1
|
Pinto-Benito D, Bautista-Abad A, Lagunas N, Ontiveros N, Ganchala D, Garcia-Segura LM, Arevalo MA, Grassi D. Tibolone treatment after traumatic brain injury exerts a sex-specific and Y chromosome-dependent regulation of methylation and demethylation enzymes and estrogen receptors in the cerebral cortex. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167532. [PMID: 39366643 DOI: 10.1016/j.bbadis.2024.167532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alvaro Bautista-Abad
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Ciudad Universitaria, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Nebai Ontiveros
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Danny Ganchala
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis M Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Daniela Grassi
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
2
|
Eskesen TO, Almstrup K, Elgaard L, Arleth T, Lassen ML, Creutzburg A, Jensen AH, Breindahl N, Dinesen F, Vang M, Sørensen E, Paulsen AW, Nielsen T, Rasmussen LS, Sillesen M, Steinmetz J. Severe traumatic injury is associated with profound changes in DNA methylation. NPJ Genom Med 2024; 9:53. [PMID: 39487175 PMCID: PMC11530621 DOI: 10.1038/s41525-024-00438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/25/2024] [Indexed: 11/04/2024] Open
Abstract
Whether DNA methylation changes follow human physical trauma is uncertain. We aimed to investigate if severe trauma was associated with DNA methylation changes. In a prospective, observational, clinical study, we included severely injured adults and adults undergoing elective surgery (controls). Blood was obtained from trauma patients (n = 60) immediately- and 30-45 days post-trauma, and from surgical patients (n = 57) pre-, post-, and 30-45 days post-surgery. Epigenome-wide DNA methylation profiling was performed and analyzed for significant differentially methylated CpGs and -regions (DMRs) within and between groups. Within the trauma group we identified 10,126 significant differentially methylated CpGs and 1169 DMRs. No significant differential methylation was found in the surgical group. In the trauma group, differentially methylated sites were enriched in genes and pathways involved in blood coagulation and inflammatory response. Severe trauma was associated with profound alterations in the DNA methylome of circulating leucocytes, and differential methylation was located in trauma-relevant genes.
Collapse
Affiliation(s)
- Trine O Eskesen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark.
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laurits Elgaard
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Tobias Arleth
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Mathilde L Lassen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Creutzburg
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Alice Herrlin Jensen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Niklas Breindahl
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Felicia Dinesen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Malene Vang
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Section 2034, Rigshospitalet, Copenhagen, Denmark
| | | | - Tatiana Nielsen
- Department of Anesthesia, Pain, and Respiratory Support, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Lars S Rasmussen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin Sillesen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Organ Surgery and Transplantation, Rigshospitalet, Copenhagen, Denmark
- Center for Surgical Translational and Artificial Intelligence Research, 2100 Rigshospitalet, Copenhagen, Denmark
| | - Jacob Steinmetz
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Air Ambulance, Aarhus, Denmark
| |
Collapse
|
3
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Tapp ZM, Ren C, Palmer K, Kumar J, Atluri RR, Fitzgerald J, Velasquez J, Godbout J, Sheridan J, Kokiko-Cochran ON. Divergent Spatial Learning, Enhanced Neuronal Transcription, and Blood-Brain Barrier Disruption Develop During Recovery from Post-Injury Sleep Fragmentation. Neurotrauma Rep 2023; 4:613-626. [PMID: 37752925 PMCID: PMC10518692 DOI: 10.1089/neur.2023.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Traumatic brain injury (TBI) causes pathophysiology that may significantly decrease quality of life over time. A major propagator of this response is chronic, maladaptive neuroinflammation, which can be exacerbated by stressors such as sleep fragmentation (SF). This study determined whether post-TBI SF had lasting behavioral and inflammatory effects even with a period of recovery. To test this, male and female mice received a moderate lateral fluid percussion TBI or sham surgery. Half the mice were left undisturbed, and half were exposed to daily SF for 30 days. All mice were then undisturbed between 30 and 60 days post-injury (DPI), allowing mice to recover from SF (SF-R). SF-R did not impair global Barnes maze performance. Nonetheless, TBI SF-R mice displayed retrogression in latency to reach the goal box within testing days. These nuanced behavioral changes in TBI SF-R mice were associated with enhanced expression of neuronal processing/signaling genes and indicators of blood-brain barrier (BBB) dysfunction. Aquaporin-4 (AQP4) expression, a marker of BBB integrity, was differentially altered by TBI and TBI SF-R. For example, TBI enhanced cortical AQP4 whereas TBI SF-R mice had the lowest cortical expression of perivascular AQP4, dysregulated AQP4 polarization, and the highest number of CD45+ cells in the ipsilateral cortex. Altogether, post-TBI SF caused lasting, divergent behavioral responses associated with enhanced expression of neuronal transcription and BBB disruption even after a period of recovery from SF. Understanding lasting impacts from post-TBI stressors can better inform both acute and chronic post-injury care to improve long-term outcome post-TBI.
Collapse
Affiliation(s)
- Zoe M. Tapp
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Cindy Ren
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Kelsey Palmer
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Julia Kumar
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Ravitej R. Atluri
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Julie Fitzgerald
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - John Velasquez
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan Godbout
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, Neurological Institute, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - John Sheridan
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, Neurological Institute, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Smolen P, Dash PK, Redell JB. Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases. Front Neurosci 2023; 17:1259405. [PMID: 37795186 PMCID: PMC10546067 DOI: 10.3389/fnins.2023.1259405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer's or Parkinson's are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs - Alzheimer's disease, Parkinson's disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | | | |
Collapse
|
6
|
Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti JRLP. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? BIOLOGY 2023; 12:1139. [PMID: 37627023 PMCID: PMC10452099 DOI: 10.3390/biology12081139] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-lasting morbidity and mortality worldwide, being a devastating condition related to the impairment of the nervous system after an external traumatic event resulting in transitory or permanent functional disability, with a significant burden to the healthcare system. Harmful events underlying TBI can be classified into two sequential stages, primary and secondary, which are both associated with breakdown of the tissue homeostasis due to impairment of the blood-brain barrier, osmotic imbalance, inflammatory processes, oxidative stress, excitotoxicity, and apoptotic cell death, ultimately resulting in a loss of tissue functionality. The present study provides an updated review concerning the roles of brain edema, inflammation, excitotoxicity, and oxidative stress on brain changes resulting from a TBI. The proper characterization of the phenomena resulting from TBI can contribute to the improvement of care, rehabilitation and quality of life of the affected people.
Collapse
Affiliation(s)
- Marco Aurelio M. Freire
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Gabriel Sousa Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Daniel Falcao
- VCU Health Systems, Virginia Commonwealth University, 23219 Richmond, VA, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Jose Rodolfo Lopes P. Cavalcanti
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| |
Collapse
|
7
|
Wong R, Zhang Y, Zhao H, Ma D. Circular RNAs in organ injury: recent development. J Transl Med 2022; 20:533. [PMID: 36401311 PMCID: PMC9673305 DOI: 10.1186/s12967-022-03725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Circular ribonucleic acids (circRNAs) are a class of long non-coding RNA that were once regarded as non-functional transcription byproducts. However, recent studies suggested that circRNAs may exhibit important regulatory roles in many critical biological pathways and disease pathologies. These studies have identified significantly differential expression profiles of circRNAs upon changes in physiological and pathological conditions of eukaryotic cells. Importantly, a substantial number of studies have suggested that circRNAs may play critical roles in organ injuries. This review aims to provide a summary of recent studies on circRNAs in organ injuries with respect to (1) changes in circRNAs expression patterns, (2) main mechanism axi(e)s, (3) therapeutic implications and (4) future study prospective. With the increasing attention to this research area and the advancement in high-throughput nucleic acid sequencing techniques, our knowledge of circRNAs may bring fruitful outcomes from basic and clinical research.
Collapse
|
8
|
Shao X, Liu Z, Mao S, Han L. Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Adv Healthc Mater 2022; 11:e2200760. [PMID: 35841392 DOI: 10.1002/adhm.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health and socioeconomic problem, associated with prolonged and complex neurological aftermaths, including a variety of functional deficits and neurodegenerative disorders. Research on the long-term effects has highlighted that TBI shall be regarded as a chronic health condition. The initiation and exacerbation of TBI involve a series of mechanical stimulations and perturbations, accompanied by mechanotransduction events within the brain tissues. Mechanobiology thus offers a unique perspective and likely promising approach to unravel the underlying molecular and biochemical mechanisms leading to neural cells dysfunction after TBI, which may contribute to the discovery of novel targets for future clinical treatment. This article investigates TBI and the subsequent brain dysfunction from a lens of neuromechanobiology. Following an introduction, the mechanobiological insights are examined into the molecular pathology of TBI, and then an overview is given of the latest research technologies to explore neuromechanobiology, with particular focus on microfluidics and biomaterials. Challenges and prospects in the current field are also discussed. Through this article, it is hoped that extensive technical innovation in biomedical devices and materials can be encouraged to advance the field of neuromechanobiology, paving potential ways for the research and rehabilitation of neurotrauma and neurological diseases.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China
| | - Zhongqian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
9
|
Zhang Y, Yang X, Hou X, Zhou W, Bi C, Yang Z, Lu S, Ding Z, Ding Z, Zou Y, Guo Q, Schäfer MKE, Huang C. Extracellular signal-regulated kinase-dependent phosphorylation of histone H3 serine 10 is involved in the pathogenesis of traumatic brain injury. Front Mol Neurosci 2022; 15:828567. [PMID: 36245918 PMCID: PMC9557206 DOI: 10.3389/fnmol.2022.828567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) induces a series of epigenetic changes in brain tissue, among which histone modifications are associated with the deterioration of TBI. In this study, we explored the role of histone H3 modifications in a weight-drop model of TBI in rats. Screening for various histone modifications, immunoblot analyses revealed that the phosphorylation of histone H3 serine 10 (p-H3S10) was significantly upregulated after TBI in the brain tissue surrounding the injury site. A similar posttraumatic regulation was observed for phosphorylated extracellular signal-regulated kinase (p-ERK), which is known to phosphorylate H3S10. In support of the hypothesis that ERK-mediated phosphorylation of H3S10 contributes to TBI pathogenesis, double immunofluorescence staining of brain sections showed high levels and colocalization of p-H3S10 and p-ERK predominantly in neurons surrounding the injury site. To test the hypothesis that inhibition of ERK-H3S10 signaling ameliorates TBI pathogenesis, the mitogen-activated protein kinase–extracellular signal-regulated kinase kinase (MEK) 1/2 inhibitor U0126, which inhibits ERK phosphorylation, was administered into the right lateral ventricle of TBI male and female rats via intracerebroventricular cannulation for 7 days post trauma. U0126 administration indeed prevented H3S10 phosphorylation and improved motor function recovery and cognitive function compared to vehicle treatment. In agreement with our findings in the rat model of TBI, immunoblot and double immunofluorescence analyses of brain tissue specimens from patients with TBI demonstrated high levels and colocalization of p-H3S10 and p-ERK as compared to control specimens from non-injured individuals. In conclusion, our findings indicate that phosphorylation-dependent activation of ERK-H3S10 signaling participates in the pathogenesis of TBI and can be targeted by pharmacological approaches.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Xin Yang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Xinran Hou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Wen Zhou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Changlong Bi
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Sining Lu
- Medical College of Xiangya, Central South University, Changsha, China
| | - Zijin Ding
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Yu Zou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences and Research Center of Immunotherapy of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Changsheng Huang,
| |
Collapse
|
10
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
11
|
Liu D, Zusman BE, Shaffer JR, Li Y, Arockiaraj AI, Liu S, Weeks DE, Desai SM, Kochanek PM, Puccio AM, Okonkwo DO, Conley YP, Jha RM. Decreased DNA Methylation of RGMA is Associated with Intracranial Hypertension After Severe Traumatic Brain Injury: An Exploratory Epigenome-Wide Association Study. Neurocrit Care 2022; 37:26-37. [PMID: 35028889 PMCID: PMC9287123 DOI: 10.1007/s12028-021-01424-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cerebral edema and intracranial hypertension are major contributors to unfavorable prognosis in traumatic brain injury (TBI). Local epigenetic changes, particularly in DNA methylation, may influence gene expression and thus host response/secondary injury after TBI. It remains unknown whether DNA methylation in the central nervous system is associated with cerebral edema severity or intracranial hypertension post TBI. We sought to identify epigenome-wide DNA methylation patterns associated with these forms of secondary injury after TBI. METHODS We obtained genome-wide DNA methylation profiles of DNA extracted from ventricular cerebrospinal fluid samples at three different postinjury time points from a prospective cohort of patients with severe TBI (n = 89 patients, 254 samples). Cerebral edema and intracranial pressure (ICP) measures were clustered to generate composite end points of cerebral edema and ICP severity. We performed an unbiased epigenome-wide association study (EWAS) to test associations between DNA methylation at 419,895 cytosine-phosphate-guanine (CpG) sites and cerebral edema/ICP severity categories. Given inflated p values, we conducted permutation tests for top CpG sites to filter out potential false discoveries. RESULTS Our data-driven hierarchical clustering across six cerebral edema and ICP measures identified two groups differing significantly in ICP based on the EWAS-identified CpG site cg22111818 in RGMA (Repulsive guidance molecule A, permutation p = 4.20 × 10-8). At 3-4 days post TBI, patients with severe intracranial hypertension had significantly lower levels of methylation at cg22111818. CONCLUSIONS We report a novel potential relationship between intracranial hypertension after TBI and an acute, nonsustained reduction in DNA methylation at cg22111818 in the RGMA gene. To our knowledge, this is the largest EWAS in severe TBI. Our findings are further strengthened by previous findings that RGMA modulates axonal repair in other central nervous system disorders, but a role in intracranial hypertension or TBI has not been previously identified. Additional work is warranted to validate and extend these findings, including assessment of its possible role in risk stratification, identification of novel druggable targets, and ultimately our ability to personalize therapy in TBI.
Collapse
Affiliation(s)
- Dongjing Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Benjamin E Zusman
- School of Medicine, University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15213, USA
| | - Yunqi Li
- Institute for Public Health Genetics, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Annie I Arockiaraj
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Shuwei Liu
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Shashvat M Desai
- Department of Neurology, Neurobiology and Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, John G Rangos Research Center, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Ava M Puccio
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - David O Okonkwo
- School of Nursing, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15261, USA
| | - Yvette P Conley
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
- School of Nursing, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15261, USA.
| | - Ruchira M Jha
- Department of Neurology, Neurobiology and Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- St Joseph's Hospital and Medical Center, 240 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
12
|
Levels of lncRNA GAS5 in Plasma of Patients with Severe Traumatic Brain Injury: Correlation with Systemic Inflammation and Early Outcome. J Clin Med 2022; 11:jcm11123319. [PMID: 35743389 PMCID: PMC9224922 DOI: 10.3390/jcm11123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Scientific efforts continue to concentrate on elucidating the complex molecular mechanisms underlying traumatic brain injury (TBI), and recent reports suggest that epigenetic regulation including long non-coding RNA (lncRNA) is involved. The present study aimed to investigate the plasma concentration of a long non-coding RNA, named growth arrest-specific 5 (GAS5), in a group of 45 patients with severe TBI (sTBI), and to analyze the correlations of GAS5 with TBI onset, injury severity, systemic inflammation, and early outcome of the patients. It was found that plasma GAS5 levels were substantially increased in sTBI patients compared with the relative controls (p < 0.001). Further, significantly higher expression of plasma GAS5 was observed in patients with a Glasgow Coma Scale (GCS) score of less than five (p = 0.002) or unfavorable outcome at discharge (p < 0.001). Circulating GAS5 expression had a negative correlation with GCS score (r = −0.406, p = 0.006), and positive correlations with white blood cell count (r = 0.473, p = 0.001), neutrophil count (r = 0.502, p < 0.001), and neutrophil/lymphocyte ratio (NLR) (r = 0.398, p = 0.007). Univariate and multivariate logistic regression analyses revealed that GCS score (OR = 0.318, 95% CI 0.132−0.767, p = 0.011) and GAS5 (OR = 2.771, 95% CI 1.025−7.494, p = 0.045) were the two independent predictors for early outcome of patients. The receiver operating characteristic (ROC) curves showed good prognostic values of GCS score (AUC = 0.856, 95% CI: 0.719−0.943) and GAS5 expression (AUC = 0.798, 95% CI: 0.651−0.903). Importantly, the combined use of them can improve the prognostic ability of TBI with an AUC of 0.895 (95% CI: 0.767−0.966). Collectively, our study indicated that the levels of lncRNA GAS5 in circulation were elevated following severe TBI and correlated well with injury severity and inflammatory parameters. In addition, GAS5 as well as GCS scores may have the potential to predict the early outcome of TBI patients.
Collapse
|
13
|
Ritzel RM, Li Y, Lei Z, Carter J, He J, Choi HMC, Khan N, Li H, Allen S, Lipinski MM, Faden AI, Wu J. Functional and transcriptional profiling of microglial activation during the chronic phase of TBI identifies an age-related driver of poor outcome in old mice. GeroScience 2022; 44:1407-1440. [PMID: 35451674 PMCID: PMC9213636 DOI: 10.1007/s11357-022-00562-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
Elderly patients with traumatic brain injury (TBI) have greater mortality and poorer outcomes than younger individuals. The extent to which old age alters long-term recovery and chronic microglial activation after TBI is unknown, and evidence for therapeutic efficacy in aged mice is sorely lacking. The present study sought to identify potential inflammatory mechanisms underlying age-related outcomes late after TBI. Controlled cortical impact was used to induce moderate TBI in young and old male C57BL/6 mice. At 12 weeks post-injury, aged mice exhibited higher mortality, poorer functional outcomes, larger lesion volumes, and increased microglial activation. Transcriptomic analysis identified age- and TBI-specific gene changes consistent with a disease-associated microglial signature in the chronically injured brain, including those involved with complement, phagocytosis, and autophagy pathways. Dysregulation of phagocytic and autophagic function in microglia was accompanied by increased neuroinflammation in old mice. As proof-of-principle that these pathways have functional importance, we administered an autophagic enhancer, trehalose, in drinking water continuously for 8 weeks after TBI. Old mice treated with trehalose showed enhanced functional recovery and reduced microglial activation late after TBI compared to the sucrose control group. Our data indicate that microglia undergo chronic changes in autophagic regulation with both normal aging and TBI that are associated with poorer functional outcome. Enhancing autophagy may therefore be a promising clinical therapeutic strategy for TBI, especially in older patients.
Collapse
Affiliation(s)
- Rodney M. Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Yun Li
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Zhuofan Lei
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jordan Carter
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Junyun He
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Harry M. C. Choi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Niaz Khan
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Hui Li
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Samantha Allen
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Marta M. Lipinski
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Junfang Wu
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
14
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities. SIGNIFICANCE STATEMENT: Post-traumatic epilepsy is a chronic seizure condition after brain injury. With few models and limited understanding of the underlying progression of epileptogenesis, progress is extremely slow to find a preventative treatment for PTE. This study reviews the current state of modeling, pathology, biomarkers, and potential interventions for PTE and comorbidities. There's new optimism in finding a drug therapy for preventing PTE in people at risk, such as after traumatic brain injury, concussion, and serious brain injuries, especially in military persons.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
15
|
Catta-Preta R, Zdilar I, Jenner B, Doisy ET, Tercovich K, Nord AS, Gurkoff GG. Transcriptional Pathology Evolves over Time in Rat Hippocampus after Lateral Fluid Percussion Traumatic Brain Injury. Neurotrauma Rep 2021; 2:512-525. [PMID: 34909768 PMCID: PMC8667199 DOI: 10.1089/neur.2021.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Traumatic brain injury (TBI) causes acute and lasting impacts on the brain, driving pathology along anatomical, cellular, and behavioral dimensions. Rodent models offer an opportunity to study the temporal progression of disease from injury to recovery. Transcriptomic and epigenomic analysis were applied to evaluate gene expression in ipsilateral hippocampus at 1 and 14 days after sham (n = 2 and 4, respectively per time point) and moderate lateral fluid percussion injury (n = 4 per time point). This enabled the identification of dynamic changes and differential gene expression (differentially expressed genes; DEGs) modules linked to underlying epigenetic response. We observed acute signatures associated with cell death, astrocytosis, and neurotransmission that largely recovered by 2 weeks. Inflammation and immune signatures segregated into upregulated modules with distinct expression trajectories and functions. Whereas most down-regulated genes recovered by 14 days, two modules with delayed and persistent changes were associated with cholesterol metabolism, amyloid beta clearance, and neurodegeneration. Differential expression was paralleled by changes in histone H3 lysine residue 4 trimethylation at the promoters of DEGs at 1 day post-TBI, with the strongest changes observed for inflammation and immune response genes. These results demonstrate how integrated genomics analysis in the pre-clinical setting has the potential to identify stage-specific biomarkers for injury and/or recovery. Though limited in scope here, our general strategy has the potential to capture pathological signatures over time and evaluate treatment efficacy at the systems level.
Collapse
Affiliation(s)
- Rinaldo Catta-Preta
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Iva Zdilar
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Bradley Jenner
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Emily T. Doisy
- Department of Neurological Surgery, University of California Davis, Davis, California, USA
| | - Kayleen Tercovich
- Department of Neurological Surgery, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| |
Collapse
|
16
|
Balasubramanian N, Jadhav G, Sakharkar AJ. Repeated mild traumatic brain injuries perturb the mitochondrial biogenesis via DNA methylation in the hippocampus of rat. Mitochondrion 2021; 61:11-24. [PMID: 34508891 DOI: 10.1016/j.mito.2021.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Mitochondrial biogenesis in the brain is impaired in various neurological disorders including traumatic brain injury (TBI). The long-lasting effects of TBI may be, in part, attributed to epigenetic mechanisms such as DNA methylation. However, the role of DNA methylation on regulatory elements of nuclear and mitochondrial genome in mitochondrial biogenesis is not known. We examined the epigenetic regulation of mitochondrial transcription factor A (TFAM), and further probed its implications in mitochondrial dysfunction in the hippocampus of rats subjected to repeated mild TBI (rMTBI) using weight drop injury paradigm. rMTBI-induced hypermethylation at TFAM promoter resulted in deficits in its protein levels in mitochondria after immediate (48 h) and protracted (30 d) time points. Further, rMTBI also caused hypomethylation of mitochondrial DNA (mtDNA) promoters (HSP1 and HSP2), which further culminated into low binding of TFAM. rMTBI-induced changes weakened mitochondrial biogenesis in terms of reduced mtDNA-encoded rRNA, mRNA, and protein levels leading to shortages of ATP. To verify the potential role of mtDNA methylation in rMTBI-induced persistent mitochondrial dysfunction, rMTBI-induced rats were treated with methionine, a methyl donor. Methionine treatment restored the methylation levels on HSP1 and HSP2 resulting in efficient binding of TFAM and normalized the rRNA, mRNA, and protein levels. These findings suggest the crucial role of DNA methylation at nuclear and mitochondrial promoter regions in mitochondrial gene expression and ATP activity in the hippocampus after rMTBI.
Collapse
Affiliation(s)
| | - Gouri Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, India.
| |
Collapse
|
17
|
Ashwal S, Siebold L, Krueger AC, Wilson CG. Post-traumatic Neuroinflammation: Relevance to Pediatrics. Pediatr Neurol 2021; 122:50-58. [PMID: 34304972 DOI: 10.1016/j.pediatrneurol.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Both detrimental and beneficial effects of post-traumatic neuroinflammation have become a major research focus as they offer the potential for immediate as well as delayed targeted reparative therapies. Understanding the complex interactions of central and peripheral immunocompetent cells as well as their mediators on brain injury and recovery is complicated by the temporal, regional, and developmental differences in their response to injuries. Microglia, the brain-resident macrophages, have become central in these investigations as they serve a major surveillance function, have the ability to react swiftly to injury, recruit various cellular and chemical mediators, and monitor the reparative/degenerative processes. In this review we describe selected aspects of this burgeoning literature, describing the critical role of cytokines and chemokines, microglia, advances in neuroimaging, genetics and fractal morphology analysis, our research efforts in this area, and selected aspects of pediatric post-traumatic neuroinflammation.
Collapse
Affiliation(s)
- Stephen Ashwal
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, California.
| | - Lorraine Siebold
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, California
| | - A Camille Krueger
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, California
| | - Christopher G Wilson
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, California
| |
Collapse
|
18
|
Xu L, Ye X, Zhong J, Chen YY, Wang LL. New Insight of Circular RNAs' Roles in Central Nervous System Post-Traumatic Injury. Front Neurosci 2021; 15:644239. [PMID: 33841083 PMCID: PMC8029650 DOI: 10.3389/fnins.2021.644239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
The central nervous system (CNS) post-traumatic injury can cause severe nerve damage with devastating consequences. However, its pathophysiological mechanisms remain vague. There is still an urgent need for more effective treatments. Circular RNAs (circRNAs) are non-coding RNAs that can form covalently closed RNA circles. Through second-generation sequencing technology, microarray analysis, bioinformatics, and other technologies, recent studies have shown that a number of circRNAs are differentially expressed after traumatic brain injury (TBI) or spinal cord injury (SCI). These circRNAs play important roles in the proliferation, inflammation, and apoptosis in CNS post-traumatic injury. In this review, we summarize the expression and functions of circRNAs in CNS in recent studies, as well as the circRNA–miRNA–mRNA interaction networks. The potential clinical value of circRNAs as a therapeutic target is also discussed.
Collapse
Affiliation(s)
- Lvwan Xu
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Ye
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Thakur B, Nadim H, Atem F, Stutzman SE, Olson DM. Dilation velocity is associated with Glasgow Coma Scale scores in patients with brain injury. Brain Inj 2020; 35:114-118. [PMID: 33347373 DOI: 10.1080/02699052.2020.1861481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Pupillary light reflex (PLR) is informative about patients with neurological injury. Automated pupillometry provides discrete variables such as dilation velocity (DV). The objective of this study is to determine association between DV and Glasgow Coma Score (GCS), for patients with acquired brain injury.Methods: There were 2,208 patients with acquired brain injury, pupillometer readings, and daily GCS values available in our registry. GCS was trichotomized as severe (GCS ≤ 8), moderate (GCS = 9-12), or mild injury (GCS = 13-15). Generalized Linear Mixed Model regression was used to identify correlation between DV and GCS.Results: Patient mean age was 58.9 years, and 49.11% were female. There were 42,229 observations of GCS and DV. Mean admission GCS was 11.7. In the left eye, there was a statistically significant negative association for mean DV in patients with mild (DV = 0.85 mm/s), moderate (DV = 0.71 mm/s), and severe (DV = 0.48 mm/s) injury (p < .0001). Similar results were noted in the right eye with mild (DV = 0.87 mm/s), moderate (DV = 0.72 mm/s), and severe (DV = 0.50 mm/s) injury (p < .0001).Conclusion: Higher GCS is associated with faster DV. PLR may provide a biomarker of injury when a neurological exam is limited.Trial Registration: NCT02804438 (June 17, 2016).ABBREVIATIONS: GCS: Glasgow Coma Scale; PLR: Pupillary Light Reflex; DV: Dilation velocity; ICP: Intracranial pressure; NPi: Neurological pupil index; mRS: Modified Rankin Score; PCT: Percent change in size (pre and post constriction); Lat: Latency; CV: Constriction velocity; GLMM: Generalized Linear Mixed Model.
Collapse
Affiliation(s)
- Barsha Thakur
- Department of Biostatistics and Data Science, University of Texas at Houston, Houston, Texas, USA
| | - Hend Nadim
- O'Donnell Brain Institute, University of Texas Southwestern, Dallas, Texas, USA
| | - Folefac Atem
- Department of Biostatistics and Data Science, University of Texas at Houston, Houston, Texas, USA
| | - Sonja E Stutzman
- O'Donnell Brain Institute, University of Texas Southwestern, Dallas, Texas, USA.,Department of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, USA
| | - DaiWai M Olson
- Department of Biostatistics and Data Science, University of Texas at Houston, Houston, Texas, USA.,Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
20
|
Shaito A, Hasan H, Habashy KJ, Fakih W, Abdelhady S, Ahmad F, Zibara K, Eid AH, El-Yazbi AF, Kobeissy FH. Western diet aggravates neuronal insult in post-traumatic brain injury: Proposed pathways for interplay. EBioMedicine 2020; 57:102829. [PMID: 32574954 PMCID: PMC7317220 DOI: 10.1016/j.ebiom.2020.102829] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a global health burden and a major cause of disability and mortality. An early cascade of physical and structural damaging events starts immediately post-TBI. This primary injury event initiates a series of neuropathological molecular and biochemical secondary injury sequelae, that last much longer and involve disruption of cerebral metabolism, mitochondrial dysfunction, oxidative stress, neuroinflammation, and can lead to neuronal damage and death. Coupled to these events, recent studies have shown that lifestyle factors, including diet, constitute additional risk affecting TBI consequences and neuropathophysiological outcomes. There exists molecular cross-talk among the pathways involved in neuronal survival, neuroinflammation, and behavioral outcomes, that are shared among western diet (WD) intake and TBI pathophysiology. As such, poor dietary intake would be expected to exacerbate the secondary damage in TBI. Hence, the aim of this review is to discuss the pathophysiological consequences of WD that can lead to the exacerbation of TBI outcomes. We dissect the role of mitochondrial dysfunction, oxidative stress, neuroinflammation, and neuronal injury in this context. We show that currently available data conclude that intake of a diet saturated in fats, pre- or post-TBI, aggravates TBI, precludes recovery from brain trauma, and reduces the response to treatment.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon and Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | - Walaa Fakih
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatima Ahmad
- Neuroscience Research Center, Faculty of Medicine, Lebanese University
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Biomedical Sciences, College of Health Sciences, Doha, Qatar
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
21
|
Precision Medicine in Acute Brain Injury: A Narrative Review. J Neurosurg Anesthesiol 2020; 34:e14-e23. [PMID: 32590476 DOI: 10.1097/ana.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/24/2020] [Indexed: 11/26/2022]
Abstract
Over the past few years, the concept of personalized medicine has percolated into the management of different neurological conditions. Improving outcomes after acute brain injury (ABI) continues to be a major challenge. Unrecognized individual multiomic variations in addition to multiple interacting processes may explain why we fail to observe comprehensive improvements in ABI outcomes even when applied treatments appear to be beneficial logically. The provision of clinical care based on a multiomic approach may revolutionize the management of traumatic brain injury, delayed cerebral ischemia after subarachnoid hemorrhage, acute ischemic stroke, and several other neurological diseases. The challenge is to incorporate all the information obtained from genomic studies, other omic data, and individual variability into a practical tool that can be used to assist clinical decision-making. The effective execution of such strategies, which is still far away, requires the development of protocols on the basis of these complex interactions and strict adherence to management protocols. In this review, we will discuss various omics and physiological targets to guide individualized patient management after ABI.
Collapse
|
22
|
Chang CY, Hung JH, Huang LW, Li J, Fung KS, Kao CF, Chen L. Epigenetic Regulation of WNT3A Enhancer during Regeneration of Injured Cortical Neurons. Int J Mol Sci 2020; 21:ijms21051891. [PMID: 32164275 PMCID: PMC7084788 DOI: 10.3390/ijms21051891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury is known to reprogram the epigenome. Chromatin immunoprecipitation-sequencing of histone H3 lysine 27 acetylation (H3K27ac) and tri-methylation of histone H3 at lysine 4 (H3K4me3) marks was performed to address the transcriptional regulation of candidate regeneration-associated genes. In this study, we identify a novel enhancer region for induced WNT3A transcription during regeneration of injured cortical neurons. We further demonstrated an increased mono-methylation of histone H3 at lysine 4 (H3K4me1) modification at this enhancer concomitant with a topological interaction between sub-regions of this enhancer and with promoter of WNT3A gene. Together, this study reports a novel mechanism for WNT3A gene transcription and reveals a potential therapeutic intervention for neuronal regeneration.
Collapse
Affiliation(s)
- Chu-Yuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (K.S.F.)
| | - Jui-Hung Hung
- Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan; (J.-H.H.); (J.L.)
| | - Liang-Wei Huang
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Joye Li
- Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan; (J.-H.H.); (J.L.)
| | - Ka Shing Fung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (K.S.F.)
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11574, Taiwan;
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (K.S.F.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-574-2775; Fax: +886-3-571-5934
| |
Collapse
|
23
|
Yi NX, Zhou LY, Wang XY, Song YJ, Han HH, Zhang TS, Wang YJ, Shi Q, Xu H, Liang QQ, Zhang T. MK-801 attenuates lesion expansion following acute brain injury in rats: a meta-analysis. Neural Regen Res 2019; 14:1919-1931. [PMID: 31290450 PMCID: PMC6676887 DOI: 10.4103/1673-5374.259619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE: To evaluate the efficacy and safety of MK-801 and its effect on lesion volume in rat models of acute brain injury. DATA SOURCES: Key terms were “stroke”, “brain diseases”, “brain injuries”, “brain hemorrhage, traumatic”, “acute brain injury”, “dizocilpine maleate”, “dizocilpine”, “MK-801”, “MK801”, “rat”, “rats”, “rattus” and “murine”. PubMed, Cochrane library, EMBASE, the China National Knowledge Infrastructure, WanFang database, the VIP Journal Integration Platform (VJIP) and SinoMed databases were searched from their inception dates to March 2018. DATA SELECTION: Studies were selected if they reported the effects of MK-801 in experimental acute brain injury. Two investigators independently conducted literature screening, data extraction, and methodological quality assessments. OUTCOME MEASURES: The primary outcomes included lesion volume and brain edema. The secondary outcomes included behavioral assessments with the Bederson neurological grading system and the water maze test 24 hours after brain injury. RESULTS: A total of 52 studies with 2530 samples were included in the systematic review. Seventeen of these studies had a high methodological quality. Overall, the lesion volume (34 studies, n = 966, MD = −58.31, 95% CI: −66.55 to −50.07; P < 0.00001) and degree of cerebral edema (5 studies, n = 75, MD = −1.21, 95% CI: −1.50 to −0.91; P < 0.00001) were significantly decreased in the MK-801 group compared with the control group. MK-801 improved spatial cognition assessed with the water maze test (2 studies, n = 60, MD = −10.88, 95% CI: −20.75 to −1.00; P = 0.03) and neurological function 24 hours after brain injury (11 studies, n = 335, MD = −1.04, 95% CI: −1.47 to −0.60; P < 0.00001). Subgroup analysis suggested an association of reduction in lesion volume with various injury models (34 studies, n = 966, MD = −58.31, 95% CI: −66.55 to −50.07; P = 0.004). Further network analysis showed that 0–1 mg/kg MK-801 may be the optimal dose for treatment in the middle cerebral artery occlusion animal model. CONCLUSION: MK-801 effectively reduces brain lesion volume and the degree of cerebral edema in rat models of experimental acute brain injury, providing a good neuroprotective effect. Additionally, MK-801 has a good safety profile, and its mechanism of action is well known. Thus, MK-801 may be suitable for future clinical trials and applications.
Collapse
Affiliation(s)
- Nan-Xing Yi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Long-Yun Zhou
- Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education; School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Hai-Hui Han
- Institute of Spine; Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Song Zhang
- Jing'an District Center Hospital, Fudan University, Shanghai, China
| | - Yong-Jun Wang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education; Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qian-Qian Liang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Ting Zhang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Niu F, Sharma A, Feng L, Ozkizilcik A, Muresanu DF, Lafuente JV, Tian ZR, Nozari A, Sharma HS. Nanowired delivery of DL-3-n-butylphthalide induces superior neuroprotection in concussive head injury. PROGRESS IN BRAIN RESEARCH 2019; 245:89-118. [DOI: 10.1016/bs.pbr.2019.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|