1
|
Abooshahab R, Razavi F, Ghorbani F, Hooshmand K, Zarkesh M, Hedayati M. Thyroid cancer cell metabolism: A glance into cell culture system-based metabolomics approaches. Exp Cell Res 2024; 435:113936. [PMID: 38278284 DOI: 10.1016/j.yexcr.2024.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Thyroid cancer is the most common malignancy of the endocrine system and the seventh most prevalent cancer in women worldwide. It is a complex and diverse disease characterized by heterogeneity, underscoring the importance of understanding the underlying metabolic alterations within tumor cells. Metabolomics technologies offer a powerful toolset to explore and identify endogenous and exogenous biochemical reaction products, providing crucial insights into the intricate metabolic pathways and processes within living cells. Metabolism plays a central role in cell function, making metabolomics a valuable reflection of a cell's phenotype. In the OMICs era, metabolomics analysis of cells brings numerous advantages over existing methods, propelling cell metabolomics as an emerging field with vast potential for investigating metabolic pathways and their perturbation in pathophysiological conditions. This review article aims to look into recent developments in applying metabolomics for characterizing and interpreting the cellular metabolome in thyroid cancer cell lines, exploring their unique metabolic characteristics. Understanding the metabolic alterations in tumor cells can lead to the identification of critical nodes in the metabolic network that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Fatemeh Razavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghorbani
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | | | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Laiakis EC, Shuryak I, Deziel A, Wang YW, Barnette BL, Yu Y, Ullrich RL, Fornace AJ, Emmett MR. Effects of Low Dose Space Radiation Exposures on the Splenic Metabolome. Int J Mol Sci 2021; 22:3070. [PMID: 33802822 PMCID: PMC8002539 DOI: 10.3390/ijms22063070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Future space missions will include a return to the Moon and long duration deep space roundtrip missions to Mars. Leaving the protection that Low Earth Orbit provides will unavoidably expose astronauts to higher cumulative doses of space radiation, in addition to other stressors, e.g., microgravity. Immune regulation is known to be impacted by both radiation and spaceflight and it remains to be seen whether prolonged effects that will be encountered in deep space can have an adverse impact on health. In this study, we investigated the effects in the overall metabolism of three different low dose radiation exposures (γ-rays, 16O, and 56Fe) in spleens from male C57BL/6 mice at 1, 2, and 4 months after exposure. Forty metabolites were identified with significant enrichment in purine metabolism, tricarboxylic acid cycle, fatty acids, acylcarnitines, and amino acids. Early perturbations were more prominent in the γ irradiated samples, while later responses shifted towards more prominent responses in groups with high energy particle irradiations. Regression analysis showed a positive correlation of the abundance of identified fatty acids with time and a negative association with γ-rays, while the degradation pathway of purines was positively associated with time. Taken together, there is a strong suggestion of mitochondrial implication and the possibility of long-term effects on DNA repair and nucleotide pools following radiation exposure.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA; (A.D.); (Y.-W.W.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY 10032, USA;
| | - Annabella Deziel
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA; (A.D.); (Y.-W.W.); (A.J.F.J.)
| | - Yi-Wen Wang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA; (A.D.); (Y.-W.W.); (A.J.F.J.)
| | - Brooke L. Barnette
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.L.B.); (Y.Y.); (M.R.E.)
| | - Yongjia Yu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.L.B.); (Y.Y.); (M.R.E.)
| | | | - Albert J. Fornace
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA; (A.D.); (Y.-W.W.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Mark R. Emmett
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.L.B.); (Y.Y.); (M.R.E.)
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|