1
|
Zaitseva O, Sergushkina M, Polezhaeva T, Solomina O, Khudyakov A. Mechanisms of action of fungal polysaccharides and their therapeutic effect. Eur J Clin Nutr 2024:10.1038/s41430-024-01527-4. [PMID: 39433857 DOI: 10.1038/s41430-024-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The purpose of this article is to discuss the relationship between the therapeutic bioactivity of basidial fungal polysaccharides (BFPs) BFPs and their structural characteristics and conformational features, as well as to characterize the mechanisms of action of BFPs in diseases of various origins. METHODS The review was conducted using the PubMed (Medline), Scopus, Web of Science and the Russian Science Citation Index databases. 8645 records were identified, of which 5250 were studies (86 were randomized controlled trials). The period covered is from 1960 to the present. The most significant studies conducted mainly in Southeast Asian countries were selected for the review. RESULTS Based on clinical studies, as well as the results obtained on in vivo, in vitro and ex vivo models, it has been proven that BFPs have diverse and highly effective biological activity in the human body in various diseases. The production of BFPs-based vaccines is an innovative strategy from a clinical and biochemical point of view, since as potential immunoprotective and low-toxic biopolymers they have innate immune receptors in the body. Promising results have been obtained in the development of antidiabetic drugs, probiotic, renoprotective and neurodegenerative dietary supplements. CONCLUSIONS The biological activity, mechanism of action and specific therapeutic effect of BFPs largely depend on their structural and physicochemical characteristics. BFPs as multifunctional macromolecular complexes with low toxicity and high safety are ideal as new powerful pharmaceuticals for the treatment and prevention of many diseases.
Collapse
Affiliation(s)
- Oksana Zaitseva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation.
| | - Marta Sergushkina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Tatyana Polezhaeva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Olga Solomina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Andrey Khudyakov
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| |
Collapse
|
2
|
Chen Z, Xiao G. Total Synthesis of Nona-decasaccharide Motif from Ganoderma sinense Polysaccharide Enabled by Modular and One-Pot Stereoselective Glycosylation Strategy. J Am Chem Soc 2024; 146:17446-17455. [PMID: 38861463 DOI: 10.1021/jacs.4c05188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Polysaccharides from a medicinal fungus Ganoderma sinense represent important and adjunctive therapeutic agents for treating various diseases, including leucopenia and hematopoietic injury. However, the synthetic accessibility to long, branched, and complicated carbohydrates chains from Ganoderma sinense polysaccharides remains a challenging task in chemical synthesis. Here, we report the modular chemical synthesis of nona-decasaccharide motif from Ganoderma sinense polysaccharide GSPB70-S with diverse biological activities for the first time through one-pot stereoselective glycosylation strategy on the basis of glycosyl ortho-(1-phenyvinyl)benzoates, which not only sped up carbohydrates synthesis but also reduced chemical waste and avoided aglycones transfer issues inherent to one-pot glycosylation on the basis of thioglycosides. The synthetic route also highlights the following key steps: (1) preactivation-based one-pot glycosylation for highly stereoselective constructions of several 1,2-cis-glycosidic linkages, including three α-d-GlcN-(1 → 4) linkages and one α-d-Gal-(1 → 4) bond via the reagent N-methyl-N-phenylformamide modulation; (2) orthogonal one-pot assembly of 1,2-trans-glycosidic linkages in various linear and branched glycans fragments by strategic combinations of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl ortho-(1-phenyvinyl)benzoates; and (3) the final [1 × 4 + 15] Yu glycosylation for efficient assembly of nona-decasaccharide target. Additionally, shorter sequences of 4-mer, 5-mer, and 6-mer are also prepared for structure-activity relationship biological studies. The present work shows that this one-pot stereoselective glycosylation strategy can offer a reliable and effective means to streamline chemical synthesis of long, branched, and complex carbohydrates with many 1,2-cis-glycosidic bonds.
Collapse
Affiliation(s)
- Zhiyuan Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
3
|
Xie Y, Su Y, Wang Y, Zhang D, Yu Q, Yan C. Structural clarification of mannoglucan GSBP-2 from Ganoderma sinense and its effects on triple-negative breast cancer migration and invasion. Int J Biol Macromol 2024; 269:131903. [PMID: 38688342 DOI: 10.1016/j.ijbiomac.2024.131903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Ganoderma sinense, known as Lingzhi in China, is a medicinal fungus with anti-tumor properties. Herein, crude polysaccharides (GSB) extracted from G. sinense fruiting bodies were used to selectively inhibit triple-negative breast cancer (TNBC) cells. GSBP-2 was purified from GSB, with a molecular weight of 11.5 kDa and a composition of α-l-Fucp-(1→, β-d-Glcp-(1→, β-d-GlcpA-(1→, →3)-β-d-Glcp-(1→, →3)-β-d-GlcpA-(1→, →4)-α-d-Galp-(1→,→6)-β-d-Manp-(1→, and →3,6)-β-d-Glcp-(1→ at a ratio of 1.0:6.3:1.7:5.5:1.5:4.3:8.0:7.9. The anti-MDA-MB-231 cell activity of GSBP-2 was determined by methyl thiazolyl tetrazolium, colony formation, scratch wound healing, and transwell migration assays. The results showed that GSBP-2 could selectively inhibit the proliferation, migration, and invasion of MDA-MB-231 cells through the regulation of genes targeting epithelial-mesenchymal transition (i.e., Snail1, ZEB1, VIM, CDH1, CDH2, and MMP9) in the MDA-MB-231 cells. Furthermore, Western blotting results indicated that GSBP-2 could restrict epithelial-mesenchymal transition by increasing E-cadherin and decreasing N-cadherin expression through the PI3K/Akt pathway. GSBP-2 also suppressed the angiogenesis of human umbilical vein endothelial cells. In conclusion, GSBP-2 could inhibit the proliferation, migration, and invasion of MDA-MB-231 cells and showed significant anti-angiogenic ability. These findings indicate that GSBP-2 is a promising therapeutic adjuvant for TNBC.
Collapse
Affiliation(s)
- Yikun Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifan Su
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yurong Wang
- Department of Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Bi S, Jing Y, Cui X, Gong Y, Zhang J, Feng X, Shi Z, Zheng Q, Li D. A novel polysaccharide isolated from Coriolus versicolor polarizes M2 macrophages into an M1 phenotype and reversesits immunosuppressive effect on tumor microenvironment. Int J Biol Macromol 2024; 259:129352. [PMID: 38218293 DOI: 10.1016/j.ijbiomac.2024.129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Converting M2 macrophages into an M1 phenotype in the tumor microenvironment, provides a new direction for tumor treatment. Here, we further report CVPW-1, a new polysaccharide of 1.03 × 106 Da that was isolated from Coriolus versicolor. Its monosaccharide was composed of mannose, glucose, and galactose at a ratio of 1.00:8.73:1.68. The backbone of CVPW-1 was composed of (1 → 3)-linked α-D-Glcp residues and (1 → 3,6)-linked α-D-Glcp residues that branched at O-6. The branch consisted of (1 → 6)-linked α-D-Glcp residues and (1 → 4)-linked α-D-Glap, and some branches were terminated with (1→)-linked β-D-Manp residues according to the results of HPLC, FT-IR, GC-MS, 1D and 2D NMR. Meanwhile, CVPW-1 could polarize M2 macrophages to M1 phenotypein vitro by binding to TLR4 and inducing the activation of Akt, JNK and NF-κB. This process involved reversing the functional inhibition of CD8+ T lymphocytes by inhibiting the expression of TREM2 in M2 macrophages. The in vivo experiments showed that oral administration of CVPW-1 could inhibit the growth of tumor in mice and polarize TAMs to M1 phenotype. Thus, the novel polysaccharide CVPW-1 from Coriolus versicolor might activate a variety of immune cells and then play an anti-tumor role. These results demonstrated that CVPW-1 could be developed as a potential immuno-oncology treatment reagent.
Collapse
Affiliation(s)
- Sixue Bi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, PR China
| | - Xuehui Cui
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yitong Gong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Junli Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Xiaofei Feng
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Zhen Shi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China.
| |
Collapse
|
5
|
Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med 2023; 18:107. [PMID: 37641070 PMCID: PMC10463474 DOI: 10.1186/s13020-023-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gastrointestinal (GI) cancer is the most common cancer in the world and one of the main causes of cancer-related death. Clinically, surgical excision and chemotherapy are the main treatment methods for GI cancer, which is unfortunately accompanied with serious adverse reactions and drug toxicity, bringing irreversible damage to patients and seriously affecting the quality of life. Ganoderma lucidum (G. lucidum) has a long history of medicinal and edible use in China. Its bioactive compounds mainly include polysaccharides, triterpenes, and proteins, which have potential anti-tumor activities by inhibiting proliferation, inducing apoptosis, inhibiting metastasis, and regulating autophagy. Currently, there is no in-depth review on the anti-tumor effect of G. lucidum in GI cancer. Therefore, this review is an attempt to compile the basic characteristics, anti-GI caner mechanisms, and clinical application of G. lucidum, aiming to provide a reference for further research on the role of G. lucidum in the prevention and treatment of GI cancer from the perspective of traditional Chinese and western medicine.
Collapse
Affiliation(s)
- Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yang Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoying Jiang
- Department of Technology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
6
|
Murphy EJ, Rezoagli E, Collins C, Saha SK, Major I, Murray P. Sustainable production and pharmaceutical applications of β-glucan from microbial sources. Microbiol Res 2023; 274:127424. [PMID: 37301079 DOI: 10.1016/j.micres.2023.127424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
β-glucans are a large class of complex polysaccharides found in abundant sources. Our dietary sources of β-glucans are cereals that include oats and barley, and non-cereal sources can consist of mushrooms, microalgae, bacteria, and seaweeds. There is substantial clinical interest in β-glucans; as they can be used for a variety of diseases including cancer and cardiovascular conditions. Suitable sources of β-glucans for biopharmaceutical applications include bacteria, microalgae, mycelium, and yeast. Environmental factors including culture medium can influence the biomass and ultimately β-glucan content. Therefore, cultivation conditions for the above organisms can be controlled for sustainable enhanced production of β-glucans. This review discusses the various sources of β-glucans and their cultivation conditions that may be optimised to exploit sustainable production. Finally, this article discusses the immune-modulatory potential of β-glucans from these sources.
Collapse
Affiliation(s)
- Emma J Murphy
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland; PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland.
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Catherine Collins
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Sushanta Kumar Saha
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Ian Major
- PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Patrick Murray
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| |
Collapse
|
7
|
Sun YF, Fang YX, Cui BK. Taxonomy and phylogeny of Sanguinoderma rugosum complex with descriptions of a new species and a new combination. Front Microbiol 2022; 13:1087212. [PMID: 36620035 PMCID: PMC9811172 DOI: 10.3389/fmicb.2022.1087212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Sanguinoderma is distributed in tropical and subtropical areas as a member of Amauroderma s. lat., and the economic values of Sanguinoderma led to high attention in the taxonomic studies. Previously, 16 species have been developed into Sanguinoderma. In this study, the taxonomic system of Sanguinoderma was reconducted based on morphological and multi-gene phylogenetic analyses, especially making a distinction for Sanguinoderma rugosum complex. Morphological analysis was based on the notes of macro- and micro morphological observations. Multi-gene phylogenetic analyses were used maximum likelihood (ML) and Bayesian inference (BI) analyses inferred from combined dataset of ITS, nLSU, rpb2, tef1, mtSSU, and nSSU. Combined with morphological characters and phylogenetic evidence, the results demonstrated that S. rugosum complex consists of five taxa, in which Sanguinoderma leucomarginatum was described as a new species, and it is characterized by the orbicular pilei with white to buff margin when fresh and clavate apical cells of pileipellis with septa. In addition, Amauroderma preussii was transferred to Sanguinoderma as a new combination due to its blood-red color-changed pore surface; it is characterized by the funnel-shaped, greyish brown, and glabrous pilei with strongly incurved margin. Detailed descriptions and photographs of the two species were provided. With the extension of this study, 18 species were accepted in Sanguinoderma, and 12 species among them were distributed in China. A key to accepted species of Sanguinoderma was also provided.
Collapse
|
8
|
Monosaccharide Composition and In Vitro Activity to HCT-116 Cells of Purslane Polysaccharides after a Covalent Chemical Selenylation. Foods 2022; 11:foods11233748. [PMID: 36496556 PMCID: PMC9740785 DOI: 10.3390/foods11233748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The anti-cancer effects of selenylated plant polysaccharides are a focus of research. As a natural plant with extensive biological effects, there have been few studies related to edible purslane (Portulaca oleracea L.). Thus, in this study, soluble P. oleracea polysaccharides (PPS) were extracted from the dried P. oleracea and then selenylated chemically using the HNO3-Na2SeO3 method to obtain two selenylated products, namely, SePPS1 and SePPS2. Compared with the extracted PPS, SePPS1 and SePPS2 had much higher Se contents (840.3 and 1770.5 versus 66.0 mg/kg) while also showing lower contents in three saccharides-arabinose, fucose, and ribose-and higher contents in seven saccharides including galactose, glucose, fructose, mannose, rhamnose, galacturonic acid, and glucuronic acid, but a stable xylose content demonstrated that the performed chemical selenylation of PPS led to changes in monosaccharide composition. Moreover, SePPS1 and SePPS2 shared similar features with respect to monosaccharide composition and possessed higher bioactivity than PPS in human colon cancer HCT-116 cells. Generally, SePPS1 and SePPS2 were more active than PPS with respect to cell growth inhibition, the alteration of cell morphology, disruption of mitochondrial membrane potential, intracellular reactive oxygen species (ROS) generation, the induction of cell apoptosis, and upregulation or downregulation of five apoptosis-related genes and proteins such as Bax, Bcl-2, caspases-3/-9, and cytochrome C, that cause cell apoptosis and growth suppression via the ROS-mediated mitochondrial pathway. SePPS2 consistently showed the highest capacity to exert these observed effects on the targeted cells, suggesting that the performed chemical selenylation of PPS (in particular when higher degrees of selenylation are reached) resulted in an increase in activity in the cells. It can thus be concluded that the performed selenylation of PPS was able to incorporate inorganic Se into the final PPS products, changing their monosaccharide composition and endowing them with enhanced nutraceutical and anti-cancer effects in the colon.
Collapse
|
9
|
Wang M, Yu F. Research Progress on the Anticancer Activities and Mechanisms of Polysaccharides From Ganoderma. Front Pharmacol 2022; 13:891171. [PMID: 35865946 PMCID: PMC9294232 DOI: 10.3389/fphar.2022.891171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/17/2022] [Indexed: 01/15/2023] Open
Abstract
Cancer ranks as a primary reason for death worldwide. Conventional anticancer therapies can cause severe side effects, and thus natural products may be promising drug candidates for cancer therapy. Accumulating evidence has verified the prominent anticancer properties of Ganoderma polysaccharides, suggesting that Ganoderma polysaccharides may be effective chemopreventive agents of natural origin. Based on their abilities to prevent cancer development by regulating the DNA damage response, cancer cell proliferation, apoptosis, host immunity, gut microbiota and therapeutic sensitivity, there has been increasing interest in elucidating the clinical implication of Ganoderma polysaccharides in cancer therapy. In this review, we summarize recent findings pertaining to the roles of bioactive polysaccharides from Ganoderma in cancer pathogenesis, discuss the multifarious mechanisms involved and propose future directions for research. A more sophisticated understanding of the anticancer benefits of Ganoderma polysaccharides will be helpful for improving current treatments and developing novel therapeutic interventions for human malignancies.
Collapse
|
10
|
Management of Combined Therapy (Ceritinib, A. cinnamomea, G. lucidum, and Photobiomodulation) in Advanced Non-Small-Cell Lung Cancer: A Case Report. Life (Basel) 2022; 12:life12060862. [PMID: 35743893 PMCID: PMC9228003 DOI: 10.3390/life12060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
The 5-year survival rate of non-small-cell lung cancer (NSCLC) is still low (<21%) despite recent improvements. Since conventional therapies have a lot of side effects, combined therapy is strongly recommended. Here, we report a patient with advanced NSCLC who received combined therapy, including ceritinib, photobiomodulation (PBM), ACGL (Antrodia cinnamomea (A. cinnamomea), and Ganoderma lucidum (G. lucidum)). Based on combined therapy, suitable doses of A. cinnamomea, G. lucidum, and PBM are important for tumor inhibition. This case report presents clinical evidence on the efficacy of combined therapy in advanced NSCLC patients, including computed tomography (CT) scan, magnetic resonance imaging (MRI), carcinoembryonic antigen (CEA), and blood tests. The effective inhibition of human lung adenocarcinoma cells is demonstrated. Our case highlights important considerations for PBM and ACGL applications in NSCLC patients, the side effects of ceritinib, and long-term health maintenance.
Collapse
|
11
|
Kakar MU, Li J, Mehboob MZ, Sami R, Benajiba N, Ahmed A, Nazir A, Deng Y, Li B, Dai R. Purification, characterization, and determination of biological activities of water-soluble polysaccharides from Mahonia bealei. Sci Rep 2022; 12:8160. [PMID: 35581215 PMCID: PMC9114413 DOI: 10.1038/s41598-022-11661-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Mahonia bealei is one of the important members of the genus Mahonia and Traditional Chinese Medicine (TCM). Several compounds isolated from this plant have exhibited useful biological activities. Polysaccharides, an important biomacromolecule have been underexplored in case of M. bealei. In this study, hot water extraction and ethanol precipitation were used for the extraction of polysaccharides from the stem of M. bealei, and then extract was purified using ultrafiltration membrane at 50,000 Da cut off value. Characterization of the purified M. bealei polysaccharide (MBP) was performed using Fourier Transform Infrared Spectroscopy (FT-IR), along with Scanning Electron Microscopy (SEM), X-ray crystallography XRD analysis and Thermal gravimetric analysis (TGA). The purified polysaccharide MBP was tested for antioxidant potential by determining its reducing power, besides determining the DPPH, ABTS, superoxide radical, and hydroxyl radical scavenging along with ferrous ion chelating activities. An increased antioxidant activity of the polysaccharide was reported with increase in concentration (0.5 to 5 mg/ml) for all the parameters. Antimicrobial potential was determined against gram positive and gram-negative bacteria. 20 µg/ml MBP was found appropriate with 12 h incubation period against Escherichia coli and Bacillus subtilis bacteria. We conclude that polysaccharides from M. bealei possess potential ability of biological importance; however, more studies are required for elucidation of their structure and useful activities.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China.,Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Jingyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China
| | - Muhammad Zubair Mehboob
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Aziz Ahmed
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, Jinan, Shandong Province, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China. .,Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China.
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China.
| |
Collapse
|
12
|
Sun YF, Lebreton A, Xing JH, Fang YX, Si J, Morin E, Miyauchi S, Drula E, Ahrendt S, Cobaugh K, Lipzen A, Koriabine M, Riley R, Kohler A, Barry K, Henrissat B, Grigoriev IV, Martin FM, Cui BK. Phylogenomics and Comparative Genomics Highlight Specific Genetic Features in Ganoderma Species. J Fungi (Basel) 2022; 8:jof8030311. [PMID: 35330313 PMCID: PMC8955403 DOI: 10.3390/jof8030311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
The Ganoderma species in Polyporales are ecologically and economically relevant wood decayers used in traditional medicine, but their genomic traits are still poorly documented. In the present study, we carried out a phylogenomic and comparative genomic analyses to better understand the genetic blueprint of this fungal lineage. We investigated seven Ganoderma genomes, including three new genomes, G. australe, G. leucocontextum, and G. lingzhi. The size of the newly sequenced genomes ranged from 60.34 to 84.27 Mb and they encoded 15,007 to 20,460 genes. A total of 58 species, including 40 white-rot fungi, 11 brown-rot fungi, four ectomycorrhizal fungi, one endophyte fungus, and two pathogens in Basidiomycota, were used for phylogenomic analyses based on 143 single-copy genes. It confirmed that Ganoderma species belong to the core polyporoid clade. Comparing to the other selected species, the genomes of the Ganoderma species encoded a larger set of genes involved in terpene metabolism and coding for secreted proteins (CAZymes, lipases, proteases and SSPs). Of note, G. australe has the largest genome size with no obvious genome wide duplication, but showed transposable elements (TEs) expansion and the largest set of terpene gene clusters, suggesting a high ability to produce terpenoids for medicinal treatment. G. australe also encoded the largest set of proteins containing domains for cytochrome P450s, heterokaryon incompatibility and major facilitator families. Besides, the size of G. australe secretome is the largest, including CAZymes (AA9, GH18, A01A), proteases G01, and lipases GGGX, which may enhance the catabolism of cell wall carbohydrates, proteins, and fats during hosts colonization. The current genomic resource will be used to develop further biotechnology and medicinal applications, together with ecological studies of the Ganoderma species.
Collapse
Affiliation(s)
- Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
| | - Annie Lebreton
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jia-Hui Xing
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
| | - Yu-Xuan Fang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
| | - Shingo Miyauchi
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, 50829 Cologne, Germany
| | - Elodie Drula
- INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France;
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Kelly Cobaugh
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Robert Riley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
- Department of Biological Sciences, King Abdulaziz University, Jeddah 999088, Saudi Arabia
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
- Department of Microbial and Plant Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Correspondence: (F.M.M.); (B.-K.C.); Tel.: +33-383394080 (F.M.M.); +86-1062336309 (B.-K.C.)
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Correspondence: (F.M.M.); (B.-K.C.); Tel.: +33-383394080 (F.M.M.); +86-1062336309 (B.-K.C.)
| |
Collapse
|
13
|
Dynamic biomarkers indicate the immunological benefits provided by Ganoderma spore powder in post-operative breast and lung cancer patients. Clin Transl Oncol 2021; 23:1481-1490. [PMID: 33405051 DOI: 10.1007/s12094-020-02547-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND T lymphocyte are a strong indicator of treatment immune response. This study was aimed to determine the utility of T lymphocyte subsets, cytokines and inflammatory biomarkers in predicting the immunological benefits of Ganoderma spore powder (G. lucidum) in post-operative patients with breast and lung cancer. METHODS We prospectively evaluated 120 breast and lung cancer patients with or without G. lucidum. T lymphocyte subsets with relative cytokines were detected using flow cytometry and PCR and assessed by Spearman correlation analysis. The relationships between albumin-to-globulin ratio (AGR) and neutrophil-to-lymphocyte ratio (NLR) with G. lucidum treatment and prognosis were analyzed using Kaplan-Meier and Cox regression methods. RESULTS The prevalence of CD3 + CD4 + , CD3 + HLADR- types was higher in G. lucidum group compared to control, whilst CD4 + CD25 + Treg, CD3 + HLADR + cell types was lower. IL-12 levels were significantly higher during the treatment period which negatively impacted levels of IL-10. Other immunosuppressive factors such as COX2 and TGF-β1 had lower prevalence in treated patients. Correlation analysis showed a positive relationship between IL-10 and CD28. IL-2 was positively related to TGF-β1, whilst it was negatively related to CD3. Kaplan-Meier analysis suggested that low AGR/high NLR was related to poor progression free survival (PFS) and overall survival (OS). A combination of high AGR and low NLR may predicted treatment benefits associated with PFS and OS. CONCLUSIONS Our findings show that T lymphocyte subsets combined with relevant cytokines and AGR/NLR inflammatory predictors may help to identify patients most likely to benefit from the immunological enhancements from G. lucidum treatment.
Collapse
|
14
|
Kour H, Kour S, Sharma Y, Singh S, Sharma I, Kour D, Yadav AN. Bioprospecting of Industrially Important Mushrooms. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
15
|
Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomed Pharmacother 2020; 130:110539. [DOI: 10.1016/j.biopha.2020.110539] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
|
16
|
Kakar MU, Kakar IU, Mehboob MZ, Zada S, Soomro H, Umair M, Iqbal I, Umer M, Shaheen S, Syed SF, Deng Y, Dai R. A review on polysaccharides from Artemisia sphaerocephala Krasch seeds, their extraction, modification, structure, and applications. Carbohydr Polym 2020; 252:117113. [PMID: 33183585 DOI: 10.1016/j.carbpol.2020.117113] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/16/2023]
Abstract
Artemisia sphaerocephala Krasch (ASK) is an important member of Compositae (Asteraceae) family. Its seeds have been widely used as traditional medicine and to improve the quality of food. Water soluble and water insoluble polysaccharides are found in the seeds of this plant. Research has been conducted on the extraction of polysaccharides, their modification and determination of their structure. To date different techniques for extraction purposes have been applied which are reviewed here. Antioxidant, antidiabetic, anti-obesogenic, antitumor, and immunomodulatory activities have been explored using in vivo and in vitro methods. Moreover, these polysaccharides have been used as packaging material and as a sensing component for monitoring the freshness of packaged food. Some experimental results have shown that the quality of foods is also improved by using them as a food additive. We have also indicated some of the potential areas that are needed to be explored.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China; Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Ihsan Ullah Kakar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- CAS Center for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | | | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Imran Iqbal
- Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, China
| | - Muhammad Umer
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Shabnam Shaheen
- Department of Higher Education, Government Girls Degree College Lakki Marwat, City Lakki Marwat, KPK, Pakistan
| | - Shahid Faraz Syed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China.
| |
Collapse
|
17
|
Ren L, Zhang J, Zhang T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem 2020; 340:127933. [PMID: 32882476 DOI: 10.1016/j.foodchem.2020.127933] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 08/23/2020] [Indexed: 02/04/2023]
Abstract
Polysaccharides are the most abundant bioactive compounds in Ganoderma and have been widely used as dietary supplements in traditional Chinese medicine for thousands of years. Polysaccharides from Ganoderma exhibit unique biological properties, including anti-tumor, anti-inflammatory, and immunomodulatory activities. Herein, the sources and structures of polysaccharides from Ganoderma were presented. This work also reviews the immunomodulatory activities and possible mechanisms of polysaccharides from Ganoderma on different immune effector cells, including lymphocytes and myeloid cells. As an available adjunctive remedy, polysaccharides from Ganoderma can potentially be applied for the modulation of the host immune system, namely the innate immunity, the cellular immunity, and the humoral immunity.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
18
|
Kakar MU, Naveed M, Saeed M, Zhao S, Rasheed M, Firdoos S, Manzoor R, Deng Y, Dai R. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja. Int J Biol Macromol 2020; 156:420-429. [PMID: 32289423 DOI: 10.1016/j.ijbiomac.2020.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Cyclocarya paliurus is essential and only living specie of the genus Cyclocarya Iljinskaja. The leaves of this plant have been extensively used as food in the form of tea and green vegetable. Many compounds have been isolated from this plant, and their useful aspects explored, including the polysaccharides. Studies conducted on leaves show that different methods of extraction have been used, as well as a combination of different techniques that have been applied to isolate polysaccharides from the leaves. Their structure has been elucidated because the activity of polysaccharides mainly depends upon their composition. It has been reported that different activities exhibited by the isolated crude, purified as well as modified polysaccharides include, anticancer, anti-inflammatory, antioxidant, antimicrobial, anti-hyperlipidemic and anti-diabetic activities. In some studies, a comparison of crude extract, as well as purified polysaccharide, has been performed. In this review, we have summarized all the available literature available on the methods of extraction, structure, and biological activities of polysaccharides from the leaves of C. paliurus and indicated the potential research areas that should be focused on future studies. We believe that this review will provide an up to date knowledge regarding polysaccharides of C. paliurus for the researchers.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China; Faculty of Marine Sciences, the Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, PR China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Shicong Zhao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China
| | - Sundas Firdoos
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China
| | - Robina Manzoor
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China; Faculty of Marine Sciences, the Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China.
| |
Collapse
|
19
|
Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol 2020; 104:4675-4703. [PMID: 32274562 DOI: 10.1007/s00253-020-10476-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
This article reviews mushrooms with anti-breast cancer activity. The mushrooms covered which are better known include the following: button mushroom Agaricus bisporus, Brazilian mushroom Agaricus blazei, Amauroderma rugosum, stout camphor fungus Antrodia camphorata, Jew's ear (black) fungus or black wood ear fungus Auricularia auricula-judae, reishi mushroom or Lingzhi Ganoderma lucidum, Ganoderma sinense, maitake mushroom or sheep's head mushroom Grifola frondosa, lion's mane mushroom or monkey head mushroom Hericium erinaceum, brown beech mushroom Hypsizigus marmoreus, sulfur polypore mushroom Laetiporus sulphureus, Lentinula edodes (shiitake mushroom), Phellinus linteus (Japanese "meshimakobu," Chinese "song gen," Korean "sanghwang," American "black hoof mushroom"), abalone mushroom Pleurotus abalonus, king oyster mushroom Pleurotus eryngii, oyster mushroom Pleurotus ostreatus, tuckahoe or Fu Ling Poria cocos, and split gill mushroom Schizophyllum commune. Antineoplastic effectiveness in human clinical trials and mechanism of anticancer action have been reported for Antrodia camphorata, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes.
Collapse
|
20
|
Wang W, Gou X, Xue H, Liu K. Ganoderan (GDN) Regulates The Growth, Motility And Apoptosis Of Non-Small Cell Lung Cancer Cells Through ERK Signaling Pathway In Vitro And In Vivo. Onco Targets Ther 2019; 12:8821-8832. [PMID: 31695437 PMCID: PMC6821078 DOI: 10.2147/ott.s221161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Background Lung cancer is the most common malignant tumor worldwide. About 90% of lung cancers are considered non-small cell lung cancer (NSCLC). Ganoderan (GDN) is one of the components of Ganoderma lucidum polysaccharides. Ganoderan A (GDNA), Ganoderan B (GDNB) and Ganoderan C (GDNC) were three polysaccharides isolated from the Ganoderma lucidum fruiting body. Methods Cell growth was measured by Cell Counting kit-8 and colony formation assay, while cell motility was measured by transwell assay and wound healing assay. Apoptosis was measured by flow cytometry analysis and TUNEL staining, and protein expression was detected by Western blotting and immunohistochemistry. Results Previous studies have shown that GDNB has the effects of hyperglycemic and kidney protection. However, the role of GDNB in tumors is currently unknown. This study elaborated the role of GDNB in NSCLC and its underlying molecular mechanisms. The results exerted that GDNB inhibited the growth of H510A and A549 cells by suppressing the expression of ki67 and PCNA. Besides, transwell assay and wound healing assay showed that GDNB inhibited invasion and migration of H510A and A549 cells in a concentration-dependent manner. Moreover, Western blotting also showed that GDNB downregulated the levels of N-cadherin, vimentin and Snail in H510A and A549 cells in a dose-dependent manner, while it upregulated the level of E-cadherin. Additionally, GDNB also promoted apoptosis of H510A and A549 cells by regulating the expression of Bcl-2, Bax, cleaved caspase 3 and cleaved PARP. Animal experiments revealed that GDNB inhibited tumor growth and metastasis, and induced apoptosis of tumor cells in vivo. Mechanically, GDNB suppressed the expression of Ras and c-Myc, and decreased the phosphorylation levels of MEK1/2 and ERK1/2. Conclusion Collectively, all data suggest that GDNB regulates the growth, motility and apoptosis of non-small cell lung cancer cells through ERK signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Weifeng Wang
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| | - Xiaohui Gou
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| | - Hua Xue
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| | - Kai Liu
- Department of Thoracic Surgery, The Central Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| |
Collapse
|
21
|
Liu C, Cheung PCK. Structure and Immunomodulatory Activity of Microparticulate Mushroom Sclerotial β-Glucan Prepared from Polyporus rhinocerus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9070-9078. [PMID: 31343168 DOI: 10.1021/acs.jafc.9b03206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, an immunologically active novel microparticulate mushroom β-glucan (PRA-1p) was prepared using an alkali-soluble glucan PRA-1 by an emulsification and cross-linking method. PRA-1 was a hyperbranched (1→3),(1→6)-β-d-glucan with a degree of branching of 0.89, isolated from the sclerotia of Polyporus rhinocerus. PRA-1 had a rod-like conformation, while PRA-1p exhibited a monodisperse and homogeneous spherical conformation with a diameter ranging from 0.3 to 2.0 μm in water. PRA-1p significantly induced nitric oxide and reactive oxygen species production as well as morphological changes of murine macrophages (RAW 264.7 cells) and upregulated their phagocytic activity. Furthermore, PRA-1p treatment markedly enhanced the secretion of cytokines, including cutaneous T cell-attracting chemokine 27, granulocyte-colony-stimulating factor, monocyte chemoattractant protein 1, macrophage inflammatory protein 1α, macrophage inflammatory protein 2, regulated on activation, normal T cell expressed and secreted, soluble tumor necrosis factor receptor 1, and tissue inhibitors of metalloproteinases. Activation of RAW 264.7 cells triggered by PRA-1p was associated with activation of inducible nitric oxide synthase, nuclear factor κB, extracellular signal-regulated kinase, and protein kinase B. This work suggests that novel PRA-1p derived from the mushroom sclerotia of P. rhinocerus has potential application as an immunostimulatory agent.
Collapse
Affiliation(s)
- Chaoran Liu
- Shenzhen Institute of Standards and Technology , Shenzhen , Guangdong 518055 , People's Republic of China
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Peter C K Cheung
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
22
|
Marine glycan-derived therapeutics in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:113-134. [DOI: 10.1016/bs.pmbts.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|