1
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
2
|
Qian S, Nagy G, Zolnierczuk P, Mamontov E, Standaert R. Nonstereotypical Distribution and Effect of Ergosterol in Lipid Membranes. J Phys Chem Lett 2024; 15:4745-4752. [PMID: 38661394 DOI: 10.1021/acs.jpclett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ergosterol, found in fungi and some protist membranes, is understudied compared with cholesterol from animal membranes. Generally, ergosterol is assumed to modulate membranes in the same manner as cholesterol, based on their similar chemical structures. Here we reveal some fundamental structural and dynamical differences between them. Neutron diffraction shows that ergosterol is embedded in the lipid bilayer much shallower than cholesterol. Ergosterol does not change the membrane thickness as much as cholesterol does, indicating little condensation effect. Neutron spin echo shows that ergosterol can rigidify and soften membranes at different concentrations. The lateral lipid diffusion measured by quasielastic neutron scattering indicates that ergosterol promotes a jump diffusion of the lipid, whereas cholesterol keeps the same continuous lateral diffusion as the pure lipid membrane. Our results point to quite distinct interactions of ergosterol with membranes compared with cholesterol. These insights provide a basic understanding of membranes containing ergosterol with implications for phenomena such as lipid rafts and drug interactions.
Collapse
Affiliation(s)
- Shuo Qian
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Gergely Nagy
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Robert Standaert
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
3
|
Sonje J, Thakral S, Krueger S, Suryanarayanan R. Enabling Efficient Design of Biological Formulations Through Advanced Characterization. Pharm Res 2023; 40:1459-1477. [PMID: 36959413 DOI: 10.1007/s11095-023-03495-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
The present review summarizes the use of differential scanning calorimetry (DSC) and scattering techniques in the context of protein formulation design and characterization. The scattering techniques include wide angle X-ray diffractometry (XRD), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). While DSC is valuable for understanding thermal behavior of the excipients, XRD provides critical information about physical state of solutes during freezing, annealing and in the final lyophile. However, as these techniques lack the sensitivity to detect biomolecule-related transitions, complementary characterization techniques such as small-angle scattering can provide valuable insights.
Collapse
Affiliation(s)
- Jayesh Sonje
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN, 55455, USA
- BioTherapeutics, Pharmaceutical Sciences, Pfizer Inc., 1 Burtt Road, Andover, USA
| | - Seema Thakral
- Boehringer Ingelheim Pharmaceuticals, Inc, 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Susan Krueger
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Sumner J, Qian S. DENSS-multiple: A structure reconstruction method using contrast variation of small-angle neutron scattering based on the DENSS algorithm. BBA ADVANCES 2022; 2:100063. [PMID: 37082592 PMCID: PMC10074922 DOI: 10.1016/j.bbadva.2022.100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The 3D structure of biomacromolecules, such as protein and DNA/RNA, provide keys to understanding their biological functions. Among many structural biology techniques, small-angle scattering techniques with ab initio methods have been widely used to reveal biomolecular structures in relevant solution conditions. Recently, a method called DENsity from Solution Scattering (DENSS) was developed to reconstruct the scattering density directly from biological small-angle X-ray and neutron scattering data instead of using a dummy atom modeling approach. Here, a method named DENSS-Multiple was developed to work simultaneously on multiple datasets from small-angle neutron scattering (SANS) contrast variation data. The easily manipulable neutron contrast has been widely exploited to study the structure and function of biological macromolecules and their complexes in solution. This new method provides a single structural result that includes all the information represented by different contrasts from SANS. The results from DENSS-Multiple generally have better resolution than those from DENSS, and more subtle features are represented by density variations from different phases of a structure. DENSS-Multiple was tested on various examples, including simulated and experimental data. These results, along with DENSS-Multiple's applications and limitations, are discussed herein.
Collapse
Affiliation(s)
- Jacob Sumner
- Neutron Scattering Division, Oak Ridge National Laboratory, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, United States
- Spallation Neutron Source Second Target Station Project, Oak Ridge National Laboratory, United States
| |
Collapse
|
5
|
Krueger S. Small-angle neutron scattering contrast variation studies of biological complexes: Challenges and triumphs. Curr Opin Struct Biol 2022; 74:102375. [PMID: 35490650 PMCID: PMC10988784 DOI: 10.1016/j.sbi.2022.102375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Small-angle neutron scattering (SANS) has been a beneficial tool for studying the structure of biological macromolecules in solution for several decades. Continued improvements in sample preparation techniques, including deuterium labeling, neutron instrumentation and complementary techniques such as small-angle x-ray scattering (SAXS), cryo-EM, NMR and x-ray crystallography, along with the availability of more powerful structure prediction algorithms and computational resources has made SANS more important than ever as a means to obtain unique information on the structure of biological complexes in solution. In particular, the contrast variation (CV) technique, which requires a large commitment in both sample preparation and measurement time, has become more practical with the advent of these improved resources. Here, challenges and recent triumphs as well as future prospects are discussed.
Collapse
Affiliation(s)
- Susan Krueger
- NIST Center for Neutron Research, NIST, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
6
|
Krueger S. Planning, executing and assessing the validity of SANS contrast variation experiments. Methods Enzymol 2022; 677:127-155. [DOI: 10.1016/bs.mie.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
8
|
Evolving Escherichia coli Host Strains for Efficient Deuterium Labeling of Recombinant Proteins Using Sodium Pyruvate- d3. Int J Mol Sci 2021; 22:ijms22189678. [PMID: 34575837 PMCID: PMC8465070 DOI: 10.3390/ijms22189678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Labeling of proteins with deuterium (2H) is often necessary for structural biology techniques, such as neutron crystallography, NMR spectroscopy, and small-angle neutron scattering. Perdeuteration in which all protium (1H) atoms are replaced by deuterium is a costly process. Typically, expression hosts are grown in a defined medium with heavy water as the solvent, which is supplemented with a deuterated carbon source. Escherichia coli, which is the most widely used host for recombinant protein production, can utilize several compounds as a carbon source. Glycerol-d8 is often used as a carbon source for deuterium labelling due to its lower cost compered to glucose-d7. In order to expand available options for recombinant protein deuteration, we investigated the possibility of producing a deuterated carbon source in-house. E. coli can utilize pyruvate as a carbon source and pyruvate-d3 can be made by a relatively simple procedure. To circumvent the very poor growth of E. coli in minimal media with pyruvate as sole carbon source, adaptive laboratory evolution for strain improvement was applied. E. coli strains with enhanced growth in minimal pyruvate medium was subjected to whole genome sequencing and the genetic changes were revealed. One of the evolved strains was adapted for the widely used T7 RNA polymerase overexpression systems. Using the improved strain E. coli DAP1(DE3) and in-house produced deuterated carbon source (pyruvic acid-d4 and sodium pyruvate-d3), we produce deuterated (>90%) triose-phosphate isomerase, at quantities sufficient enough for large volume crystal production and subsequent analysis by neutron crystallography.
Collapse
|
9
|
Structures of a deAMPylation complex rationalise the switch between antagonistic catalytic activities of FICD. Nat Commun 2021; 12:5004. [PMID: 34408154 PMCID: PMC8373988 DOI: 10.1038/s41467-021-25076-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) Hsp70 chaperone BiP is regulated by AMPylation, a reversible inactivating post-translational modification. Both BiP AMPylation and deAMPylation are catalysed by a single ER-localised enzyme, FICD. Here we present crystallographic and solution structures of a deAMPylation Michaelis complex formed between mammalian AMPylated BiP and FICD. The latter, via its tetratricopeptide repeat domain, binds a surface that is specific to ATP-state Hsp70 chaperones, explaining the exquisite selectivity of FICD for BiP’s ATP-bound conformation both when AMPylating and deAMPylating Thr518. The eukaryotic deAMPylation mechanism thus revealed, rationalises the role of the conserved Fic domain Glu234 as a gatekeeper residue that both inhibits AMPylation and facilitates hydrolytic deAMPylation catalysed by dimeric FICD. These findings point to a monomerisation-induced increase in Glu234 flexibility as the basis of an oligomeric state-dependent switch between FICD’s antagonistic activities, despite a similar mode of engagement of its two substrates — unmodified and AMPylated BiP. The ER chaperone BiP is regulated by FICD-mediated AMPylation and deAMPylation. Here, the authors characterise the structure of mammalian AMPylated BiP bound to FICD, by X-ray crystallography and neutron scattering, providing insights into the mechanism of BiP AMPylation and deAMPylation.
Collapse
|
10
|
Guo R, Sumner J, Qian S. Structure of Diisobutylene Maleic Acid Copolymer (DIBMA) and Its Lipid Particle as a “Stealth” Membrane-Mimetic for Membrane Protein Research. ACS APPLIED BIO MATERIALS 2021; 4:4760-4768. [DOI: 10.1021/acsabm.0c01626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Guo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Grinnell College, Grinnell, Iowa 50112, United States
| | - Jacob Sumner
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
11
|
Marx DC, Plummer AM, Faustino AM, Devlin T, Roskopf MA, Leblanc MJ, Lessen HJ, Amann BT, Fleming PJ, Krueger S, Fried SD, Fleming KG. SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins. Proc Natl Acad Sci U S A 2020; 117:28026-28035. [PMID: 33093201 PMCID: PMC7668074 DOI: 10.1073/pnas.2008175117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
The periplasmic chaperone network ensures the biogenesis of bacterial outer membrane proteins (OMPs) and has recently been identified as a promising target for antibiotics. SurA is the most important member of this network, both due to its genetic interaction with the β-barrel assembly machinery complex as well as its ability to prevent unfolded OMP (uOMP) aggregation. Using only binding energy, the mechanism by which SurA carries out these two functions is not well-understood. Here, we use a combination of photo-crosslinking, mass spectrometry, solution scattering, and molecular modeling techniques to elucidate the key structural features that define how SurA solubilizes uOMPs. Our experimental data support a model in which SurA binds uOMPs in a groove formed between the core and P1 domains. This binding event results in a drastic expansion of the rest of the uOMP, which has many biological implications. Using these experimental data as restraints, we adopted an integrative modeling approach to create a sparse ensemble of models of a SurA•uOMP complex. We validated key structural features of the SurA•uOMP ensemble using independent scattering and chemical crosslinking data. Our data suggest that SurA utilizes three distinct binding modes to interact with uOMPs and that more than one SurA can bind a uOMP at a time. This work demonstrates that SurA operates in a distinct fashion compared to other chaperones in the OMP biogenesis network.
Collapse
Affiliation(s)
- Dagan C Marx
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | | | - Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Michaela A Roskopf
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Mathis J Leblanc
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Henry J Lessen
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Barbara T Amann
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Patrick J Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Susan Krueger
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218;
| |
Collapse
|
12
|
Marx DC, Leblanc MJ, Plummer AM, Krueger S, Fleming KG. Domain interactions determine the conformational ensemble of the periplasmic chaperone SurA. Protein Sci 2020; 29:2043-2053. [PMID: 32748422 PMCID: PMC7513704 DOI: 10.1002/pro.3924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022]
Abstract
SurA is thought to be the most important periplasmic chaperone for outer membrane protein (OMP) biogenesis. Its structure is composed of a core region and two peptidylprolyl isomerase domains, termed P1 and P2, connected by flexible linkers. As such these three independent folding units are able to adopt a number of distinct spatial positions with respect to each other. The conformational dynamics of these domains are thought to be functionally important yet are largely unresolved. Here we address this question of the conformational ensemble using sedimentation equilibrium, small-angle neutron scattering, and folding titrations. This combination of orthogonal methods converges on a SurA population that is monomeric at physiological concentrations. The conformation that dominates this population has the P1 and core domains docked to one another, for example, "P1-closed" and the P2 domain extended in solution. We discovered that the distribution of domain orientations is defined by modest and favorable interactions between the core domain and either the P1 or the P2 domains. These two peptidylprolyl domains compete with each other for core-binding but are thermodynamically uncoupled. This arrangement implies two novel insights. Firstly, an open conformation must exist to facilitate P1 and P2 exchange on the core, indicating that the open client-binding conformation is populated at low levels even in the absence of client unfolded OMPs. Secondly, competition between P1 and P2 binding paradoxically occludes the client binding site on the core, which may serve to preserve the reservoir of binding-competent apo-SurA in the periplasm.
Collapse
Affiliation(s)
- Dagan C. Marx
- Thomas C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mathis J. Leblanc
- Thomas C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ashlee M. Plummer
- Thomas C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Susan Krueger
- National Institute of Standards and TechnologyGaithersburgMarylandUSA
| | - Karen G. Fleming
- Thomas C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
13
|
Sanchez-Fernandez A, Diehl C, Houston JE, Leung AE, Tellam JP, Rogers SE, Prevost S, Ulvenlund S, Sjögren H, Wahlgren M. An integrative toolbox to unlock the structure and dynamics of protein-surfactant complexes. NANOSCALE ADVANCES 2020; 2:4011-4023. [PMID: 36132802 PMCID: PMC9417085 DOI: 10.1039/d0na00194e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/11/2020] [Indexed: 05/06/2023]
Abstract
The interactions between protein and surfactants play an important role in the stability and performance of formulated products. Due to the high complexity of such interactions, multi-technique approaches are required to study these systems. Here, an integrative approach is used to investigate the various interactions in a model system composed of human growth hormone and sodium dodecyl sulfate. Contrast variation small-angle neutron scattering was used to obtain information on the structure of the protein, surfactant aggregates and surfactant-protein complexes. 1H and 1H-13C HSQC nuclear magnetic resonance spectroscopy was employed to probe the local structure and dynamics of specific amino acids upon surfactant addition. Through the combination of these advanced methods with fluorescence spectroscopy, circular dichroism and isothermal titration calorimetry, it was possible to identify the interaction mechanisms between the surfactant and the protein in the pre- and post-micellar regimes, and interconnect the results from different techniques. As such, the protein was revealed to evolve from a partially unfolded conformation at low SDS concentration to a molten globule at intermediate concentrations, where the protein conformation and local dynamics of hydrophobic amino acids are partially affected compared to the native state. At higher surfactant concentrations the local structure of the protein appears disrupted, and a decorated micelle structure is observed, where the protein is wrapped around a surfactant assembly. Importantly, this integrative approach allows for the identification of the characteristic fingerprints of complex transitions as seen by each technique, and establishes a methodology for an in-detail study of surfactant-protein systems.
Collapse
Affiliation(s)
| | - Carl Diehl
- SARomics Biostructures AB Medicon Village, Scheelevägen 2 223 81 Lund Sweden
| | | | - Anna E Leung
- European Spallation Source Box 176 221 00 Lund Sweden
| | - James P Tellam
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Sarah E Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Sylvain Prevost
- Institut Laue-Langevin 71 Avenue des Martyrs 38000 Grenoble France
| | - Stefan Ulvenlund
- Food Technology, Engineering and Nutrition, Lund University Box 124 221 00 Lund Sweden
- EnzaBiotech AB Scheelevägen 22 223 63 Lund Sweden
| | - Helen Sjögren
- Ferring Pharmaceuticals A/S Kay Fiskers Plads 11 2300 Copenhagen S Denmark
| | - Marie Wahlgren
- Food Technology, Engineering and Nutrition, Lund University Box 124 221 00 Lund Sweden
- EnzaBiotech AB Scheelevägen 22 223 63 Lund Sweden
| |
Collapse
|
14
|
Affinity of Skp to OmpC revealed by single-molecule detection. Sci Rep 2020; 10:14871. [PMID: 32913243 PMCID: PMC7483523 DOI: 10.1038/s41598-020-71608-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Outer membrane proteins (OMPs) are essential to gram-negative bacteria, and molecular chaperones prevent the OMPs from aggregation in the periplasm during the OMPs biogenesis. Skp is one of the molecular chaperones for this purpose. Here, we combined single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy to study the affinity and stoichiometric ratio of Skp in its binding with OmpC at the single-molecule level. The half concentration of the Skp self-trimerization (C1/2) was measured to be (2.5 ± 0.7) × 102 nM. Under an Skp concentration far below the C1/2, OmpC could recruit Skp monomers to form OmpC·Skp3. The affinity to form the OmpC·Skp3 complex was determined to be (5.5 ± 0.4) × 102 pM with a Hill coefficient of 1.6 ± 0.2. Under the micromolar concentrations of Skp, the formation of OmpC·(Skp3)2 was confirmed, and the dissociation constant of OmpC·(Skp3)2 was determined to be 1.2 ± 0.4 μM. The precise information will help us to quantitatively depict the role of Skp in the biogenesis of OMPs.
Collapse
|
15
|
Jeffries CM, Pietras Z, Svergun DI. The basics of small-angle neutron scattering (SANS for new users of structural biology). EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023603001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Small-angle neutron scattering (SANS) provides a means to probe the time-preserved structural state(s) of bio-macromolecules in solution. As such, SANS affords the opportunity to assess the redistribution of mass, i.e., changes in conformation, which occur when macromolecules interact to form higher-order assemblies and to evaluate the structure and disposition of components within such systems. As a technique, SANS offers scope for ‘out of the box thinking’, from simply investigating the structures of macromolecules and their complexes through to where structural biology interfaces with soft-matter and nanotechnology. All of this simply rests on the way neutrons interact and scatter from atoms (largely hydrogens) and how this interaction differs from the scattering of neutrons from the nuclei of other ‘biological isotopes’. The following chapter describes the basics of neutron scattering for new users of structural biology in context of the neutron/hydrogen interaction and how this can be exploited to interrogate the structures of macromolecules, their complexes and nano-conjugates in solution.
Collapse
|
16
|
Calabrese AN, Schiffrin B, Watson M, Karamanos TK, Walko M, Humes JR, Horne JE, White P, Wilson AJ, Kalli AC, Tuma R, Ashcroft AE, Brockwell DJ, Radford SE. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nat Commun 2020; 11:2155. [PMID: 32358557 PMCID: PMC7195389 DOI: 10.1038/s41467-020-15702-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
The periplasmic chaperone SurA plays a key role in outer membrane protein (OMP) biogenesis. E. coli SurA comprises a core domain and two peptidylprolyl isomerase domains (P1 and P2), but its mechanisms of client binding and chaperone function have remained unclear. Here, we use chemical cross-linking, hydrogen-deuterium exchange mass spectrometry, single-molecule FRET and molecular dynamics simulations to map the client binding site(s) on SurA and interrogate the role of conformational dynamics in OMP recognition. We demonstrate that SurA samples an array of conformations in solution in which P2 primarily lies closer to the core/P1 domains than suggested in the SurA crystal structure. OMP binding sites are located primarily in the core domain, and OMP binding results in conformational changes between the core/P1 domains. Together, the results suggest that unfolded OMP substrates bind in a cradle formed between the SurA domains, with structural flexibility between domains assisting OMP recognition, binding and release.
Collapse
Affiliation(s)
- Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Watson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Julia R Humes
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology and School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
17
|
Johansen NT, Pedersen MC, Porcar L, Martel A, Arleth L. Introducing SEC–SANS for studies of complex self-organized biological systems. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1178-1191. [DOI: 10.1107/s2059798318007180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
Abstract
Small-angle neutron scattering (SANS) is maturing as a method for studying complex biological structures. Owing to the intrinsic ability of the technique to discern between 1H- and 2H-labelled particles, it is especially useful for contrast-variation studies of biological systems containing multiple components. SANS is complementary to small-angle X-ray scattering (SAXS), in which similar contrast variation is not easily performed but in which data with superior counting statistics are more easily obtained. Obtaining small-angle scattering (SAS) data on monodisperse complex biological structures is often challenging owing to sample degradation and/or aggregation. This problem is enhanced in the D2O-based buffers that are typically used in SANS. In SAXS, such problems are solved using an online size-exclusion chromatography (SEC) setup. In the present work, the feasibility of SEC–SANS was investigated using a series of complex and difficult samples of membrane proteins embedded in nanodisc particles that consist of both phospholipid and protein components. It is demonstrated that SEC–SANS provides data of sufficient signal-to-noise ratio for these systems, while at the same time circumventing aggregation. By combining SEC–SANS and SEC–SAXS data, an optimized basis for refining structural models of the investigated structures is obtained.
Collapse
|
18
|
Dias Mirandela G, Tamburrino G, Ivanović MT, Strnad FM, Byron O, Rasmussen T, Hoskisson PA, Hub JS, Zachariae U, Gabel F, Javelle A. Merging In-Solution X-ray and Neutron Scattering Data Allows Fine Structural Analysis of Membrane-Protein Detergent Complexes. J Phys Chem Lett 2018; 9:3910-3914. [PMID: 29939747 DOI: 10.1021/acs.jpclett.8b01598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In-solution small-angle X-ray and neutron scattering (SAXS/SANS) have become popular methods to characterize the structure of membrane proteins, solubilized by either detergents or nanodiscs. SANS studies of protein-detergent complexes usually require deuterium-labeled proteins or detergents, which in turn often lead to problems in their expression or purification. Here, we report an approach whose novelty is the combined analysis of SAXS and SANS data from an unlabeled membrane protein complex in solution in two complementary ways. First, an explicit atomic analysis, including both protein and detergent molecules, using the program WAXSiS, which has been adapted to predict SANS data. Second, the use of MONSA which allows one to discriminate between detergent head- and tail-groups in an ab initio approach. Our approach is readily applicable to any detergent-solubilized protein and provides more detailed structural information on protein-detergent complexes from unlabeled samples than SAXS or SANS alone.
Collapse
Affiliation(s)
- Gaëtan Dias Mirandela
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , G4 0RE , United Kingdom
| | - Giulia Tamburrino
- Computational Biology, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
- Physics, School of Science and Engineering , University of Dundee , Dundee , DD1 4NH , United Kingdom
| | - Miloš T Ivanović
- Theoretical Physics , Saarland University , Campus E2 6 , 66123 Saarbrücken , Germany
| | - Felix M Strnad
- Institute for Microbiology and Genetics , University of Goettingen , Justus-von-Liebig-Weg 11 , 37077 Göttingen , Germany
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , G12 8QQ , United Kingdom
| | - Tim Rasmussen
- School of Medical Sciences , University of Aberdeen , Foresterhill, Aberdeen AB25 2ZD , United Kingdom
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , G4 0RE , United Kingdom
| | - Jochen S Hub
- Theoretical Physics , Saarland University , Campus E2 6 , 66123 Saarbrücken , Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
- Physics, School of Science and Engineering , University of Dundee , Dundee , DD1 4NH , United Kingdom
| | - Frank Gabel
- Institut Laue-Langevin , 71 Avenue des Martyrs 38042 Grenoble , France
- University of Grenoble Alpes, CEA, CNRS, IBS , 38000 Grenoble , France
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , G4 0RE , United Kingdom
| |
Collapse
|
19
|
Abstract
The biogenesis of periplasmic and outer membrane proteins (OMPs) in Escherichia coli is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein's final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with E. coli and Salmonella periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.
Collapse
Affiliation(s)
- Frederick Stull
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jean-Michel Betton
- Unité de Repliement et Modélisation des Protéines, Institut Pasteur-CNRS URA2185, 75724 Paris cedex 15, France
| | - James C A Bardwell
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
20
|
Mas G, Hiller S. Conformational plasticity of molecular chaperones involved in periplasmic and outer membrane protein folding. FEMS Microbiol Lett 2018; 365:4998852. [DOI: 10.1093/femsle/fny121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Guillaume Mas
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
21
|
Ranava D, Caumont-Sarcos A, Albenne C, Ieva R. Bacterial machineries for the assembly of membrane-embedded β-barrel proteins. FEMS Microbiol Lett 2018; 365:4961134. [DOI: 10.1093/femsle/fny087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- David Ranava
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
22
|
Hiller S, Burmann BM. Chaperone-client complexes: A dynamic liaison. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:142-155. [PMID: 29544626 DOI: 10.1016/j.jmr.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 06/08/2023]
Abstract
Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University for Gothenburg, 405 30 Göteborg, Sweden.
| |
Collapse
|
23
|
Castellanos MM, Howell SC, Gallagher DT, Curtis JE. Characterization of the NISTmAb Reference Material using small-angle scattering and molecular simulation. Anal Bioanal Chem 2018; 410:2141-2159. [DOI: 10.1007/s00216-018-0868-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
|
24
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
25
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
26
|
Trewhella J. Small Angle Scattering and Structural Biology: Data Quality and Model Validation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:77-100. [PMID: 30617825 DOI: 10.1007/978-981-13-2200-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This chapter provides a brief review of the current state-of-the-art in small-angle scattering (SAS) from biomolecules in solution in regard to: (1) sample preparation and instrumentation, (2) data reduction and analysis, and (3) three-dimensional structural modelling and validation. In this context, areas of ongoing research in regard to the interpretation of SAS data will be discussed with a particular focus on structural modelling using computational methods and data from different experimental techniques, including SAS (hybrid methods). Finally, progress made in establishing community accepted publication guidelines and a standard reporting framework that includes SAS data deposition in a public data bank will be described. Importantly, SAS data with associated meta-data can now be held in a format that supports exchange between data archives and seamless interoperability with the world-wide Protein Data Bank (wwPDB). Biomolecular SAS is thus well positioned to contribute to an envisioned federation of data archives in support of hybrid structural biology.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia. .,Department of Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
28
|
Holdbrook DA, Burmann BM, Huber RG, Petoukhov MV, Svergun DI, Hiller S, Bond PJ. A Spring-Loaded Mechanism Governs the Clamp-like Dynamics of the Skp Chaperone. Structure 2017. [PMID: 28648612 DOI: 10.1016/j.str.2017.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The trimeric periplasmic holdase chaperone Skp binds and stabilizes unfolded outer membrane proteins (OMPs) as part of bacterial OMP biogenesis. Skp binds client proteins in its central cavity, thereby reducing its backbone dynamics, but the molecular mechanisms that govern Skp dynamics and adaptation to differently sized clients remains unknown. Here, we employ a combination of microsecond timescale molecular dynamics simulation, small-angle X-ray scattering, and nuclear magnetic resonance spectroscopy to reveal that Skp is remarkably flexible, and features a molecular spring-loaded mechanism in its "tentacle" arms that enables switching between two distinct conformations on sub-millisecond timescales. The conformational switch is executed around a conserved pivot element within the coiled-coil structures of the tentacles, allowing expansion of the cavity and thus accommodation of differently sized clients. The spring-loaded mechanism shows how a chaperone can efficiently modulate its structure and function in an ATP-independent manner.
Collapse
Affiliation(s)
- Daniel A Holdbrook
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore, Singapore
| | - Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Roland G Huber
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore, Singapore
| | - Maxim V Petoukhov
- European Molecular Biology Laboratory, EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany; A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninsky Prospect 59, 119333 Moscow, Russia; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119071 Moscow, Russia; N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, 119991 Moscow, Russia
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Peter J Bond
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore, Singapore.
| |
Collapse
|
29
|
Designing and Performing Biological Solution Small-Angle Neutron Scattering Contrast Variation Experiments on Multi-component Assemblies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:65-85. [DOI: 10.1007/978-981-10-6038-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Gabel F. Applications of SANS to Study Membrane Protein Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:201-214. [DOI: 10.1007/978-981-10-6038-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Castellanos MM, McAuley A, Curtis JE. Investigating Structure and Dynamics of Proteins in Amorphous Phases Using Neutron Scattering. Comput Struct Biotechnol J 2016; 15:117-130. [PMID: 28138368 PMCID: PMC5257034 DOI: 10.1016/j.csbj.2016.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/10/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
In order to increase shelf life and minimize aggregation during storage, many biotherapeutic drugs are formulated and stored as either frozen solutions or lyophilized powders. However, characterizing amorphous solids can be challenging with the commonly available set of biophysical measurements used for proteins in liquid solutions. Therefore, some questions remain regarding the structure of the active pharmaceutical ingredient during freezing and drying of the drug product and the molecular role of excipients. Neutron scattering is a powerful technique to study structure and dynamics of a variety of systems in both solid and liquid phases. Moreover, neutron scattering experiments can generally be correlated with theory and molecular simulations to analyze experimental data. In this article, we focus on the use of neutron techniques to address problems of biotechnological interest. We describe the use of small-angle neutron scattering to study the solution structure of biological molecules and the packing arrangement in amorphous phases, that is, frozen glasses and freeze-dried protein powders. In addition, we discuss the use of neutron spectroscopy to measure the dynamics of glassy systems at different time and length scales. Overall, we expect that the present article will guide and prompt the use of neutron scattering to provide unique insights on many of the outstanding questions in biotechnology.
Collapse
Affiliation(s)
- Maria Monica Castellanos
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, United States; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, United States
| | - Arnold McAuley
- Department of Drug Product Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, United States
| |
Collapse
|
32
|
Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, Brockwell DJ, Radford SE. Skp is a multivalent chaperone of outer-membrane proteins. Nat Struct Mol Biol 2016; 23:786-793. [PMID: 27455461 PMCID: PMC5018216 DOI: 10.1038/nsmb.3266] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/24/2016] [Indexed: 01/17/2023]
Abstract
The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry-mass spectrometry (IMS-MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Paul W A Devine
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Sarah A Harris
- Astbury Centre for Structural Molecular Biology
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
33
|
De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 2016; 1:16107. [PMID: 27573113 DOI: 10.1038/nmicrobiol.2016.107] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Abstract
While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Jozefien De Geyter
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Valentina Zorzini
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
34
|
Plummer AM, Fleming KG. From Chaperones to the Membrane with a BAM! Trends Biochem Sci 2016; 41:872-882. [PMID: 27450425 DOI: 10.1016/j.tibs.2016.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Abstract
Outer membrane proteins (OMPs) play a central role in the integrity of the outer membrane of Gram-negative bacteria. Unfolded OMPs (uOMPs) transit across the periplasm, and subsequent folding and assembly are crucial for biogenesis. Chaperones and the essential β-barrel assembly machinery (BAM) complex facilitate these processes. In vitro studies suggest that some chaperones sequester uOMPs in internal cavities during their periplasmic transit to prevent deleterious aggregation. Upon reaching the outer membrane, the BAM complex acts catalytically to accelerate uOMP folding. Complementary in vivo experiments have revealed the localization and activity of the BAM complex in living cells. Completing an understanding of OMP biogenesis will require a holistic view of the interplay among the individual components discussed here.
Collapse
Affiliation(s)
- Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
35
|
Abstract
Biogenesis of the Gram-negative outer membrane involves the chaperone seventeen kilodalton protein (Skp). A Skp trimer is currently thought to bind its unfolded outer membrane protein (uOMP) substrates. Using sedimentation equilibrium, we discovered that Skp is not an obligate trimer under physiological conditions and that Na(+), Cl(-), Mg(2+), and PO4(3-) ions are not linked to Skp trimerization. These findings suggest that electrostatics play a negligible role in Skp assembly. Our results demonstrate that Skp monomers are populated at biologically relevant concentrations, which raises the idea that kinetic formation of Skp-uOMP complexes likely involves Skp monomer assembly around its substrate. In addition, van't Hoff analysis of Skp self-association does not support a previously proposed coupled folding and trimerization of Skp.
Collapse
Affiliation(s)
- Clifford W. Sandlin
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD 21218
| | - Nathan R. Zaccai
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD 21218
| | - Karen G. Fleming
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|