1
|
Madison FN, Bingman VP, Smulders TV, Lattin CR. A bird's eye view of the hippocampus beyond space: Behavioral, neuroanatomical, and neuroendocrine perspectives. Horm Behav 2024; 157:105451. [PMID: 37977022 DOI: 10.1016/j.yhbeh.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Verner P Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tom V Smulders
- Centre for Behaviour and Evolution, School of Psychology, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70808, USA.
| |
Collapse
|
2
|
Space, feature, and risk sensitivity in homing pigeons (Columba livia): Broadening the conversation on the role of the avian hippocampus in memory. Learn Behav 2021; 50:99-112. [PMID: 34918206 DOI: 10.3758/s13420-021-00500-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 11/08/2022]
Abstract
David Sherry has been a pioneer in investigating the avian hippocampal formation (HF) and spatial memory. Following on his work and observations that HF is sensitive to the occurrence of reward (food), we were interested in carrying out an exploratory study to investigate possible HF involvement in the representation goal value and risk. Control sham-lesioned and hippocampal-lesioned pigeons were trained in an open field to locate one food bowl containing a constant two food pellets on all trials, and two variable bowls with one containing five pellets on 75% (High Variable) and another on 25% (Low Variable) of their respective trials (High-Variable and Low-Variable bowls were never presented together). One pairing of pigeons learned bowl locations (space); another bowl colors (feature). Trained to color, hippocampal-lesioned pigeons performed as rational agents in their bowl choices and were indistinguishable from the control pigeons, a result consistent with HF regarded as unimportant for non-spatial memory. By contrast, when trained to location, hippocampal-lesioned pigeons differed from the control pigeons. They made more first-choice errors to bowls that never contained food, consistent with a role of HF in spatial memory. Intriguingly, the hippocampal-lesioned pigeons also made fewer first choices to both variable bowls, suggesting that hippocampal lesions resulted in the pigeons becoming more risk averse. Acknowledging that the results are preliminary and further research is needed, the data nonetheless support the general hypothesis that HF-dependent memory representations of space capture properties of reward value and risk, properties that contribute to decision making when confronted with a choice.
Collapse
|
3
|
Abstract
An organism's survival can depend on its ability to recall and navigate to spatial locations associated with rewards, such as food or a home. Accumulating research has revealed that computations of reward and its prediction occur on multiple levels across a complex set of interacting brain regions, including those that support memory and navigation. However, how the brain coordinates the encoding, recall and use of reward information to guide navigation remains incompletely understood. In this Review, we propose that the brain's classical navigation centres - the hippocampus and the entorhinal cortex - are ideally suited to coordinate this larger network by representing both physical and mental space as a series of states. These states may be linked to reward via neuromodulatory inputs to the hippocampus-entorhinal cortex system. Hippocampal outputs can then broadcast sequences of states to the rest of the brain to store reward associations or to facilitate decision-making, potentially engaging additional value signals downstream. This proposal is supported by recent advances in both experimental and theoretical neuroscience. By discussing the neural systems traditionally tied to navigation and reward at their intersection, we aim to offer an integrated framework for understanding navigation to reward as a fundamental feature of many cognitive processes.
Collapse
|
4
|
Trempler I, Bürkner PC, El-Sourani N, Binder E, Reker P, Fink GR, Schubotz RI. Impaired context-sensitive adjustment of behaviour in Parkinson's disease patients tested on and off medication: An fMRI study. Neuroimage 2020; 212:116674. [PMID: 32097724 DOI: 10.1016/j.neuroimage.2020.116674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 10/24/2022] Open
Abstract
The brain's sensitivity to and accentuation of unpredicted over predicted sensory signals plays a fundamental role in learning. According to recent theoretical models of the predictive coding framework, dopamine is responsible for balancing the interplay between bottom-up input and top-down predictions by controlling the precision of surprise signals that guide learning. Using functional MRI, we investigated whether patients with Parkinson's disease (PD) show impaired learning from prediction errors requiring either adaptation or stabilisation of current predictions. Moreover, we were interested in whether deficits in learning over a specific time scale would be accompanied by altered surprise responses in dopamine-related brain structures. To this end, twenty-one PD patients tested on and off dopaminergic medication and twenty-one healthy controls performed a digit prediction paradigm. During the task, violations of sequence-based predictions either signalled the need to update or to stabilise the current prediction and, thus, to react to them or ignore them, respectively. To investigate contextual adaptation to prediction errors, the probability (or its inverse, surprise) of the violations fluctuated across the experiment. When the probability of prediction errors over a specific time scale increased, healthy controls but not PD patients off medication became more flexible, i.e., error rates at violations requiring a motor response decreased in controls but increased in patients. On the neural level, this learning deficit in patients was accompanied by reduced signalling in the substantia nigra and the caudate nucleus. In contrast, differences between the groups regarding the probabilistic modulation of behaviour and neural responses were much less pronounced at prediction errors requiring only stabilisation but no adaptation. Interestingly, dopaminergic medication could neither improve learning from prediction errors nor restore the physiological, neurotypical pattern. Our findings point to a pivotal role of dysfunctions of the substantia nigra and caudate nucleus in deficits in learning from flexibility-demanding prediction errors in PD. Moreover, the data witness poor effects of dopaminergic medication on learning in PD.
Collapse
Affiliation(s)
- Ima Trempler
- Department of Psychology, University of Muenster, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, 48149, Münster, Germany.
| | | | - Nadiya El-Sourani
- Department of Psychology, University of Muenster, 48149, Münster, Germany
| | - Ellen Binder
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, 50937, Cologne, Germany; Institute of Neuroscience and Medicine (INM3), Cognitive Neuroscience, Research Centre Jülich, 52425, Jülich, Germany
| | - Paul Reker
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, 50937, Cologne, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, 50937, Cologne, Germany; Institute of Neuroscience and Medicine (INM3), Cognitive Neuroscience, Research Centre Jülich, 52425, Jülich, Germany
| | - Ricarda I Schubotz
- Department of Psychology, University of Muenster, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, 48149, Münster, Germany; Faculty of Medicine and University Hospital Cologne, Department of Neurology, 50937, Cologne, Germany
| |
Collapse
|
5
|
Barfield ET, Gourley SL. Glucocorticoid-sensitive ventral hippocampal-orbitofrontal cortical connections support goal-directed action - Curt Richter Award Paper 2019. Psychoneuroendocrinology 2019; 110:104436. [PMID: 31526526 PMCID: PMC6859207 DOI: 10.1016/j.psyneuen.2019.104436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022]
Abstract
In an ever-changing and often ambiguous environment, organisms must use previously learned associations between antecedents and outcomes to predict future associations and make optimal choices. Chronic stress can impair one's ability to flexibly adjust behaviors when environmental contingencies change, particularly in cases of early-life stress. In mice, exposure to elevated levels of the primary stress hormone, corticosterone (CORT), during early adolescence is sufficient to impair response-outcome decision making later in life, biasing response strategies towards inflexible habits. Nevertheless, neurobiological mechanisms are still being defined. Here, we report that exposure to excess CORT in adolescence causes a loss of dendritic spines on excitatory pyramidal neurons in the lateral, but not medial, orbital prefrontal cortex (loPFC) of mice, and spine loss correlates with the severity of habit biases in adulthood. Excess CORT also reduces the presence of ventral hippocampal (vHC) axon terminals in the loPFC. To identify functional consequences, we inactivated vHC→loPFC projections in typical healthy mice during a period when mice must update response-outcome expectations to optimally acquire food reinforcers. Inactivation impaired the animals' subsequent ability to sustainably choose actions based on likely outcomes, causing them to defer to habit-based response strategies. Thus, vHC→loPFC projections are necessary for response-outcome expectancy updating and a target of excess glucocorticoids during early-life development. Their degradation is likely involved in long-term biases towards habit-based behaviors following glucocorticoid excess in adolescence.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Training Programs in Neuroscience and Molecular and Systems Pharmacology, Emory University, USA.
| |
Collapse
|
6
|
Genon S, Reid A, Langner R, Amunts K, Eickhoff SB. How to Characterize the Function of a Brain Region. Trends Cogn Sci 2018; 22:350-364. [PMID: 29501326 PMCID: PMC7978486 DOI: 10.1016/j.tics.2018.01.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Many brain regions have been defined, but a comprehensive formalization of each region's function in relation to human behavior is still lacking. Current knowledge comes from various fields, which have diverse conceptions of 'functions'. We briefly review these fields and outline how the heterogeneity of associations could be harnessed to disclose the computational function of any region. Aggregating activation data from neuroimaging studies allows us to characterize the functional engagement of a region across a range of experimental conditions. Furthermore, large-sample data can disclose covariation between brain region features and ecological behavioral phenotyping. Combining these two approaches opens a new perspective to determine the behavioral associations of a brain region, and hence its function and broader role within large-scale functional networks.
Collapse
Affiliation(s)
- Sarah Genon
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Andrew Reid
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Mizumori SJY, Baker PM. The Lateral Habenula and Adaptive Behaviors. Trends Neurosci 2017; 40:481-493. [PMID: 28688871 PMCID: PMC11568516 DOI: 10.1016/j.tins.2017.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 02/05/2023]
Abstract
The evolutionarily conserved lateral habenula (LHb) enables dynamic responses to continually changing contexts and environmental conditions. A model is proposed to account for greater mnemonic and contextual control over LHb-mediated response flexibility as vertebrate brains became more complex. The medial prefrontal cortex (mPFC) provides instructions for context-specific responses to LHb, which assesses the extent to which this response information matches the motivation or internal state of the individual. LHb output either maintains a prior response (match) or leads to alternative responses (mismatch). It may also maintain current spatial and temporal processing in hippocampus (match), or alter such activity to reflect updated trajectory and sequenced information (mismatch). A response flexibility function of the LHb is consistent with poor behavioral control following its disruption (e.g., in depression).
Collapse
Affiliation(s)
- Sheri J Y Mizumori
- Psychology Department, University of Washington, Seattle, WA 98195-1525, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195-1525, USA.
| | - Phillip M Baker
- Psychology Department, University of Washington, Seattle, WA 98195-1525, USA
| |
Collapse
|
8
|
Tryon VL, Penner MR, Heide SW, King HO, Larkin J, Mizumori SJY. Hippocampal neural activity reflects the economy of choices during goal-directed navigation. Hippocampus 2017; 27:743-758. [PMID: 28241404 DOI: 10.1002/hipo.22720] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/05/2017] [Accepted: 02/17/2017] [Indexed: 11/09/2022]
Abstract
Distinguishing spatial contexts is likely essential for the well-known role of the hippocampus in episodic memory. We studied whether types of hippocampal neural organization thought to underlie context discrimination are impacted by learned economic considerations of choice behavior. Hippocampal place cells and theta activity were recorded as rats performed a maze-based probability discounting task that involved choosing between a small certain reward or a large probabilistic reward. Different spatial distributions of place fields were observed in response to changes in probability, the outcome of the rats' choice, and whether or not rats were free to make that choice. The degree to which the reward location was represented by place cells scaled with the expected probability of rewards. Theta power increased around the goal location also in proportion to the expected probability of signaled rewards. Furthermore, theta power dynamically varied as specific econometric information was obtained "on the fly" during task performance. Such an economic perspective of memory processing by hippocampal place cells expands our view of the nature of context memories retrieved by hippocampus during adaptive navigation.
Collapse
Affiliation(s)
- Valerie L Tryon
- Psychology Department, University of Washington, Seattle, Washington
| | - Marsha R Penner
- Psychology Department, University of Washington, Seattle, Washington
| | - Shawn W Heide
- Psychology Department, University of Washington, Seattle, Washington
| | - Hunter O King
- Psychology Department, University of Washington, Seattle, Washington
| | - Joshua Larkin
- Psychology Department, University of Washington, Seattle, Washington
| | - Sheri J Y Mizumori
- Psychology Department, University of Washington, Seattle, Washington.,Neuroscience Program, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Yoo SW, Lee I. Functional double dissociation within the entorhinal cortex for visual scene-dependent choice behavior. eLife 2017; 6. [PMID: 28169828 PMCID: PMC5308889 DOI: 10.7554/elife.21543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/06/2017] [Indexed: 01/04/2023] Open
Abstract
How visual scene memory is processed differentially by the upstream structures of the hippocampus is largely unknown. We sought to dissociate functionally the lateral and medial subdivisions of the entorhinal cortex (LEC and MEC, respectively) in visual scene-dependent tasks by temporarily inactivating the LEC and MEC in the same rat. When the rat made spatial choices in a T-maze using visual scenes displayed on LCD screens, the inactivation of the MEC but not the LEC produced severe deficits in performance. However, when the task required the animal to push a jar or to dig in the sand in the jar using the same scene stimuli, the LEC but not the MEC became important. Our findings suggest that the entorhinal cortex is critical for scene-dependent mnemonic behavior, and the response modality may interact with a sensory modality to determine the involvement of the LEC and MEC in scene-based memory tasks. DOI:http://dx.doi.org/10.7554/eLife.21543.001
Collapse
Affiliation(s)
- Seung-Woo Yoo
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Reward-Based Spatial Learning in Teens With Bulimia Nervosa. J Am Acad Child Adolesc Psychiatry 2016; 55:962-971.e3. [PMID: 27806864 PMCID: PMC5098471 DOI: 10.1016/j.jaac.2016.07.778] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/07/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess the functioning of mesolimbic and fronto-striatal areas involved in reward-based spatial learning in teenaged girls with bulimia nervosa (BN) that might be involved in the development and maintenance of maladaptive behaviors characteristic of the disorder. METHOD We compared functional magnetic resonance imaging blood oxygen level-dependent response in 27 adolescent girls with BN to that of 27 healthy, age-matched control participants during a reward-based learning task that required learning to use extra-maze cues to navigate a virtual 8-arm radial maze to find hidden rewards. We compared groups in their patterns of brain activation associated with reward-based spatial learning versus a control condition in which rewards were unexpected because they were allotted pseudo-randomly to experimentally prevent learning. RESULTS Both groups learned to navigate the maze to find hidden rewards, but group differences in brain activity associated with maze navigation and reward processing were detected in the fronto-striatal regions and right anterior hippocampus. Unlike healthy adolescents, those with BN did not engage the right inferior frontal gyrus during maze navigation, activated the right anterior hippocampus during the receipt of unexpected rewards (control condition), and deactivated the left superior frontal gyrus and right anterior hippocampus during expected reward receipt (learning condition). These patterns of hippocampal activation in the control condition were significantly associated with the frequency of binge-eating episodes. CONCLUSION Adolescents with BN displayed abnormal functioning of the anterior hippocampus and fronto-striatal regions during reward-based spatial learning. These findings suggest that an imbalance in control and reward circuits may arise early in the course of BN. Clinical trial registration information-An fMRI Study of Self-Regulation in Adolescents With Bulimia Nervosa; https://clinicaltrials.gov/; NCT00345943.
Collapse
|