1
|
Juneja R, Vadarevu H, Halman J, Tarannum M, Rackley L, Dobbs J, Marquez J, Chandler M, Afonin K, Vivero-Escoto JL. Combination of Nucleic Acid and Mesoporous Silica Nanoparticles: Optimization and Therapeutic Performance In Vitro. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38873-38886. [PMID: 32805923 PMCID: PMC7748385 DOI: 10.1021/acsami.0c07106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Programmable nucleic acid nanoparticles (NANPs) with precisely controlled functional compositions can regulate the conditional activation of various biological pathways and responses in human cells. However, the intracellular delivery of NANPs alone is hindered by their susceptibility to nuclease activity and inefficient crossing of biological membranes. In this work, we optimized the internalization and therapeutic performance of several representative NANPs delivered with mesoporous silica nanoparticles (MSNPs) tailored for efficient electrostatic association with NANPs. We compared the immunostimulatory properties of different NA-MS-NP complexes formed with globular, planar, and fibrous NANPs and demonstrated the maximum immunostimulation for globular NANPs. As a proof of concept, we assessed the specific gene silencing by NA-MS-NP complexes functionalized with siRNA targeting green fluorescent protein expressed in triple-negative human breast cancer cells. We showed that the fibrous NANPs have the highest silencing efficiency when compared to globular or planar counterparts. Finally, we confirmed the multimodal ability of MSNPs to co-deliver a chemotherapy drug, doxorubicin, and NANPs targeting apoptosis regulator gene BCL2 in triple-negative breast cancer and melanoma cell lines. Overall, the combination of NANPs and MSNPs may become a new promising approach to efficiently treat cancer and other diseases via the simultaneous targeting of various pathways.
Collapse
Affiliation(s)
- Ridhima Juneja
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Hemapriyadarshini Vadarevu
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Justin Halman
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mubin Tarannum
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Lauren Rackley
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jacob Dobbs
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jose Marquez
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Morgan Chandler
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill Afonin
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
2
|
Dobrovolskaia MA. Nucleic Acid Nanoparticles at a Crossroads of Vaccines and Immunotherapies. Molecules 2019; 24:molecules24244620. [PMID: 31861154 PMCID: PMC6943637 DOI: 10.3390/molecules24244620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Vaccines and immunotherapies involve a variety of technologies and act through different mechanisms to achieve a common goal, which is to optimize the immune response against an antigen. The antigen could be a molecule expressed on a pathogen (e.g., a disease-causing bacterium, a virus or another microorganism), abnormal or damaged host cells (e.g., cancer cells), environmental agent (e.g., nicotine from a tobacco smoke), or an allergen (e.g., pollen or food protein). Immunogenic vaccines and therapies optimize the immune response to improve the eradication of the pathogen or damaged cells. In contrast, tolerogenic vaccines and therapies retrain or blunt the immune response to antigens, which are recognized by the immune system as harmful to the host. To optimize the immune response to either improve the immunogenicity or induce tolerance, researchers employ different routes of administration, antigen-delivery systems, and adjuvants. Nanocarriers and adjuvants are of particular interest to the fields of vaccines and immunotherapy as they allow for targeted delivery of the antigens and direct the immune response against these antigens in desirable direction (i.e., to either enhance immunogenicity or induce tolerance). Recently, nanoparticles gained particular attention as antigen carriers and adjuvants. This review focuses on a particular subclass of nanoparticles, which are made of nucleic acids, so-called nucleic acid nanoparticles or NANPs. Immunological properties of these novel materials and considerations for their clinical translation are discussed.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Modulating Immune Response with Nucleic Acid Nanoparticles. Molecules 2019; 24:molecules24203740. [PMID: 31627288 PMCID: PMC6832290 DOI: 10.3390/molecules24203740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Nano-objects made of nucleic acids are becoming promising materials in the biomedical field. This is, in part, due to DNA and RNA self-assembly properties that can be accurately computed to fabricate various complex nanoarchitectures of 2D and 3D shapes. The nanoparticles can be assembled from DNA, RNA, and chemically modified oligonucleotide mixtures which, in turn, influence their chemical and biophysical properties. Solid-phase synthesis allows large-scale production of individual oligonucleotide strands with batch-to-batch consistency and exceptional purity. All of these advantageous characteristics of nucleic-acid-based nanoparticles were known to be exceptionally useful as a nanoplatform for drug delivery purposes. Recently, several important discoveries have been achieved, demonstrating that nucleic acid nanoparticles (NANPs) can also be used to modulate the immune response of host cells. The purpose of this review is to briefly overview studies demonstrating architectural design principles of NANPs, as well as the ability of NANPs to control immune responses.
Collapse
|
4
|
Jedrzejczyk D, Chworos A. Self-Assembling RNA Nanoparticle for Gene Expression Regulation in a Model System. ACS Synth Biol 2019; 8:491-497. [PMID: 30649860 DOI: 10.1021/acssynbio.8b00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the search for enzymatically processed RNA fragments, we found the novel three-way junction motif. The structure prediction suggested the arrangement of helices at acute angle approx. 60°. This allows the design of a trimeric RNA nanoparticle that can be functionalized with multiple regulatory fragments. Such RNA nano-object of equilateral triangular shape was applied for gene expression regulation studies in two independent cellular systems. Biochemical and functional studies confirmed the predicted shape and structure of the nanoparticle. The regulatory siRNA fragments incorporated into the nanoparticle were effectively released and triggered gene silencing. The regulatory effect was prolonged when induced with structuralized RNA compared to unstructured siRNAs. In these studies, the enzymatic processing of the motif was utilized for function release from the nanoparticle, enabling simultaneous delivery of different regulatory functions. This methodology of sequence search, RNA structural prediction, and application for rational design opens a new way for creating enzymatically processed RNA nanoparticles.
Collapse
Affiliation(s)
- Dominika Jedrzejczyk
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , 90-363 Lodz , Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , 90-363 Lodz , Poland
| |
Collapse
|
5
|
Jasinski D, Haque F, Binzel DW, Guo P. Advancement of the Emerging Field of RNA Nanotechnology. ACS NANO 2017; 11:1142-1164. [PMID: 28045501 PMCID: PMC5333189 DOI: 10.1021/acsnano.6b05737] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The field of RNA nanotechnology has advanced rapidly during the past decade. A variety of programmable RNA nanoparticles with defined shape, size, and stoichiometry have been developed for diverse applications in nanobiotechnology. The rising popularity of RNA nanoparticles is due to a number of factors: (1) removing the concern of RNA degradation in vitro and in vivo by introducing chemical modification into nucleotides without significant alteration of the RNA property in folding and self-assembly; (2) confirming the concept that RNA displays very high thermodynamic stability and is suitable for in vivo trafficking and other applications; (3) obtaining the knowledge to tune the immunogenic properties of synthetic RNA constructs for in vivo applications; (4) increased understanding of the 4D structure and intermolecular interaction of RNA molecules; (5) developing methods to control shape, size, and stoichiometry of RNA nanoparticles; (6) increasing knowledge of regulation and processing functions of RNA in cells; (7) decreasing cost of RNA production by biological and chemical synthesis; and (8) proving the concept that RNA is a safe and specific therapeutic modality for cancer and other diseases with little or no accumulation in vital organs. Other applications of RNA nanotechnology, such as adapting them to construct 2D, 3D, and 4D structures for use in tissue engineering, biosensing, resistive biomemory, and potential computer logic gate modules, have stimulated the interest of the scientific community. This review aims to outline the current state of the art of RNA nanoparticles as programmable smart complexes and offers perspectives on the promising avenues of research in this fast-growing field.
Collapse
Affiliation(s)
| | | | - Daniel W Binzel
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Martins AN, Ke W, Jawahar V, Striplin M, Striplin C, Freed EO, Afonin KA. Intracellular Reassociation of RNA-DNA Hybrids that Activates RNAi in HIV-Infected Cells. Methods Mol Biol 2017; 1632:269-283. [PMID: 28730446 PMCID: PMC6941940 DOI: 10.1007/978-1-4939-7138-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus Type 1 (HIV-1) is the major cause of acquired immune deficiency syndrome (AIDS). In 2014, it was estimated that 1.2 million people died from AIDS-related illnesses. RNA interference-based therapy to block HIV replication is a field that, as of now, is without any FDA-approved drugs available for clinical use. In this chapter we describe a protocol for testing and utilizing a new approach that relies on reassociation of RNA-DNA hybrids activating RNAi and blocking HIV replication in human cells.
Collapse
Affiliation(s)
- Angelica N Martins
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Vaishnavi Jawahar
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Morriah Striplin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Caryn Striplin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Eric O Freed
- HIV Dynamics and Replication Program, NCI, Frederick, MD, 21702, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA.
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA.
| |
Collapse
|
7
|
Parlea L, Puri A, Kasprzak W, Bindewald E, Zakrevsky P, Satterwhite E, Joseph K, Afonin KA, Shapiro BA. Cellular Delivery of RNA Nanoparticles. ACS COMBINATORIAL SCIENCE 2016; 18:527-47. [PMID: 27509068 PMCID: PMC6345529 DOI: 10.1021/acscombsci.6b00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA nanostructures can be programmed to exhibit defined sizes, shapes and stoichiometries from naturally occurring or de novo designed RNA motifs. These constructs can be used as scaffolds to attach functional moieties, such as ligand binding motifs or gene expression regulators, for nanobiology applications. This review is focused on four areas of importance to RNA nanotechnology: the types of RNAs of particular interest for nanobiology, the assembly of RNA nanoconstructs, the challenges of cellular delivery of RNAs in vivo, and the delivery carriers that aid in the matter. The available strategies for the design of nucleic acid nanostructures, as well as for formulation of their carriers, make RNA nanotechnology an important tool in both basic research and applied biomedical science.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Anu Puri
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Paul Zakrevsky
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily Satterwhite
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kenya Joseph
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
8
|
Afonin KA, Viard M, Tedbury P, Bindewald E, Parlea L, Howington M, Valdman M, Johns-Boehme A, Brainerd C, Freed EO, Shapiro BA. The Use of Minimal RNA Toeholds to Trigger the Activation of Multiple Functionalities. NANO LETTERS 2016; 16:1746-53. [PMID: 26926382 PMCID: PMC6345527 DOI: 10.1021/acs.nanolett.5b04676] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Current work reports the use of single-stranded RNA toeholds of different lengths to promote the reassociation of various RNA-DNA hybrids, which results in activation of multiple split functionalities inside human cells. The process of reassociation is analyzed and followed with a novel computational multistrand secondary structure prediction algorithm and various experiments. All of our previously designed RNA/DNA nanoparticles employed single-stranded DNA toeholds to initiate reassociation. The use of RNA toeholds is advantageous because of the simpler design rules, the shorter toeholds, and the smaller size of the resulting nanoparticles (by up to 120 nucleotides per particle) compared to the same hybrid nanoparticles with single-stranded DNA toeholds. Moreover, the cotranscriptional assemblies result in higher yields for hybrid nanoparticles with ssRNA toeholds.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Philip Tedbury
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marshall Howington
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Melissa Valdman
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Alizah Johns-Boehme
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Cara Brainerd
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
9
|
El Tannir Z, Afonin KA, Shapiro BA. RNA and DNA nanoparticles for triggering RNA interference. RNA & DISEASE 2015; 2:e724. [PMID: 34307840 PMCID: PMC8301276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Control over the delivery of different functionalities and their synchronized activation in vivo is a challenging undertaking that requires careful design and implementation. The goal of the research highlighted herein was to develop a platform allowing the simultaneous activation of multiple RNA interference pathways and other functionalities inside cells. Our team has developed several RNA, RNA/DNA and DNA/RNA nanoparticles able to successfully complete such tasks. The reported designs can potentially be used to target myriad of different diseases.
Collapse
Affiliation(s)
- Ziad El Tannir
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
10
|
Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, Li C, Haque F, Liang XJ, Guo P. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. NANO TODAY 2015; 10:631-655. [PMID: 26770259 PMCID: PMC4707685 DOI: 10.1016/j.nantod.2015.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.
Collapse
Affiliation(s)
- Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Taek Lee
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Fengmei Pi
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Xu
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chan Li
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|