liver fat and antioxidant enzymes were observed in CF1ex and MOF1ex males and females compared to their respective CF1 and MOF1 groups. CONCLUSION These findings suggest that moderate voluntary exercise, even when started in mid-adulthood, can improve metabolic outcomes and delay accelerated metabolic aging in MO-programmed rats in a sex-dependent manner.
Collapse
Affiliation(s)
- Claudia J Bautista
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Consuelo Lomas-Soria
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Consejo Nacional de Humanidades, Ciencias y Tecnologías, Cátedras Investigador por México, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Carlos A Ibáñez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
24
|
Cai M, Wan J, Cai K, Li S, Du X, Song H, Sun W, Hu J. The mitochondrial quality control system: a new target for exercise therapeutic intervention in the treatment of brain insulin resistance-induced neurodegeneration in obesity. Int J Obes (Lond) 2024; 48:749-763. [PMID: 38379083 DOI: 10.1038/s41366-024-01490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Ming Cai
- Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201599, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Wanju Sun
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
25
|
Lin F, Lin Y, Chen L, Huang T, Lin T, He J, Lu X, Chen X, Wang Y, Ye Q, Cai G. Association of physical activity pattern and risk of Parkinson's disease. NPJ Digit Med 2024; 7:137. [PMID: 38783073 PMCID: PMC11116521 DOI: 10.1038/s41746-024-01135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Increasing evidence suggests an association between exercise duration and Parkinson's disease. However, no high-quality prospective evidence exists confirming whether differences exist between the two modes of exercise, weekend warrior and equal distribution of exercise duration, and Parkinson's risk. Hence, this study aimed to explore the association between different exercise patterns and Parkinson's risk using exercise data from the UK Biobank. The study analyzed data from 89,400 UK Biobank participants without Parkinson's disease. Exercise data were collected using the Axivity AX3 wrist-worn triaxial accelerometer. Participants were categorized into three groups: inactive, regularly active, and engaged in the weekend warrior (WW) pattern. The relationship between these exercise patterns and Parkinson's risk was assessed using a multifactorial Cox model. During a mean follow-up of 12.32 years, 329 individuals developed Parkinson's disease. In a multifactorial Cox model, using the World Health Organization-recommended threshold of 150 min of moderate-to-vigorous physical activity per week, both the active WW group [hazard ratio (HR) = 0.58; 95% confidence interval (CI) = 0.43-0.78; P < 0.001] and the active regular group (HR = 0.44; 95% CI = 0.34-0.57; P < 0.001) exhibited a lower risk of developing Parkinson's disease compared with the inactive group. Further, no statistically significant difference was observed between the active WW and the active regular groups (HR = 0.77; 95% CI = 0.56-1.05; P = 0.099). In conclusion, in this cohort study, both the WW exercise pattern and an equal distribution of exercise hours were equally effective in reducing Parkinson's risk.
Collapse
Affiliation(s)
- Fabin Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yixiang Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Lina Chen
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Tingting Huang
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Tianxin Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Jiarui He
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Xiaoyang Lu
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Xiaochun Chen
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Yingqing Wang
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China.
| | - Qinyong Ye
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China.
| | - Guoen Cai
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China.
| |
Collapse
|
26
|
Chrysagis N, Trompouki G, Petropaulis D, Koumantakis GA, Krekoukias G, Theotokatos G, Skordilis E, Sakellari V. Effect of Boxing Exercises on the Functional Ability and Quality of Life of Individuals with Parkinson's Disease: A Systematic Review. Eur J Investig Health Psychol Educ 2024; 14:1295-1310. [PMID: 38785583 PMCID: PMC11119617 DOI: 10.3390/ejihpe14050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) is a neurological disorder caused by the loss of dopamine-producing cells in the substantia nigra and characterized by motor and non-motor symptoms. Boxing is a type of complementary therapy to improve symptoms in PD. The purpose of the present study was to examine the effect of boxing training on the functionality and quality of life of patients with PD. The literature search was performed on PubMed, Scopus, PEDro, Cochrane Library, and Google Scholar search engines. The PEDro scale was used to assess the methodological quality of the studies. This systematic review included three studies that examined disease severity, mobility, physical activity, balance, and quality of life. According to the PEDro scale criteria, the three articles included were of high methodological quality. Statistically significant improvements after the implementation of boxing training was shown for balance and quality of life in contrast to the other variables. Boxing training intervention programs had a positive effect on balance and quality of life in patients with PD; however, the results are conflicting regarding certain functionality variables. Therefore, it is necessary to conduct further research to examine the effectiveness of boxing training on the functionality and quality of life of patients with Parkinson's disease.
Collapse
Affiliation(s)
- Nikolaos Chrysagis
- Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece; (G.T.); (D.P.); (G.A.K.); (G.K.)
- Laboratory of Advanced Physiotherapy, Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece
| | - Georgia Trompouki
- Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece; (G.T.); (D.P.); (G.A.K.); (G.K.)
| | - Dimitris Petropaulis
- Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece; (G.T.); (D.P.); (G.A.K.); (G.K.)
| | - George A. Koumantakis
- Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece; (G.T.); (D.P.); (G.A.K.); (G.K.)
- Laboratory of Advanced Physiotherapy, Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece
| | - Georgios Krekoukias
- Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece; (G.T.); (D.P.); (G.A.K.); (G.K.)
- Laboratory of Advanced Physiotherapy, Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece
| | - Georgios Theotokatos
- School of Physical Education and Sport Science, National and Kapodestrian University of Athens, Ethniki Antistaseos 41, 17237 Dapne, Greece; (G.T.); (E.S.)
| | - Emmanouil Skordilis
- School of Physical Education and Sport Science, National and Kapodestrian University of Athens, Ethniki Antistaseos 41, 17237 Dapne, Greece; (G.T.); (E.S.)
| | - Vasiliki Sakellari
- Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece; (G.T.); (D.P.); (G.A.K.); (G.K.)
- Laboratory of Advanced Physiotherapy, Physiotherapy Department, School of Health & Care Sciences, University of West Attica, Agiou Spiridonos 28, 12243 Egaleo, Greece
| |
Collapse
|
27
|
Palm D, Swarowsky A, Gullickson M, Shilling H, Wolden M. Effects of Group Exercise on Motor Function and Mobility for Parkinson Disease: A Systematic Review and Meta-Analysis. Phys Ther 2024; 104:pzae014. [PMID: 38335243 DOI: 10.1093/ptj/pzae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Parkinson disease (PD) is associated with a predictable decline in motor function and mobility that is commonly managed with exercise. There is a limited understanding of the effects of group exercise compared to individual exercise (IE) and usual care (UC) on motor function and mobility. Our purpose was to investigate the effects of group exercise compared to IE and UC on motor function and mobility for people with PD. METHODS A systematic review and meta-analysis was performed with randomized control trials that investigated the effects of group compared with IE and UC on motor function and mobility for people with PD. A systematic search was performed in PubMed, EBSCO, and Science Direct databases. Methodological quality was assessed using the Cochrane Grading of Recommendations Assessment, Development, and Evaluation approach. RESULTS Twenty-three studies assessed at least 1 mobility-related outcome measure, met our inclusion criteria, and were included in quantitative analysis. There was no significant difference on motor function and mobility between group exercise and IE for all standardized outcome assessment meta-analyses. Motor function and mobility were significantly improved with group exercise compared to UC in 9 of 11 standardized outcome assessment meta-analyses. Results were based upon low to moderate quality of evidence. CONCLUSION Based upon low to moderate quality of evidence, group exercise has a similar to larger effect as IE and UC on improving motor function and mobility for people with PD. When used in combination with skilled physical therapy, group exercise may be an appropriate adjunct to individualized physical therapy to maximize mobility and function. IMPACT Long-term adherence to exercise is essential to maintain mobility and motor function for people with PD. Our study suggests group exercise is as effective as IE and may be an appropriate option to encourage long-term adherence related to increased access, socialization, and accountability.
Collapse
Affiliation(s)
- Diana Palm
- Physical Therapy Program, University of Jamestown, Fargo, North Dakota, USA
| | | | | | - Holly Shilling
- Physical Therapy Program, University of Jamestown, Fargo, North Dakota, USA
| | - Mitch Wolden
- Physical Therapy Program, University of Jamestown, Fargo, North Dakota, USA
| |
Collapse
|
28
|
Wang X, Chen H, Chang Z, Zhang J, Xie D. Genetic causal role of body mass index in multiple neurological diseases. Sci Rep 2024; 14:7256. [PMID: 38538647 PMCID: PMC10973473 DOI: 10.1038/s41598-024-57260-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/15/2024] [Indexed: 01/03/2025] Open
Abstract
Body mass index (BMI) is a crucial health indicator for obesity. With the progression of socio-economic status and alterations in lifestyle, an increasing number of global populations are at risk of obesity. Given the complexity and severity of neurological diseases, early identification of risk factors is vital for the diagnosis and prognosis of such diseases. In this study, we employed Mendelian randomization (MR) analysis utilizing the most comprehensive genome-wide association study (GWAS) data to date. We selected single nucleotide polymorphisms (SNPs) that are unaffected by confounding factors and reverse causality as instrumental variables. These variables were used to evaluate the genetic and causal relationships between Body Mass Index (BMI) and various neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Ischemic Stroke (IS), and Epilepsy (EP). The Inverse Variance Weighted (IVW) analysis indicated that there was no significant causal relationship between Body Mass Index (BMI) indicators and PD (P-value = 0.511), AD (P-value = 0.076), ALS (P-value = 0.641), EP (P-value = 0.380). However, a causal relationship was found between BMI indicators and MS (P-value = 0.035), and IS (P-value = 0.000), with the BMI index positively correlated with the risk of both diseases. The Cochran's Q test for MR-IVW showed no heterogeneity in the MR analysis results between the BMI index and the neurological diseases (P > 0.05). The Egger intercept test for pleiotropy revealed no horizontal pleiotropy detected in any of the neurological diseases studied (P > 0.05). It was found that there was no causal relationship between BMI and PD, AD, ALS, EP, and a genetic causal association with MS, and IS. Meanwhile, the increase in BMI can lead to a higher risk of MS and IS, which reveals the critical role of obesity as a risk factor for specific neurological diseases in the pathogenesis of the diseases.
Collapse
Affiliation(s)
- Xie Wang
- Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Hong Chen
- Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Ze Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100089, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, 230031, China
| | - Daojun Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, 230031, China.
| |
Collapse
|
29
|
Li G, Huang P, Cui S, He Y, Jiang Q, Li B, Li Y, Xu J, Wang Z, Tan Y, Chen S. Tai Chi improves non-motor symptoms of Parkinson's disease: One-year randomized controlled study with the investigation of mechanisms. Parkinsonism Relat Disord 2024; 120:105978. [PMID: 38244460 DOI: 10.1016/j.parkreldis.2023.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Tai Chi was found to improve motor symptoms in Parkinson's disease (PD). Whether long-term Tai Chi training could improve non-motor symptoms (NMS) and the related mechanisms were unknown. OBJECTIVE To investigate Tai Chi's impact on non-motor symptoms in PD and related mechanisms. METHODS 95 early-stage PD patients were recruited and randomly divided into Tai Chi (N = 32), brisk walking (N = 31), and no-exercise groups (N = 32). All subjects were evaluated at baseline, 6 months, and 12 months within one-year intervention. Non-motor symptoms (including cognition, sleep, autonomic symptoms, anxiety/depression, and quality of life) were investigated by rating scales. fMRI, plasma cytokines and metabolomics, and blood Huntingtin interaction protein 2 (HIP2) mRNA levels were detected to observe changes in brain networks and plasma biomarkers. RESULTS Sixty-six patients completed the study. Non-motor functions assessed by rating scales, e.g. PD cognitive rating scale (PDCRS) and Epworth Sleepiness scale (ESS), were significantly improved in the Tai Chi group than the control group. Besides, Tai Chi had advantages in improving NMS-Quest and ESS than brisk walking. Improved brain function was seen in the somatomotor network, correlating with improved PDCRS (p = 0.003, respectively). Downregulation of eotaxin and upregulation of BDNF demonstrated a positive correlation with improvement of PDCRS and PDCRS-frontal lobe scores (p ≤ 0.037). Improvement of energy and immune-related metabolomics (p ≤ 0.043), and elevation of HIP2 mRNA levels (p = 0.003) were also found associated with the improvement of PDCRS. CONCLUSIONS Tai Chi improved non-motor symptoms in PD, especially in cognition and sleep. Enhanced brain network function, downregulation of inflammation, and enhanced energy metabolism were observed after Tai Chi training.
Collapse
Affiliation(s)
- Gen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China; Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, People's Republic of China.
| | - Shishuang Cui
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yachao He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qinying Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yuxin Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China; Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, People's Republic of China.
| |
Collapse
|
30
|
Paterno A, Polsinelli G, Federico B. Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: a systematic review of clinical studies in Parkinson's disease. Front Physiol 2024; 15:1352305. [PMID: 38444767 PMCID: PMC10912511 DOI: 10.3389/fphys.2024.1352305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Background: Brain-Derived Neurotrophic Factor (BDNF) serum levels are reduced in patients with Parkinson's Disease (PD). Objectives: This study aimed to assess the effect of exercise intensity, volume and type on BDNF levels in patients with PD. Methods: We searched clinicaltrials.gov, CINAHL, Embase, PubMed, Scopus, Web of Science for both controlled and non-controlled studies in patients with PD, published between 2003 and 2022, which assessed Brain-Derived Neurotrophic Factor before and after different exercise protocols. Exercise intensity was estimated using a time-weighted average of Metabolic Equivalent of Task (MET), while exercise volume was estimated by multiplying MET for the duration of exercise. Exercise types were classified as aerobic, resistance, balance and others. We computed two distinct standardized measures of effects: Hedges' g to estimate differences between experimental and control group in pre-post intervention BDNF changes, and Cohen's d to measure pre-post intervention changes in BDNF values for each study arm. Meta-regression and linear regression were used to assess whether these effect measures were associated with intensity, volume and type. PROSPERO registration number: CRD42023418629. Results: Sixteen studies (8 two-arm trials and 8 single-arm trials) including 370 patients with PD were eligible for the systematic review. Selected studies had a large variability in terms of population and intervention characteristics. The meta-analysis showed a significant improvement in BDNF levels in the exercise group compared to the control group, Hedges' g = 0.70 (95% CI: 0.03, 1.38), with substantial heterogeneity (I2 = 76.0%). Between-group differences in intensity were positively associated with change in BDNF in a subset of 5 controlled studies. In the analysis which included non-controlled studies, intensity and total exercise volume were both positively associated with BDNF change. No difference was found according to exercise type. Conclusion: Exercises of greater intensity may increase BDNF levels in patients with PD, while the role of volume of exercise needs to be further explored.
Collapse
Affiliation(s)
- Andrea Paterno
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Italy
| | | | | |
Collapse
|
31
|
Chen C, Qi J, Li Y, Li D, Wu L, Li R, Chen Q, Sun N. Applications of Raman spectroscopy in the diagnosis and monitoring of neurodegenerative diseases. Front Neurosci 2024; 18:1301107. [PMID: 38370434 PMCID: PMC10869569 DOI: 10.3389/fnins.2024.1301107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Raman scattering is an inelastic light scattering that occurs in a manner reflective of the molecular vibrations of molecular structures and chemical conditions in a given sample of interest. Energy changes in the scattered light can be assessed to determine the vibration mode and associated molecular and chemical conditions within the sample, providing a molecular fingerprint suitable for sample identification and characterization. Raman spectroscopy represents a particularly promising approach to the molecular analysis of many diseases owing to clinical advantages including its instantaneous nature and associated high degree of stability, as well as its ability to yield signal outputs corresponding to a single molecule type without any interference from other molecules as a result of its narrow peak width. This technology is thus ideally suited to the simultaneous assessment of multiple analytes. Neurodegenerative diseases represent an increasingly significant threat to global public health owing to progressive population aging, imposing a severe physical and social burden on affected patients who tend to develop cognitive and/or motor deficits beginning between the ages of 50 and 70. Owing to a relatively limited understanding of the etiological basis for these diseases, treatments are lacking for the most common neurodegenerative diseases, which include Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The present review was formulated with the goal of briefly explaining the principle of Raman spectroscopy and discussing its potential applications in the diagnosis and evaluation of neurodegenerative diseases, with a particular emphasis on the research prospects of this novel technological platform.
Collapse
Affiliation(s)
- Chao Chen
- Central Laboratory, Liaocheng People’s Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, China
| | - Jinfeng Qi
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ying Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ding Li
- Department of Clinical Laboratory, Liaocheng People’s Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, China
| | - Lihong Wu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ruihua Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qingfa Chen
- Institute of Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, China
- Research Center of Basic Medicine, Jinan Central Hospital, Jinan, China
| | - Ning Sun
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
32
|
Czarnik W, Fularski P, Gajewska A, Jakubowska P, Uszok Z, Młynarska E, Rysz J, Franczyk B. The Role of Intestinal Microbiota and Diet as Modulating Factors in the Course of Alzheimer's and Parkinson's Diseases. Nutrients 2024; 16:308. [PMID: 38276546 PMCID: PMC10820408 DOI: 10.3390/nu16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Many researchers propose manipulating microbiota to prevent and treat related diseases. The brain-gut axis is an object that remains the target of modern research, and it is not without reason that many researchers enrich it with microbiota and diet in its name. Numerous connections and mutual correlations have become the basis for seeking answers to many questions related to pathology as well as human physiology. Disorders of this homeostasis as well as dysbiosis itself accompany neurodegenerative diseases such as Alzheimer's and Parkinson's. Heavily dependent on external factors, modulation of the gut microbiome represents an opportunity to advance the treatment of neurodegenerative diseases. Probiotic interventions, synbiotic interventions, or fecal transplantation can undoubtedly support the biotherapeutic process. A special role is played by diet, which provides metabolites that directly affect the body and the microbiota. A holistic view of the human organism is therefore essential.
Collapse
Affiliation(s)
- Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Paulina Jakubowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Zofia Uszok
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
33
|
Bicknell B, Liebert A, Herkes G. Parkinson's Disease and Photobiomodulation: Potential for Treatment. J Pers Med 2024; 14:112. [PMID: 38276234 PMCID: PMC10819946 DOI: 10.3390/jpm14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease and is increasing in incidence. The combination of motor and non-motor symptoms makes this a devastating disease for people with Parkinson's disease and their care givers. Parkinson's disease is characterised by mitochondrial dysfunction and neuronal death in the substantia nigra, a reduction in dopamine, accumulation of α-synuclein aggregates and neuroinflammation. The microbiome-gut-brain axis is also important in Parkinson's disease, involved in the spread of inflammation and aggregated α-synuclein. The mainstay of Parkinson's disease treatment is dopamine replacement therapy, which can reduce some of the motor signs. There is a need for additional treatment options to supplement available medications. Photobiomodulation (PBM) is a form of light therapy that has been shown to have multiple clinical benefits due to its enhancement of the mitochondrial electron transport chain and the subsequent increase in mitochondrial membrane potential and ATP production. PBM also modulates cellular signalling and has been shown to reduce inflammation. Clinically, PBM has been used for decades to improve wound healing, treat pain, reduce swelling and heal deep tissues. Pre-clinical experiments have indicated that PBM has the potential to improve the clinical signs of Parkinson's disease and to provide neuroprotection. This effect is seen whether the PBM is directed to the head of the animal or to other parts of the body (remotely). A small number of clinical trials has given weight to the possibility that using PBM can improve both motor and non-motor clinical signs and symptoms of Parkinson's disease and may potentially slow its progression.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
- Sydney Adventist Hospital, Wahroonga 2076, Australia
- Faculty of medicine and Health, Sydney University, Camperdown 2050, Australia
| | - Geoffrey Herkes
- Neurologist, Sydney Adventist Hospital, Wahroonga 2076, Australia;
- College of Health and Medicine, Australian National University, Canberra 2600, Australia
| |
Collapse
|
34
|
Podlewska AM, Batzu L, Soukup T, Sevdalis N, Bakolis I, Derbyshire-Fox F, Hartley A, Healey A, Woods A, Crane N, Pariante C, Ray Chaudhuri K. The PD-Ballet study: study protocol for a randomised controlled single-blind hybrid type 2 clinical trial evaluating the effects of ballet dancing on motor and non-motor symptoms in Parkinson's disease. BMC Complement Med Ther 2024; 24:41. [PMID: 38233784 PMCID: PMC10792796 DOI: 10.1186/s12906-023-04296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND To date, beneficial effects of multimodal exercise programmes on Parkinson's disease (PD) have focused on motor symptoms and little attention has been paid to the potential effects of such programmes on the non-motor symptoms of PD, which are now universally known as one of the key drivers of quality of life and a key unmet need. We aim to explore clinical effectiveness of a ballet-based dance programme in addressing non-motor and motor symptoms of Parkinson's disease across all stages of progression. METHODS A randomised, single-blind, controlled trial of 160 people with Parkinson's across all motor stages (Participants will be stratified into three groups of motor advancement: Hoehn and Yahr (HY) stages I and II being Mild Group, HY Stage III being Moderate Group and HY Stages IV and V being Severe Group) will be randomly allocated to either an intervention or a control group using an independent randomisation body. The primary outcome is an improvement in non-motor symptoms as measured by the Movement Disorders Society Non-Motor Scale (MDS-NMS). The intervention protocol consists of 12 one-weekly dance sessions led by English National Ballet. Each session is followed by a 'tea and biscuit' social time. Control group follows standard clinical pathway and joins the 'tea and biscuit' to control for any positive effects of social interactions. All participants are assessed at baseline, immediately after completion of the intervention and 3-6 months later to explore any potential longitudinal effects. DISCUSSION To our knowledge, no adequately powered study has explored the effects of a dance-based intervention on non-motor symptoms of Parkinson's disease, assessing these on both holistic and granular levels. We also aim to stratify participants in accordance with their motor state as assessed by. HY staging to explore specific effects on the symptoms at the initial, moderate and complex stages of the disease. If successful, this trial provides first evidence on clinical effectiveness of a ballet-based dance intervention for symptoms of Parkinson's disease, assessed in a robust, rigorous manner. TRIAL REGISTRATION NCT04719468.
Collapse
Affiliation(s)
- Aleksandra M Podlewska
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK.
- Parkinson's Foundation Centre of Excellence at King's College Hospital, London, UK.
| | - Lucia Batzu
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Parkinson's Foundation Centre of Excellence at King's College Hospital, London, UK
| | - Tayana Soukup
- Imperial College London, Faculty of Medicine, London, UK
| | - Nick Sevdalis
- National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Ioannis Bakolis
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | | | | | - Andy Healey
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Anthony Woods
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Nikki Crane
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Carmine Pariante
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - K Ray Chaudhuri
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Parkinson's Foundation Centre of Excellence at King's College Hospital, London, UK
| |
Collapse
|
35
|
Jiang X, Zhou J, Chen Q, Xu Q, Wang S, Yuan L, Zhang D, Bi H, Li H. Effect of robot-assisted gait training on motor dysfunction in Parkinson's patients:A systematic review and meta-analysis. J Back Musculoskelet Rehabil 2024; 37:253-268. [PMID: 37955075 DOI: 10.3233/bmr-220395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
BACKGROUND Robot-assisted gait training (RAGT) has been reported to treat motor dysfunction in patients with Parkinson's disease (PD) in the last few years. However, the benefits of RAGT for treating motor dysfunction in PD are still unclear. OBJECTIVES To investigate the efficacy of RAGT for motor dysfunction in PD patients. METHODS We searched PubMed, Web of Science, Cochrane Library, Embase, CNKI, Wanfang, Chinese Biomedical Literature Database (CBM), and Chinese VIP Database for randomized controlled trials investigating RAGT to improve motor dysfunction in PD from the databases' inception dates until September 1, 2022. The following outcome indexes were employed to evaluate motor dysfunction: the Berg Balance Scale (BBS), Activities-specific Balance Confidence Scale (ABC), 10-Meter Walk Test gait speed (10-MWT), gait speed, stride length, cadence Unified Parkinson Disease Rating Scale Part III (UPDRS III), 6-Minute Walk Test (6MWT), and the Timed Up and Go test (TUG). The meta-analysis was performed using the proper randomeffect model or fixed-effect model to evaluate the difference in efficacy between the RAGT and the control groups. The Cochrane Risk of Bias Tool was used for the included studies and Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) was used to interpret the certainty of the results. RESULTS The results consisted of 17 studies comprising a total of 670 participants. Six hundred and seven PD patients with motor dysfunction were included: 335 in the RAGT group and 335 in the control group. This meta-analysis results established that when compared with the control group, robot-assisted gait training improved the BBS results of PD patients (MD: 2.80, 95%CI: 2.11-3.49, P< 0.00001), ABC score (MD: 7.30, 95%CI: 5.08-9.52, P< 0.00001), 10-MWT (MD: 0.06, 95%CI: 0.03-0.10, P= 0.0009), gait speed (MD: 3.67, 95%CI: 2.58-4.76, P< 0.00001), stride length (MD: 5.53, 95%CI: 3.64-7.42, P< 0.00001), cadence (MD: 4.52, 95%CI: 0.94-8.10, P= 0.01), UPDRS III (MD: -2.16, 95%CI: -2.48--1.83, P< 0.00001), 6MWT (MD: 13.87, 95%CI: 11.92-15.82, P< 0.00001). However, RAGT did not significantly improve the TUG test result of patients with PD (MD =-0.56, 95% CI: -1.12-0.00, P= 0.05). No safety concerns or adverse reactions among robot-assisted gait training patients were observed. CONCLUSION Even though RAGT can improve balance function, walking function, and gait performance and has demonstrated positive results in several studies, there is currently insufficient compelling evidence to suggest that it can improve all aspects of lower motor function.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianpeng Zhou
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Qiang Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qiling Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shuting Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lin Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Deqi Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hongyan Bi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Haixia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Shelash Al-Hawary SI, Yahya Ali A, Mustafa YF, Margiana R, Maksuda Ilyasovna S, Ramadan MF, Almalki SG, Alwave M, Alkhayyat S, Alsalamy A. The microRNAs (miRs) overexpressing mesenchymal stem cells (MSCs) therapy in neurological disorders; hope or hype. Biotechnol Prog 2023; 39:e3383. [PMID: 37642165 DOI: 10.1002/btpr.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.
Collapse
Affiliation(s)
| | - Anas Yahya Ali
- Department of Nursing, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Marim Alwave
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Safa Alkhayyat
- College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
37
|
Rafie F, Rajizadeh MA, Shahbazi M, Pourranjbar M, Nekouei AH, Sheibani V, Peterson D. Effects of voluntary, and forced exercises on neurotrophic factors and cognitive function in animal models of Parkinson's disease. Neuropeptides 2023; 101:102357. [PMID: 37393777 DOI: 10.1016/j.npep.2023.102357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly. Cognitive dysfunction represents a common and challenging non-motor symptom for people with Parkinson's disease. The number of neurotrophic proteins in the brain is critical in neurodegenerative diseases such as Parkinson's. This research aims to compare the effects of two types of exercise, forced and voluntary, on spatial memory and learning and neurochemical factors (CDNF and BDNF). METHODS In this research, 60 male rats were randomly divided into six groups (n = 10): the control (CTL) group without exercise, the Parkinson's groups without and with forced (FE) and voluntary (VE) exercises, and the sham groups (with voluntary and forced exercise). The animals in the forced exercise group were placed on the treadmill for four weeks (five days a week). At the same time, voluntary exercise training groups were placed in a special cage equipped with a rotating wheel. At the end of 4 weeks, learning and spatial memory were evaluated with the Morris water maze test. BDNF and CDNF protein levels in the hippocampus were measured by the ELISA method. RESULTS The results showed that although the PD group without exercise was at a significantly lower level than other groups in terms of cognitive function and neurochemical factors, both types of exercise, could improve these problems. CONCLUSION According to our results, 4 weeks of voluntary and forced exercises were all found to reverse the cognitive impairments of PD rats.
Collapse
Affiliation(s)
- Forouzan Rafie
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA; Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Shahbazi
- Department of Physical Education & Exercise Science, Tehran University, Tehran, Iran
| | - Mohammad Pourranjbar
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir H Nekouei
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Daniel Peterson
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA; Pheonix VA Medical Center. Phoenix, AZ, USA
| |
Collapse
|
38
|
Yang Y, Wang Y, Gao T, Reyila A, Liu J, Liu J, Han H. Effect of Physiotherapy Interventions on Motor Symptoms in People With Parkinson's Disease: A Systematic Review and Meta-Analysis. Biol Res Nurs 2023; 25:586-605. [PMID: 37070664 DOI: 10.1177/10998004231171587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
OBJECTIVE To evaluate the effectiveness of different types of physiotherapy interventions in people with Parkinson's disease (PD). DESIGN Systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS Five databases (PubMed, Embase, Cochrane Library, CINAHL and Web of Science Core Collection) were searched for relevant RCTs published from database inception to July 14, 2022. Reviewers independently screened the literature, extracted data, and assessed the literature quality according to the Cochrane Collaboration Risk of Bias Tool and PEDro Scale. This meta-analysis was conducted using RevMan 5.4.1 and reported in compliance with the PRISMA statement. RESULTS Forty-two RCTs with 2,530 participants were included. Across all types of physiotherapy, strength training, mind-body exercise, aerobic exercise, and non-invasive brain stimulation (NiBS) were effective in improving motor symptoms as measured by the (Movement Disorders Society-) Unified PD Scale, whereas balance and gait training (BGT) and acupuncture were not. The pooled results showed that the change in mind-body exercise (MD = -5.36, 95% CI [-7.97 to -2.74], p < .01, I2 = 68%) and NiBS (MD = -4.59, 95% CI [-8.59 to -0.59], p = .02, I2 = 78%) reached clinical threshold, indicating clinically meaningful improvements. Considering the effectiveness of the interventions on motor symptoms, balance, gait and functional mobility, mind-body exercise was recommended the most. CONCLUSIONS Exercise appears to be a better form of physiotherapy than NiBS and acupuncture for improving motor function. Mind-body exercise showed beneficial effects on motor symptoms, balance, gait and functional mobility in people with PD, and is worthy of being promoted.
Collapse
Affiliation(s)
- Yajie Yang
- School of Nursing, Peking University, Beijing 100191, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Tianzi Gao
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | | | - Jiaxin Liu
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Jiajia Liu
- School of Nursing, Peking University, Beijing 100191, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
- NMPA Key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing 100191, China
| |
Collapse
|
39
|
Ryu DW, Han K, Cho AH. Mortality and causes of death in patients with Parkinson's disease: a nationwide population-based cohort study. Front Neurol 2023; 14:1236296. [PMID: 37719757 PMCID: PMC10501780 DOI: 10.3389/fneur.2023.1236296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Objective Parkinson's disease (PD) is a neurodegenerative disease involving multiple systems that can affect mortality. This study aimed to compare all-cause and cause-specific mortality between people with PD and without PD. Methods This population-based prospective cohort study is based on Korean National Health Insurance Service data. The primary outcome was the hazard ratio (HR) of all-cause and cause-specific mortality for PD from 2010 to 2019. Cox proportional hazards regression was applied to calculate HRs under crude and three adjusted models with epidemiologic variables. Results A total of 8,220 PD patients and 41,100 age- and sex-matched controls without PD were registered. Ten-year mortality was 47.9% in PD patients and 20.3% in non-PD controls. The mortality rate was higher among older and male participants. The leading cause of death in PD was nervous system diseases (38.73%), and 97.1% of those were extrapyramidal and movement disorders, followed by circulatory diseases (15.33%), respiratory diseases (12.56%), and neoplasms (9.7%). PD contributed to an increased risk of all-cause death with an HR of 2.96 (95% CI = 2.84-3.08). HRs of death for PD were 3.07 (95% CI = 2.74-3.45) from respiratory diseases, 1.93 (95% CI = 1.75-2.13) from circulatory diseases, 2.35 (95% CI = 2.00-2.77) from external causes, and 2.69 (95% CI = 2.10-3.43) from infectious diseases. Conclusion These results showed that PD was related to a higher risk of mortality in all ages and sexes. The leading causes of death in PD were nervous, circulatory, respiratory, infectious diseases, and external causes.
Collapse
Affiliation(s)
- Dong-Woo Ryu
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - A-Hyun Cho
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
40
|
Angelopoulou E, Stanitsa E, Karpodini CC, Bougea A, Kontaxopoulou D, Fragkiadaki S, Koros C, Georgakopoulou VE, Fotakopoulos G, Koutedakis Y, Piperi C, Papageorgiou SG. Pharmacological and Non-Pharmacological Treatments for Depression in Parkinson's Disease: An Updated Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1454. [PMID: 37629744 PMCID: PMC10456434 DOI: 10.3390/medicina59081454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Depression represents one of the most common non-motor disorders in Parkinson's disease (PD) and it has been related to worse life quality, higher levels of disability, and cognitive impairment, thereby majorly affecting not only the patients but also their caregivers. Available pharmacological therapeutic options for depression in PD mainly include selective serotonin reuptake inhibitors, serotonin and norepinephrine reuptake inhibitors, and tricyclic antidepressants; meanwhile, agents acting on dopaminergic pathways used for motor symptoms, such as levodopa, dopaminergic agonists, and monoamine oxidase B (MAO-B) inhibitors, may also provide beneficial antidepressant effects. Recently, there is a growing interest in non-pharmacological interventions, including cognitive behavioral therapy; physical exercise, including dance and mind-body exercises, such as yoga, tai chi, and qigong; acupuncture; therapeutic massage; music therapy; active therapy; repetitive transcranial magnetic stimulation (rTMS); and electroconvulsive therapy (ECT) for refractory cases. However, the optimal treatment approach for PD depression is uncertain, its management may be challenging, and definite guidelines are also lacking. It is still unclear which of these interventions is the most appropriate and for which PD stage under which circumstances. Herein, we aim to provide an updated comprehensive review of both pharmacological and non-pharmacological treatments for depression in PD, focusing on recent clinical trials, systematic reviews, and meta-analyses. Finally, we discuss the pharmacological agents that are currently under investigation at a clinical level, as well as future approaches based on the pathophysiological mechanisms underlying the onset of depression in PD.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Claire Chrysanthi Karpodini
- Sport and Physical Activity Research Centre, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Anastasia Bougea
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Dionysia Kontaxopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Stella Fragkiadaki
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Christos Koros
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | | | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece;
| | - Yiannis Koutedakis
- Functional Architecture of Mammals in Their Environment Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 38221 Volos, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| |
Collapse
|
41
|
Portugal B, Artaud F, Degaey I, Roze E, Fournier A, Severi G, Canonico M, Proust-Lima C, Elbaz A. Association of Physical Activity and Parkinson Disease in Women: Long-term Follow-up of the E3N Cohort Study. Neurology 2023; 101:e386-e398. [PMID: 37197993 PMCID: PMC10435054 DOI: 10.1212/wnl.0000000000207424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/03/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Previous cohort studies reported that a single measure of physical activity (PA) assessed at baseline was associated with lower Parkinson disease (PD) incidence, but a meta-analysis suggested that this association was restricted to men. Because of the long prodromal phase of the disease, reverse causation could not be excluded as a potential explanation. Our objective was to study the association between time-varying PA and PD in women using lagged analyses to address the potential for reverse causation and to compare PA trajectories in patients before diagnosis and matched controls. METHODS We used data from the Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale (1990-2018), a cohort study of women affiliated with a national health insurance plan for persons working in education. PA was self-reported in 6 questionnaires over the follow-up. As questions changed across questionnaires, we created a time-varying latent PA (LPA) variable using latent process mixed models. PD was ascertained using a multistep validation process based on medical records or a validated algorithm based on drug claims. We set up a nested case-control study to examine differences in LPA trajectories using multivariable linear mixed models with a retrospective timescale. Cox proportional hazards models with age as the timescale and adjusted for confounders were used to estimate the association between time-varying LPA and PD incidence. Our main analysis used a 10-year lag to account for reverse causation; sensitivity analyses used 5-, 15-, and 20-year lags. RESULTS Analyses of trajectories (1,196 cases and 23,879 controls) showed that LPA was significantly lower in cases than in controls throughout the follow-up, including 29 years before diagnosis; the difference between cases and controls started to increase ∼10 years before diagnosis (p interaction = 0.003). In our main survival analysis, of 95,354 women free of PD in 2000, 1,074 women developed PD over a mean follow-up of 17.2 years. PD incidence decreased with increasing LPA (p trend = 0.001), with 25% lower incidence in those in the highest quartile compared with the lowest (adjusted hazard ratio 0.75, 95% CI 0.63-0.89). Using longer lags yielded similar conclusions. DISCUSSION Higher PA level is associated with lower PD incidence in women, not explained by reverse causation. These results are important for planning interventions for PD prevention.
Collapse
Affiliation(s)
- Berta Portugal
- From the Université Paris-Saclay (B.P., F.A., I.D., A.F., G.S., M.C., A.E.), UVSQ, Univ. Paris-Sud, Gustave Roussy, Inserm, U1018, Team "Exposome, Heredity, Cancer, and Health," CESP, Villejuif; Neurology Department (E.R.), Hôpital Pitié-Salpêtrière, AP-HP; Sorbonne Université (E.R.); INSERM U1127 (E.R.), CNRS 7225, Brain Institute, Paris, France; Department of Statistics (G.S.), Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy; and Université Bordeaux (C.P.-L.), Inserm, Bordeaux Population Health Research Center, UMR1219, France
| | - Fanny Artaud
- From the Université Paris-Saclay (B.P., F.A., I.D., A.F., G.S., M.C., A.E.), UVSQ, Univ. Paris-Sud, Gustave Roussy, Inserm, U1018, Team "Exposome, Heredity, Cancer, and Health," CESP, Villejuif; Neurology Department (E.R.), Hôpital Pitié-Salpêtrière, AP-HP; Sorbonne Université (E.R.); INSERM U1127 (E.R.), CNRS 7225, Brain Institute, Paris, France; Department of Statistics (G.S.), Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy; and Université Bordeaux (C.P.-L.), Inserm, Bordeaux Population Health Research Center, UMR1219, France
| | - Isabelle Degaey
- From the Université Paris-Saclay (B.P., F.A., I.D., A.F., G.S., M.C., A.E.), UVSQ, Univ. Paris-Sud, Gustave Roussy, Inserm, U1018, Team "Exposome, Heredity, Cancer, and Health," CESP, Villejuif; Neurology Department (E.R.), Hôpital Pitié-Salpêtrière, AP-HP; Sorbonne Université (E.R.); INSERM U1127 (E.R.), CNRS 7225, Brain Institute, Paris, France; Department of Statistics (G.S.), Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy; and Université Bordeaux (C.P.-L.), Inserm, Bordeaux Population Health Research Center, UMR1219, France
| | - Emmanuel Roze
- From the Université Paris-Saclay (B.P., F.A., I.D., A.F., G.S., M.C., A.E.), UVSQ, Univ. Paris-Sud, Gustave Roussy, Inserm, U1018, Team "Exposome, Heredity, Cancer, and Health," CESP, Villejuif; Neurology Department (E.R.), Hôpital Pitié-Salpêtrière, AP-HP; Sorbonne Université (E.R.); INSERM U1127 (E.R.), CNRS 7225, Brain Institute, Paris, France; Department of Statistics (G.S.), Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy; and Université Bordeaux (C.P.-L.), Inserm, Bordeaux Population Health Research Center, UMR1219, France
| | - Agnès Fournier
- From the Université Paris-Saclay (B.P., F.A., I.D., A.F., G.S., M.C., A.E.), UVSQ, Univ. Paris-Sud, Gustave Roussy, Inserm, U1018, Team "Exposome, Heredity, Cancer, and Health," CESP, Villejuif; Neurology Department (E.R.), Hôpital Pitié-Salpêtrière, AP-HP; Sorbonne Université (E.R.); INSERM U1127 (E.R.), CNRS 7225, Brain Institute, Paris, France; Department of Statistics (G.S.), Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy; and Université Bordeaux (C.P.-L.), Inserm, Bordeaux Population Health Research Center, UMR1219, France
| | - Gianluca Severi
- From the Université Paris-Saclay (B.P., F.A., I.D., A.F., G.S., M.C., A.E.), UVSQ, Univ. Paris-Sud, Gustave Roussy, Inserm, U1018, Team "Exposome, Heredity, Cancer, and Health," CESP, Villejuif; Neurology Department (E.R.), Hôpital Pitié-Salpêtrière, AP-HP; Sorbonne Université (E.R.); INSERM U1127 (E.R.), CNRS 7225, Brain Institute, Paris, France; Department of Statistics (G.S.), Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy; and Université Bordeaux (C.P.-L.), Inserm, Bordeaux Population Health Research Center, UMR1219, France
| | - Marianne Canonico
- From the Université Paris-Saclay (B.P., F.A., I.D., A.F., G.S., M.C., A.E.), UVSQ, Univ. Paris-Sud, Gustave Roussy, Inserm, U1018, Team "Exposome, Heredity, Cancer, and Health," CESP, Villejuif; Neurology Department (E.R.), Hôpital Pitié-Salpêtrière, AP-HP; Sorbonne Université (E.R.); INSERM U1127 (E.R.), CNRS 7225, Brain Institute, Paris, France; Department of Statistics (G.S.), Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy; and Université Bordeaux (C.P.-L.), Inserm, Bordeaux Population Health Research Center, UMR1219, France
| | - Cécile Proust-Lima
- From the Université Paris-Saclay (B.P., F.A., I.D., A.F., G.S., M.C., A.E.), UVSQ, Univ. Paris-Sud, Gustave Roussy, Inserm, U1018, Team "Exposome, Heredity, Cancer, and Health," CESP, Villejuif; Neurology Department (E.R.), Hôpital Pitié-Salpêtrière, AP-HP; Sorbonne Université (E.R.); INSERM U1127 (E.R.), CNRS 7225, Brain Institute, Paris, France; Department of Statistics (G.S.), Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy; and Université Bordeaux (C.P.-L.), Inserm, Bordeaux Population Health Research Center, UMR1219, France
| | - Alexis Elbaz
- From the Université Paris-Saclay (B.P., F.A., I.D., A.F., G.S., M.C., A.E.), UVSQ, Univ. Paris-Sud, Gustave Roussy, Inserm, U1018, Team "Exposome, Heredity, Cancer, and Health," CESP, Villejuif; Neurology Department (E.R.), Hôpital Pitié-Salpêtrière, AP-HP; Sorbonne Université (E.R.); INSERM U1127 (E.R.), CNRS 7225, Brain Institute, Paris, France; Department of Statistics (G.S.), Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy; and Université Bordeaux (C.P.-L.), Inserm, Bordeaux Population Health Research Center, UMR1219, France.
| |
Collapse
|
42
|
Lorenzo-García P, Núñez de Arenas-Arroyo S, Cavero-Redondo I, Guzmán-Pavón MJ, Priego-Jiménez S, Álvarez-Bueno C. Physical Exercise Interventions on Quality of Life in Parkinson Disease: A Network Meta-analysis. J Neurol Phys Ther 2023; 47:64-74. [PMID: 36730998 DOI: 10.1097/npt.0000000000000414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Physical exercise is considered an effective intervention for maintaining or improving quality of life (QoL) in patients with Parkinson disease (PD), but there is no evidence showing which type of physical exercise intervention has more positive effects. This systematic review and meta-analysis aimed to synthesize the evidence regarding the effectiveness of exercise interventions on improving QoL in patients with PD, comparing different types of exercise interventions. METHODS A literature search was conducted through January 2022. The methodological quality of the trials was assessed using the Cochrane risk of bias tool RoB2. For the meta-analysis, physical exercise interventions were classified into 5 training categories: resistance, endurance, alternative exercises, dance, and sensorimotor interventions. A standard meta-analysis and network meta-analysis were carried out to evaluate the efficacy of the different types of physical exercise interventions. RESULTS The search retrieved 2451 studies, 48 of which were included in this network meta-analysis with a total of 2977 patients with PD. The indirect effects of the network meta-analysis showed positive results for alternative exercises (-0.46; 95% confidence interval [CI]: -0.76, -0.16), dance (-0.63; 95% CI: -1.08, -0.17), and sensorimotor interventions (-0.23; 95% CI: -0.40, -0.07) versus control comparisons. DISCUSSION AND CONCLUSIONS More research is needed to determine the types of physical exercise interventions that are most beneficial and for which conditions of the disease they have the most positive effects.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A398 ).
Collapse
Affiliation(s)
- Patricia Lorenzo-García
- Health and Social Research Center, Universidad de Castilla La Mancha, Cuenca, Spain (P.L.-G., S.N.d.A.-A., C.Á.-B.); Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile (I.C.-R.) Universidad Politécnica y Artística del Paraguay, Asunción, Paraguay (C.Á.-B.); Faculty of Physiotherapy and Nursing, Universidad de Castilla-La Mancha, Toledo, Spain (M.J.G.-P.); and Hospital Virgen de la Luz, Hermandad de Donantes de Sangre, Cuenca, Spain (S.P.-J.)
| | | | | | | | | | | |
Collapse
|
43
|
de Lira CAB, Minozzo FC, Costa TG, de Oliveira VN, Costa GCT, Oliveira ASB, Quadros AAJ, Vancini RL, Sousa BS, da Silva AC, Andrade MS. Functional exercise capacity in maximal and submaximal activities of individuals with polio sequelae. Eur J Appl Physiol 2023; 123:711-719. [PMID: 36401622 DOI: 10.1007/s00421-022-05095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Poliomyelitis is an infectious disease that can cause total paralysis. Furthermore, poliomyelitis survivors may develop new signs and symptoms, including muscular weakness and fatigue, years after the acute phase of the disease, i.e., post-polio syndrome (PPS). Thus, the objective was to compare the functional exercise capacity during maximal and submaximal exercises among individuals with polio sequelae (without PPS diagnosis), PPS, and a control group. METHODS Thirty individuals participated in three groups: a control group (CG, n = 10); a group of individuals with polio sequelae but without PPS diagnosis (PG, n = 10); and a PPS group (PPSG, n = 10). All participants underwent (i) a cardiopulmonary exercise test to determine their maximal oxygen uptake ([Formula: see text]) and (ii) a series of functional field tests (i.e., walking test, sit-to-stand test, and stair climbing test). RESULTS [Formula: see text]O2max was 30% lower in PPSG than in CG and PG. Regarding functional field tests, walking and stair climbing test performances were significantly different among all groups. The PPSG sit-to-stand performance was lower than CG. CONCLUSION The sequelae of paralytic poliomyelitis impair functional exercise capacity obtained from maximal and submaximal tests, especially in patients with PPS. Furthermore, submaximal variables appear to be more negatively impacted than maximal variables.
Collapse
Affiliation(s)
- Claudio Andre Barbosa de Lira
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil.
| | | | - Thalles Guilarducci Costa
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil
| | - Vinnycius Nunes de Oliveira
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil
| | - Gustavo Conti Teixeira Costa
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil
| | | | | | - Rodrigo Luiz Vancini
- Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | |
Collapse
|
44
|
Xing M, Li G, Liu Y, Yang L, Zhang Y, Zhang Y, Ding J, Lu M, Yu G, Hu G. Fucoidan from Fucus vesiculosus prevents the loss of dopaminergic neurons by alleviating mitochondrial dysfunction through targeting ATP5F1a. Carbohydr Polym 2023; 303:120470. [PMID: 36657849 DOI: 10.1016/j.carbpol.2022.120470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease is a neurodegenerative disease that is characterized by the loss of dopaminergic neurons. Fucoidan, which has emerged as a neuroprotective agent, is a marine-origin sulfated polysaccharide enriched in brown algae and sea cucumbers. However, variations in structural characteristics exist among fucoidans derived from different sources, resulting in a wide spectrum of biological effects. It is urgent to find the fucoidan with the strongest neuroprotective effect, and the mechanism needs to be further explored. We isolated and purified four different fucoidan species with different chemical structures and found that Type II fucoidan from Fucus vesiculosus (FvF) significantly improved mitochondrial dysfunction, prevented neuronal apoptosis, reduced dopaminergic neuron loss, and improved motor deficits in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Further mechanistic investigation revealed that the ATP5F1a protein is a key target responsible for alleviating mitochondrial dysfunction of FvF to exert neuroprotective effects. This study highlights the favorable properties of FvF for neuroprotection, making FvF a promising candidate for the treatment of PD.
Collapse
Affiliation(s)
- Meimei Xing
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yang Liu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Luyao Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Youjiao Zhang
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yuruo Zhang
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211116, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211116, China.
| |
Collapse
|
45
|
Wang Y, Pu Z, Zhang Y, Du Z, Guo Z, Bai Q. Exercise training has a protective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model with improved neural and intestinal pathology and modified intestinal flora. Behav Brain Res 2023; 439:114240. [PMID: 36455673 DOI: 10.1016/j.bbr.2022.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with the exact etiology still unclear, but gut microbial disorders are thought to be related to the initiation and progression of it. Exercise training has a significant effect on the intestinal flora, so to investigate the promotion effect of exercise training on Parkinson's disease, we performed a rotarod walking training (5 times a week at 25 rpm for 20 min for 8 weeks) on a chronic mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed the locomotor function of mice, function of dopaminergic neurons, intestinal mucosal barrier condition, intestinal inflammation and the structure and composition of intestinal flora. The results showed in these PD mice, exercise training improved their motility, increased the dopamine (DA) content in the striatum, along with promoted the gene expression of tyrosine hydroxylase and brain-derived neurotrophic factor in the striatum, which suggests this exercise training might protect striatal dopaminergic neurons from MPTP damage; the results also showed exercise training promoted recovery from ileal pathology, reduced the gene expression of intestinal inflammatory factors, and significantly altered the composition and structure of the intestinal flora in these mice.
Collapse
Affiliation(s)
- Yongjun Wang
- Chongqing Technology and Business University, No. 19 Xue Fu Road, Nanan District, Chongqing 401334, PR China.
| | - Zhengjia Pu
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| | - Yiran Zhang
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| | - Zhaohui Du
- Chongqing Technology and Business University, No. 19 Xue Fu Road, Nanan District, Chongqing 401334, PR China.
| | - Zeming Guo
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| | - Qunhua Bai
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| |
Collapse
|
46
|
Kim R, Lee TL, Lee H, Ko DK, Jeon B, Kang N. Effects of Exercise on Depressive Symptoms in Patients With Parkinson Disease: A Meta-analysis. Neurology 2023; 100:e377-e387. [PMID: 36220597 DOI: 10.1212/wnl.0000000000201453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/08/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to provide clear evidence in support of the use of exercise to improve depressive symptoms in patients with Parkinson disease (PD) and to investigate whether this effect differs by exercise type and intensity. METHODS Three independent reviewers searched for randomized controlled trials (RCTs) that applied exercise interventions with depressive symptoms as an outcome measure for patients with PD on PubMed and Web of Science up to February 28, 2022. Random-effects meta-analyses were performed, in which standardized mean differences (SMDs) between the effects of exercise and control interventions on depressive symptoms with 95% CIs were calculated. RESULTS A total of 19 RCTs including 1,302 patients with PD were eligible for meta-analysis, and we obtained 23 comparisons from the included studies for data synthesis. Physical exercise interventions showed significant effects on the reduction in depressive symptoms in patients with PD (SMD = 0.829; 95% CI = 0.516-1.142; p < 0.001). Moderator analyses on exercise type revealed significant positive effects for combined exercise interventions (SMD = 1.111; 95% CI = 0.635-1.587; p < 0.001), whereas aerobic training alone failed to show significant effects (SMD = 0.202; 95% CI = -0.045 to 0.449; p = 0.108). Both light-to-moderate intensity exercises (SMD = 0.971; 95% CI = 0.521-1.421; p < 0.001) and moderate-to-vigorous intensity exercises (SMD = 0.779; 95% CI = 0.407-1.152; p < 0.001) significantly improved depressive symptoms with a small difference between the exercise intensities. DISCUSSION Our results suggest that physical exercise has significant antidepressant effects in patients with PD. These effects seemed to be more closely associated with exercise type than intensity. Different types of exercise interventions may result in greater benefit and require further investigation.
Collapse
Affiliation(s)
- Ryul Kim
- From the Department of Neurology (R.K.), Inha University Hospital, Inha University College of Medicine, Incheon, Korea; Department of Human Movement Science (T.L.L., H.L., D.K.K., N.K.), Incheon National University, Korea; Division of Sport Science (T.L.L., H.L., D.K.K., N.K.), Sport Science Institute & Health Promotion Center, Incheon National University, Korea; Department of Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Korea; and Neuromechanical Rehabilitation Research Laboratory (N.K.), Incheon National University, Korea
| | - Tae Lee Lee
- From the Department of Neurology (R.K.), Inha University Hospital, Inha University College of Medicine, Incheon, Korea; Department of Human Movement Science (T.L.L., H.L., D.K.K., N.K.), Incheon National University, Korea; Division of Sport Science (T.L.L., H.L., D.K.K., N.K.), Sport Science Institute & Health Promotion Center, Incheon National University, Korea; Department of Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Korea; and Neuromechanical Rehabilitation Research Laboratory (N.K.), Incheon National University, Korea
| | - Hanall Lee
- From the Department of Neurology (R.K.), Inha University Hospital, Inha University College of Medicine, Incheon, Korea; Department of Human Movement Science (T.L.L., H.L., D.K.K., N.K.), Incheon National University, Korea; Division of Sport Science (T.L.L., H.L., D.K.K., N.K.), Sport Science Institute & Health Promotion Center, Incheon National University, Korea; Department of Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Korea; and Neuromechanical Rehabilitation Research Laboratory (N.K.), Incheon National University, Korea
| | - Do Kyung Ko
- From the Department of Neurology (R.K.), Inha University Hospital, Inha University College of Medicine, Incheon, Korea; Department of Human Movement Science (T.L.L., H.L., D.K.K., N.K.), Incheon National University, Korea; Division of Sport Science (T.L.L., H.L., D.K.K., N.K.), Sport Science Institute & Health Promotion Center, Incheon National University, Korea; Department of Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Korea; and Neuromechanical Rehabilitation Research Laboratory (N.K.), Incheon National University, Korea
| | - Beomseok Jeon
- From the Department of Neurology (R.K.), Inha University Hospital, Inha University College of Medicine, Incheon, Korea; Department of Human Movement Science (T.L.L., H.L., D.K.K., N.K.), Incheon National University, Korea; Division of Sport Science (T.L.L., H.L., D.K.K., N.K.), Sport Science Institute & Health Promotion Center, Incheon National University, Korea; Department of Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Korea; and Neuromechanical Rehabilitation Research Laboratory (N.K.), Incheon National University, Korea
| | - Nyeonju Kang
- From the Department of Neurology (R.K.), Inha University Hospital, Inha University College of Medicine, Incheon, Korea; Department of Human Movement Science (T.L.L., H.L., D.K.K., N.K.), Incheon National University, Korea; Division of Sport Science (T.L.L., H.L., D.K.K., N.K.), Sport Science Institute & Health Promotion Center, Incheon National University, Korea; Department of Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Korea; and Neuromechanical Rehabilitation Research Laboratory (N.K.), Incheon National University, Korea.
| |
Collapse
|
47
|
Guan J, Li F, Kang D, Anderson T, Pitcher T, Dalrymple-Alford J, Shorten P, Singh-Mallah G. Cyclic Glycine-Proline (cGP) Normalises Insulin-Like Growth Factor-1 (IGF-1) Function: Clinical Significance in the Ageing Brain and in Age-Related Neurological Conditions. Molecules 2023; 28:molecules28031021. [PMID: 36770687 PMCID: PMC9919809 DOI: 10.3390/molecules28031021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) function declines with age and is associated with brain ageing and the progression of age-related neurological conditions. The reversible binding of IGF-1 to IGF binding protein (IGFBP)-3 regulates the amount of bioavailable, functional IGF-1 in circulation. Cyclic glycine-proline (cGP), a metabolite from the binding site of IGF-1, retains its affinity for IGFBP-3 and competes against IGF-1 for IGFBP-3 binding. Thus, cGP and IGFBP-3 collectively regulate the bioavailability of IGF-1. The molar ratio of cGP/IGF-1 represents the amount of bioavailable and functional IGF-1 in circulation. The cGP/IGF-1 molar ratio is low in patients with age-related conditions, including hypertension, stroke, and neurological disorders with cognitive impairment. Stroke patients with a higher cGP/IGF-1 molar ratio have more favourable clinical outcomes. The elderly with more cGP have better memory retention. An increase in the cGP/IGF-1 molar ratio with age is associated with normal cognition, whereas a decrease in this ratio with age is associated with dementia in Parkinson disease. In addition, cGP administration reduces systolic blood pressure, improves memory, and aids in stroke recovery. These clinical and experimental observations demonstrate the role of cGP in regulating IGF-1 function and its potential clinical applications in age-related brain diseases as a plasma biomarker for-and an intervention to improve-IGF-1 function.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- The cGP Lab Limited New Zealand, Auckland 1021, New Zealand
- Correspondence: ; Tel.: +64-9-923-6134
| | - Fengxia Li
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510075, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Dali Kang
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- Shenyang Medical College, Shenyang 110034, China
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - John Dalrymple-Alford
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
- Department of Psychology, University of Canterbury, Christchurch 4710, New Zealand
| | - Paul Shorten
- AgResearch Ltd., Ruakura Research Centre, Hamilton 3214, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Gagandeep Singh-Mallah
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
48
|
da Costa RO, Gadelha-Filho CVJ, de Aquino PEA, Lima LAR, de Lucena JD, Ribeiro WLC, Lima FAV, Neves KRT, de Barros Viana GS. Vitamin D (VD3) Intensifies the Effects of Exercise and Prevents Alterations of Behavior, Brain Oxidative Stress, and Neuroinflammation, in Hemiparkinsonian Rats. Neurochem Res 2023; 48:142-160. [PMID: 36028736 DOI: 10.1007/s11064-022-03728-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
In the present study, we investigated the effects of physical exercise in the presence of Vitamin D3 (VD3), on 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats. The animals were divided into sham-operated (SO), 6-OHDA-lesioned, and 6-OHDA-lesioned plus VD3 (1 µg/kg, 21 days), in the absence (no exercise, NE) and presence (with exercise, WE) of physical exercise on a treadmill (30 min, speed of 20 cm/s, once a day/21 days). This procedure started, 24 h after the stereotaxic surgery (injections of 6-OHDA into the right striatum). The animals were then subjected to behavioral (rotarod, open field, and apomorphine tests) and their brain areas were dissected for neurochemical, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) determinations, and immunohistochemical studies for tyrosine hydroxylase (TH), dopamine transporter (DAT), and vitamin D receptor (VD3R). The effects on the brain oxidative stress: nitrite/nitrate, glutathione (GSH), and malondialdehyde (MDA) measurements were also evaluated. Behavioral changes of the 6-OHDA lesioned group were improved by exercise plus VD3. Similar results were observed in dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations increased by exercise and VD3, compared with SO groups. Additionally, tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoexpressions were decreased in the 6-OHDA-lesioned groups, with values normalized after exercise and VD3. The VD3 receptor immunoexpression decreased in the 6-OHDA (NE) group, and this was attenuated by exercise, especially after VD3. While 6-OHDA lesions increased, VD3 supplementation decreased the oxidative stress, which was intensified by exercise. VD3 showed neuroprotective properties that were intensified by physical exercise. These VD3 actions on hemiparkinsonian rats are possibly related to its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Roberta Oliveira da Costa
- Graduate Program of Morphofunctional Sciences, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Ludmila Araújo Rodrigues Lima
- Graduate Program of Morphofunctional Sciences, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil
| | - Jalles Dantas de Lucena
- Graduate Program of Morphofunctional Sciences, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Kelly Rose Tavares Neves
- Graduate Program of Pharmacology, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil
| | - Glauce Socorro de Barros Viana
- Graduate Program of Morphofunctional Sciences, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil. .,Graduate Program of Pharmacology, Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
49
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
50
|
Zhang Y, Zhang X, Lin S. Irisin: A bridge between exercise and neurological diseases. Heliyon 2022; 8:e12352. [PMID: 36619416 PMCID: PMC9816981 DOI: 10.1016/j.heliyon.2022.e12352] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise plays a beneficial regulating role on each organ of the body through different mechanisms and is a powerful weapon to prevent disease. Irisin is released from muscle and widely distributed in the human body, participating in the physiological processes of multiple human systems and playing a protective role in multiple human organs. The protective effect of irisin on the nervous system is particularly remarkable, which can improve cognitive function, reduce the risk of ischemic stroke and improve its prognosis. Irisin also plays a guiding role in the prevention and treatment of neurodegenerative diseases and ischemic cerebrovascular diseases. Exercise is the driving factor promoting irisin secretion, and different exercise modes, intensity, frequency, and time all affect the level of serum irisin. As a result of analyzing the effects of various exercise modes on irisin secretion, we proposed an exercise program with a higher level of irisin secretion.
Collapse
|