1
|
Kurmi P, Nalabothu P, Sahoo S, Verma HK, Reddy SG, Bhaskar L. Evaluating the impact of Matrilin-1 gene polymorphisms on mandibular prognathism: A meta-analysis. J Oral Biol Craniofac Res 2025; 15:691-695. [PMID: 40291793 PMCID: PMC12023889 DOI: 10.1016/j.jobcr.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Matrilin-1 was shown to regulate the formation of cartilage matrix and to promote chondrocyte differentiation. This meta-analysis aims to synthesize evidence regarding the link between mandibular prognathism (MP) risk and the polymorphisms in the MATN1 gene. Materials and methods Relevant publications were retrieved by searching the PubMed, Web of Science, and Google Scholar databases. The association between MP and the MATN1 gene polymorphisms (rs20566, rs1065755) was assessed by calculating odds ratios (ORs) and 95 % CIs. Between studies, heterogeneity was identified using the Cochrane Q test and I2 statistics. To assess the robustness of the meta-analysis sensitivity analysis was performed. The web tool MetaGenyo was used to conduct a meta-analysis. Results A total of four Asian and one Caucasian study were eventually taken for meta-analysis. Overall, the MATN1 rs20566 and rs1065755 polymorphisms are not associated with elevated risk of MP (rs20566 AA + AG versus GG OR = 1.35, 95 % CI = 0.32-5.67; rs1065755 TT + CT versus CC OR = 2.02, 95 % CI = 0.87-4.68). The degree of heterogeneity is found to be large for the MATN1 polymorphisms (for rs20566, I2=89 %, and for rs1065755, I2=60 %). Conclusions In conclusion, this meta-analysis did not provide evidence for the link between MATN1 polymorphisms and MP. However, the results conflict with the biological plausibility that matrilin-1 levels modulate cartilage development. Therefore, careful interpretation is needed, and further research is recommended.
Collapse
Affiliation(s)
- Pooja Kurmi
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Prasad Nalabothu
- Department of Paediatric Oral Health and Orthodontics, University Center for Dental Medicine Basel UZB, Basel, Switzerland
| | - Shubhasmita Sahoo
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764, Munich, Germany
| | - Srinivas Gosla Reddy
- GSR Institute of Cranio-Maxillofacial and Facial Plastic Surgery, Hyderabad, Telangana, India
| | - L.V.K.S. Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
2
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
3
|
Zhou X, Zhu Y, Gao D, Li M, Lin L, Wang Z, Du H, Xu Y, Liu J, He Y, Guo Y, Wang S, Qiao S, Bao Y, Liu Y, Zhang H. Matrilin-3 supports neuroprotection in ischemic stroke by suppressing astrocyte-mediated neuroinflammation. Cell Rep 2024; 43:113980. [PMID: 38520693 DOI: 10.1016/j.celrep.2024.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
In the brain, the role of matrilin-3, an extracellular matrix component in cartilage, is unknown. Here, we identify that matrilin-3 decreased in reactive astrocytes but was unchanged in neurons after ischemic stroke in animals. Importantly, it declined in serum of patients with acute ischemic stroke. Genetic or pharmacological inhibition or supplementation of matrilin-3 aggravates or reduces brain injury, astrocytic cell death, and glial scar, respectively, but has no direct effect on neuronal cell death. RNA sequencing demonstrates that Matn3-/- mice display an increased inflammatory response profile in the ischemic brain, including the nuclear factor κB (NF-κB) signaling pathway. Both endogenous and exogenous matrilin-3 reduce inflammatory mediators. Mechanistically, extracellular matrilin-3 enters astrocytes via caveolin-1-mediated endocytosis. Cytoplasmic matrilin-3 translocates into the nucleus by binding to NF-κB p65, suppressing inflammatory cytokine transcription. Extracellular matrilin-3 binds to BMP-2, blocking the BMP-2/Smads pathway. Thus, matrilin-3 is required for astrocytes to exert neuroprotection, at least partially, by suppressing astrocyte-mediated neuroinflammation.
Collapse
Affiliation(s)
- Xianyong Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yongming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Defei Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liang Lin
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Zhanxiang Wang
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Huaping Du
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China
| | - Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuai Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shigang Qiao
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Suzhou, Jiangsu 215301, China; Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu 215163, China
| | - Yingshi Bao
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China
| | - Yuan Liu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China.
| | - Huiling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Cardoneanu A, Rezus II, Burlui AM, Richter P, Bratoiu I, Mihai IR, Macovei LA, Rezus E. Autoimmunity and Autoinflammation: Relapsing Polychondritis and VEXAS Syndrome Challenge. Int J Mol Sci 2024; 25:2261. [PMID: 38396936 PMCID: PMC10889424 DOI: 10.3390/ijms25042261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Relapsing polychondritis is a chronic autoimmune inflammatory condition characterized by recurrent episodes of inflammation at the level of cartilaginous structures and tissues rich in proteoglycans. The pathogenesis of the disease is complex and still incompletely elucidated. The data support the important role of a particular genetic predisposition, with HLA-DR4 being considered an allele that confers a major risk of disease occurrence. Environmental factors, mechanical, chemical or infectious, act as triggers in the development of clinical manifestations, causing the degradation of proteins and the release of cryptic cartilage antigens. Both humoral and cellular immunity play essential roles in the occurrence and perpetuation of autoimmunity and inflammation. Autoantibodies anti-type II, IX and XI collagens, anti-matrilin-1 and anti-COMPs (cartilage oligomeric matrix proteins) have been highlighted in increased titers, being correlated with disease activity and considered prognostic factors. Innate immunity cells, neutrophils, monocytes, macrophages, natural killer lymphocytes and eosinophils have been found in the perichondrium and cartilage, together with activated antigen-presenting cells, C3 deposits and immunoglobulins. Also, T cells play a decisive role in the pathogenesis of the disease, with relapsing polychondritis being considered a TH1-mediated condition. Thus, increased secretions of interferon γ, interleukin (IL)-12 and IL-2 have been highlighted. The "inflammatory storm" formed by a complex network of pro-inflammatory cytokines and chemokines actively modulates the recruitment and infiltration of various cells, with cartilage being a source of antigens. Along with RP, VEXAS syndrome, another systemic autoimmune disease with genetic determinism, has an etiopathogenesis that is still incompletely known, and it involves the activation of the innate immune system through different pathways and the appearance of the cytokine storm. The clinical manifestations of VEXAS syndrome include an inflammatory phenotype often similar to that of RP, which raises diagnostic problems. The management of RP and VEXAS syndrome includes common immunosuppressive therapies whose main goal is to control systemic inflammatory manifestations. The objective of this paper is to detail the main etiopathogenetic mechanisms of a rare disease, summarizing the latest data and presenting the distinct features of these mechanisms.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Irina Rezus
- Discipline of Radiology, Surgery Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
| | - Alexandra Maria Burlui
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Ruxandra Mihai
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
5
|
Liu Y, Li X, Cheng L, Zhan H, Huang Y, Li H, Li Y. Progress and challenges in the use of blood biomarkers in relapsing polychondritis. Clin Exp Immunol 2023; 212:199-211. [PMID: 36751132 PMCID: PMC10243844 DOI: 10.1093/cei/uxad014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Relapsing polychondritis (RP) is a rare inflammatory disease with significant individual heterogeneity that involves systemic organs. The diagnosis of RP mainly depends on the clinical manifestations; currently, there are no molecular biomarkers routinely evaluated in clinical practice. Biomarkers have diagnostic or monitoring values and can predict response to treatment or the disease course. Over the years, many biomarkers have been proposed to facilitate diagnosis and prognosis. Unfortunately, ideal biomarkers to diagnose RP have not yet been discovered. Most of the molecular biomarkers in RP are immunological biomarkers, with autoantibodies and proteins related to cartilage damage in the blood being the most common. Alterations in some genes (HLA typing and UBA1 somatic mutation) were detected in patients with RP, which could serve as a potential biomarker for the diagnosis of RP. Moreover, proinflammatory cytokines and lymphocyte levels, and certain laboratory tests, have certain values of RP diagnosis and disease activity assessment but lack specificity and sensitivity. This review describes the different types of biomarkers and their clinical correlation with respect to the diagnosis of RP and disease activity. Research on biomarkers and disease pathology is ongoing to identify the ideal biomarkers that are sensitive and specific for RP.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Halper J. Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:105-126. [PMID: 34807416 DOI: 10.1007/978-3-030-80614-9_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Collagens are the most abundant components of the extracellular matrix (ECM) and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. It is an insoluble polymer of the monomeric soluble precursor tropoelastin, and the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of transforming growth factors β (TGFβ) through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Many other molecules, though lower in quantity, function as essential, structural and/or functional components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its multidomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin it also binds to a variety of compounds, particularly to various growth factors, and as such, fibrinogen is a player in cardiovascular and extracellular matrix physiology. Laminins contribute to the structure of the ECM and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Fibrillins represent the predominant core of microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide basis for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Latent TGFβ binding proteins (LTBPs) are included here as their structure is similar to fibrillins. Several categories of ECM components described after fibrillins are sub-classified as matricellular proteins, i.e., they are secreted into ECM, but do not provide structure. Rather they interact with cell membrane receptors, collagens, proteases, hormones and growth factors, communicating and directing cell-ECM traffic. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Matrilins have been emerging as a new group of supporting actors, and their role in connective tissue physiology and pathophysiology has not been fully characterized. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.
Collapse
Affiliation(s)
- Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Bubb K, Holzer T, Nolte JL, Krüger M, Wilson R, Schlötzer-Schrehardt U, Brinckmann J, Altmüller J, Aszodi A, Fleischhauer L, Clausen-Schaumann H, Probst K, Brachvogel B. Mitochondrial respiratory chain function promotes extracellular matrix integrity in cartilage. J Biol Chem 2021; 297:101224. [PMID: 34560099 PMCID: PMC8503590 DOI: 10.1016/j.jbc.2021.101224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Energy metabolism and extracellular matrix (ECM) function together orchestrate and maintain tissue organization, but crosstalk between these processes is poorly understood. Here, we used single-cell RNA-Seq (scRNA-Seq) analysis to uncover the importance of the mitochondrial respiratory chain for ECM homeostasis in mature cartilage. This tissue produces large amounts of a specialized ECM to promote skeletal growth during development and maintain mobility throughout life. A combined approach of high-resolution scRNA-Seq, mass spectrometry/matrisome analysis, and atomic force microscopy was applied to mutant mice with cartilage-specific inactivation of respiratory chain function. This genetic inhibition in cartilage results in the expansion of a central area of 1-month-old mouse femur head cartilage, showing disorganized chondrocytes and increased deposition of ECM material. scRNA-Seq analysis identified a cell cluster-specific decrease in mitochondrial DNA-encoded respiratory chain genes and a unique regulation of ECM-related genes in nonarticular chondrocytes. These changes were associated with alterations in ECM composition, a shift in collagen/noncollagen protein content, and an increase of collagen crosslinking and ECM stiffness. These results demonstrate that mitochondrial respiratory chain dysfunction is a key factor that can promote ECM integrity and mechanostability in cartilage and presumably also in many other tissues.
Collapse
Affiliation(s)
- Kristina Bubb
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janica L Nolte
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Brinckmann
- Department of Dermatology, Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Attila Aszodi
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lutz Fleischhauer
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany; Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Berry KN, Brett TJ. Structural and Biophysical Analysis of the CLCA1 VWA Domain Suggests Mode of TMEM16A Engagement. Cell Rep 2020; 30:1141-1151.e3. [PMID: 31995732 PMCID: PMC7050472 DOI: 10.1016/j.celrep.2019.12.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/14/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023] Open
Abstract
The secreted protein calcium-activated chloride channel regulator 1 (CLCA1) utilizes a von Willebrand factor type A (VWA) domain to bind to and potentiate the calcium-activated chloride channel TMEM16A. To gain insight into this unique potentiation mechanism, we determined the 2.0-Å crystal structure of human CLCA1 VWA bound to Ca2+. The structure reveals the metal-ion-dependent adhesion site (MIDAS) in a high-affinity "open" conformation, engaging in crystal contacts that likely mimic how CLCA1 engages TMEM16A. The CLCA1 VWA contains a disulfide bond between α3 and α4 in close proximity to the MIDAS that is invariant in the CLCA family and unique in VWA structures. Further biophysical studies indicate that CLCA1 VWA is preferably stabilized by Mg2+ over Ca2+ and that α6 atypically extends from the VWA core. Finally, an analysis of TMEM16A structures suggests residues likely to mediate interaction with CLCA1 VWA.
Collapse
Affiliation(s)
- Kayla N Berry
- Immunology Program and Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tom J Brett
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Li P, Fleischhauer L, Nicolae C, Prein C, Farkas Z, Saller MM, Prall WC, Wagener R, Heilig J, Niehoff A, Clausen-Schaumann H, Alberton P, Aszodi A. Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. Int J Mol Sci 2020; 21:ijms21020666. [PMID: 31963938 PMCID: PMC7013758 DOI: 10.3390/ijms21020666] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Matrilins (MATN1, MATN2, MATN3 and MATN4) are adaptor proteins of the cartilage extracellular matrix (ECM), which bridge the collagen II and proteoglycan networks. In humans, dominant-negative mutations in MATN3 lead to various forms of mild chondrodysplasias. However, single or double matrilin knockout mice generated previously in our laboratory do not show an overt skeletal phenotype, suggesting compensation among the matrilin family members. The aim of our study was to establish a mouse line, which lacks all four matrilins and analyze the consequence of matrilin deficiency on endochondral bone formation and cartilage function. Matn1-4−/− mice were viable and fertile, and showed a lumbosacral transition phenotype characterized by the sacralization of the sixth lumbar vertebra. The development of the appendicular skeleton, the structure of the growth plate, chondrocyte differentiation, proliferation, and survival were normal in mutant mice. Biochemical analysis of knee cartilage demonstrated moderate alterations in the extractability of the binding partners of matrilins in Matn1-4−/− mice. Atomic force microscopy (AFM) revealed comparable compressive stiffness but higher collagen fiber diameters in the growth plate cartilage of quadruple mutant compared to wild-type mice. Importantly, Matn1-4−/− mice developed more severe spontaneous osteoarthritis at the age of 18 months, which was accompanied by changes in the biomechanical properties of the articular cartilage. Interestingly, Matn4−/− mice also developed age-associated osteoarthritis suggesting a crucial role of MATN4 in maintaining the stability of the articular cartilage. Collectively, our data provide evidence that matrilins are important to protect articular cartilage from deterioration and are involved in the specification of the vertebral column.
Collapse
Affiliation(s)
- Ping Li
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Lutz Fleischhauer
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany;
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany
| | - Claudia Nicolae
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany;
| | - Carina Prein
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany;
| | - Zsuzsanna Farkas
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Wolf Christian Prall
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Raimund Wagener
- Center for Molecular Medicine, University of Cologne, 50923 Cologne, Germany;
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany;
| | - Juliane Heilig
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany;
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany;
| | - Anja Niehoff
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany;
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany;
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany;
- Correspondence: ; Tel.: +49-89-4400-55481
| |
Collapse
|