1
|
Vizziello M, Dellarole IL, Ciullini A, Pascuzzo R, Lombardo A, Bellandi F, Celauro L, Battipaglia C, Ciusani E, Rizzo A, Catania M, Devigili G, Della Seta SA, Margiotta V, Consonni M, Faltracco V, Tiraboschi P, Riva N, Portaleone SMS, Zanusso G, Legname G, Lauria G, Dalla Bella E, Moda F. TDP-43 seeding activity in the olfactory mucosa of patients with amyotrophic lateral sclerosis. Mol Neurodegener 2025; 20:49. [PMID: 40287755 PMCID: PMC12034174 DOI: 10.1186/s13024-025-00833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND In recent years, the seed amplification assay (SAA) has enabled the identification of pathological TDP-43 in the cerebrospinal fluid (CSF) and olfactory mucosa (OM) of patients with genetic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we investigated the seeding activity of TDP-43 in OM samples collected from patients with sporadic ALS. METHODS OM samples were collected from patients with (a) sporadic motor neuron diseases (MND), including spinal ALS (n = 35), bulbar ALS (n = 18), primary lateral sclerosis (n = 10), and facial onset sensory and motor neuronopathy (n = 2); (b) genetic MND, including carriers of C9orf72exp (n = 6), TARDBP (n = 4), SQSTM1 (n = 3), C9orf72exp + SQSTM1 (n = 1), OPTN (n = 1), GLE1 (n = 1), FUS (n = 1) and SOD1 (n = 4) mutations; (c) other neurodegenerative disorders (OND), including Alzheimer's disease (n = 3), dementia with Lewy bodies (n = 8) and multiple system atrophy (n = 6); and (d) control subjects (n = 22). All samples were subjected to SAA analysis for TDP-43 (TDP-43_SAA). Plasmatic levels of TDP-43 and neurofilament-light chain (NfL) were also assessed in a selected number of patients. RESULTS TDP-43_SAA was positive in 29/65 patients with sporadic MND, 9/21 patients with genetic MND, 6/17 OND patients and 3/22 controls. Surprisingly, one presymptomatic individual also tested positive. As expected, OM of genetic non-TDP-43-related MND tested negative. Interestingly, fluorescence values from non-MND samples that tested positive were consistently and significantly lower than those obtained with sporadic and genetic MND. Furthermore, among TDP-43-positive samples, the lag phase observed in MND patients was significantly longer than that in non-MND patients. Plasma TDP-43 levels were significantly higher in sporadic MND patients compared to controls and decreased as the disease progressed. Similarly, plasma NfL levels were higher in both sporadic and genetic MND patients and positively correlated with disease progression rate (ΔFS). No significant correlations were detected between TDP-43_SAA findings and the biological, clinical, or neuropsychological parameters considered. CONCLUSIONS The OM of a subset of patients with sporadic MND can trigger seeding activity for TDP-43, as previously observed in genetic MND. Thus, TDP-43_SAA analysis of OM can improve the clinical characterization of ALS across different phenotypes and enhance our understanding of these diseases. Finally, plasma TDP-43 could serve as a potential biomarker for monitoring disease progression. However, further research is needed to confirm and expand these findings.
Collapse
Affiliation(s)
- Maria Vizziello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ilaria Linda Dellarole
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Arianna Ciullini
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annalisa Lombardo
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Floriana Bellandi
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Claudia Battipaglia
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emilio Ciusani
- Unit of Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ambra Rizzo
- Unit of Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marcella Catania
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Grazia Devigili
- Unit of Neurology 1 - Parkinson and Movement Disorders, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Valentina Margiotta
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Monica Consonni
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Faltracco
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pietro Tiraboschi
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nilo Riva
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Maria Silvia Portaleone
- Department of Health Sciences, Otolaryngology Unit, ASST Santi Paolo E Carlo Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Lauria
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Eleonora Dalla Bella
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Unit of Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Candelise N, Caissutti D, Zenuni H, Nesci V, Scaricamazza S, Salvatori I, Spinello Z, Mattei V, Garofalo T, Ferri A, Valle C, Misasi R. Different Chronic Stress Paradigms Converge on Endogenous TDP43 Cleavage and Aggregation. Mol Neurobiol 2023; 60:6346-6361. [PMID: 37450246 PMCID: PMC10533643 DOI: 10.1007/s12035-023-03455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/17/2023] [Indexed: 07/18/2023]
Abstract
The TAR-DNA binding protein (TDP43) is a nuclear protein whose cytoplasmic inclusions are hallmarks of Amyotrophic Lateral Sclerosis (ALS). Acute stress in cells causes TDP43 mobilization to the cytoplasm and its aggregation through different routes. Although acute stress elicits a strong phenotype, is far from recapitulating the years-long aggregation process. We applied different chronic stress protocols and described TDP43 aggregation in a human neuroblastoma cell line by combining solubility assays, thioflavin-based microscopy and flow cytometry. This approach allowed us to detect, for the first time to our knowledge in vitro, the formation of 25 kDa C-terminal fragment of TDP43, a pathogenic hallmark of ALS. Our results indicate that chronic stress, compared to the more common acute stress paradigm, better recapitulates the cell biology of TDP43 proteinopathies. Moreover, we optimized a protocol for the detection of bona fide prions in living cells, suggesting that TDP43 may form amyloids as a stress response.
Collapse
Affiliation(s)
- Niccolò Candelise
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Henri Zenuni
- Department of Systems Medicine, Tor Vergata" University of Rome, 00133, Rome, Italy
| | - Valentina Nesci
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
- Department of Systems Medicine, Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Illari Salvatori
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), 00185, Rome, Italy
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), 00185, Rome, Italy.
| | - Roberta Misasi
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy.
| |
Collapse
|
3
|
Jia J, Li T, Yang J, Chen B, Qin W, Wei C, Song Y, Wang Q, Li Y, Jia L. Detection of plasma Aβ seeding activity by a newly developed analyzer for diagnosis of Alzheimer’s disease. Alzheimers Res Ther 2022; 14:21. [PMID: 35109911 PMCID: PMC8808989 DOI: 10.1186/s13195-022-00964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/16/2022] [Indexed: 01/10/2023]
Abstract
Objective To evaluate the diagnostic value of plasma β-amyloid (Aβ) seeding activity measured using a newly developed instrument to distinguish Alzheimer’s disease (AD) from other forms of dementia. Methods Seventy-nine AD patients, 64 non-AD dementia (NADD) patients, and 75 cognitively normal (NC) subjects were recruited in the study. To measure the levels of Aβ seeding activity in the plasma samples, we have developed an AD-seeds protein analyzer. We used receiver operating characteristic (ROC) curves to quantify the ability of plasma Aβ seeding activity to distinguish between AD and NADD or NC individuals. Spearman’s correlation was used to examine the associations between plasma Aβ seeding activity and global cognitive function or conventional AD biomarkers. Results The Aβ seeding activities were 0.83 (0.58–1.16) A.U. in AD, 0.42 (0.04–0.74) A.U. in NADD and 0.42 (0.09–0.69) A.U. in NC, respectively. The Aβ seeding activity was able to identify AD patients and distinguish them from NC or NADD with high accuracy (AUC = 0.85–0.86). In addition, the plasma Aβ seeding activity showed a strong correlation with cognitive performance (mini-mental state examination, r = − 0.188; Montreal cognitive assessment, r = − 0.189; clinical dementia rating, r = 0.205) and conventional biomarkers (cerebrospinal fluid [CSF] Aβ42/40, r = -0.227; CSF T-tau/Aβ42, r = 0.239; CSF P-tau/Aβ42, r = 0.259). Conclusion Our results confirmed that plasma Aβ seeding activity is an antibody-free and low-cost biomarker for the diagnosis of AD. Trial registration Trial registration number NCT04850053
Collapse
|
4
|
Consonni A, Miglietti M, De Luca CMG, Cazzaniga FA, Ciullini A, Dellarole IL, Bufano G, Di Fonzo A, Giaccone G, Baggi F, Moda F. Approaching the Gut and Nasal Microbiota in Parkinson's Disease in the Era of the Seed Amplification Assays. Brain Sci 2022; 12:1579. [PMID: 36421902 PMCID: PMC9688507 DOI: 10.3390/brainsci12111579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 10/30/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder often associated with pre-motor symptoms involving both gastrointestinal and olfactory tissues. PD patients frequently suffer from hyposmia, hyposalivation, dysphagia and gastrointestinal dysfunctions. During the last few years it has been speculated that microbial agents could play a crucial role in PD. In particular, alterations of the microbiota composition (dysbiosis) might contribute to the formation of misfolded α-synuclein, which is believed to be the leading cause of PD. However, while several findings confirmed that there might be an important link between intestinal microbiota alterations and PD onset, little is known about the potential contribution of the nasal microbiota. Here, we describe the latest findings on this topic by considering that more than 80% of patients with PD develop remarkable olfactory deficits in their prodromal disease stage. Therefore, the nasal microbiota might contribute to PD, eventually boosting the gut microbiota in promoting disease onset. Finally, we present the applications of the seed amplification assays to the study of the gut and olfactory mucosa of PD patients, and how they could be exploited to investigate whether pathogenic bacteria present in the gut and the nose might promote α-synuclein misfolding and aggregation.
Collapse
Affiliation(s)
- Alessandra Consonni
- Division of Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Martina Miglietti
- Division of Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Maria Giulia De Luca
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Federico Angelo Cazzaniga
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Arianna Ciullini
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ilaria Linda Dellarole
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giuseppe Bufano
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alessio Di Fonzo
- Division of Neurology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Fulvio Baggi
- Division of Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Fabio Moda
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
5
|
Chen DD, Jiao L, Huang Y, Xiao K, Gao LP, Chen C, Shi Q, Dong XP. Application of α-Syn Real-Time Quaking-Induced Conversion for Brain and Skin Specimens of the Chinese Patients With Parkinson’s Disease. Front Aging Neurosci 2022; 14:898516. [PMID: 35847665 PMCID: PMC9283982 DOI: 10.3389/fnagi.2022.898516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The real-time quaking-induced conversion (RT-QuIC) assay has been developed and used as an in vitro diagnostic tool for Parkinson’s disease (PD). In this study, we established α-Syn RT-QuIC using recombinant human α-Syn as the substrate. All 5 brain homogenates of neuropathological PD cases and 13 skin homogenates of clinical PD cases showed positive results, whereas all the samples of negative controls remain negative. Meantime, randomly selected 6 skin samples of PD cases and 6 skin samples of sCJD cases showed negative in opposite prion RT-QuIC and α-Syn RT-QuIC. Our α-Syn RT-QuIC showed dose-dependent manner between the lag times and peak ThT fluorescent values. Additionally, the detecting limitation was about 10–7 dilution for brain tissues and 10–6 for skins. Those data indicate a reliable specificity and good sensitivity of the established α-Syn RT-QuIC in identifying and amplifying the misfolded α-Syn in brain and skin tissues of patients with PD.
Collapse
Affiliation(s)
- Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
| | - Ling Jiao
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yue Huang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qi Shi,
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- China Academy of Chinese Medical Sciences, Beijing, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China
- Xiao-Ping Dong,
| |
Collapse
|
6
|
Affiliation(s)
- Inga Zerr
- From the National Reference Center for Human Prion Diseases, Clinical Dementia Center, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| |
Collapse
|
7
|
Fluid Biomarkers in Alzheimer’s Disease and Other Neurodegenerative Disorders: Toward Integrative Diagnostic Frameworks and Tailored Treatments. Diagnostics (Basel) 2022; 12:diagnostics12040796. [PMID: 35453843 PMCID: PMC9029739 DOI: 10.3390/diagnostics12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of neurodegenerative diseases (NDDs) represents an increasing social burden, with the unsolved issue of disease-modifying therapies (DMTs). The failure of clinical trials treating Alzheimer′s Disease (AD) so far highlighted the need for a different approach in drug design and patient selection. Identifying subjects in the prodromal or early symptomatic phase is critical to slow down neurodegeneration, but the implementation of screening programs with this aim will have an ethical and social aftermath. Novel minimally invasive candidate biomarkers (derived from blood, saliva, olfactory brush) or classical cerebrospinal fluid (CSF) biomarkers have been developed in research settings to stratify patients with NDDs. Misfolded protein accumulation, neuroinflammation, and synaptic loss are the pathophysiological hallmarks detected by these biomarkers to refine diagnosis, prognosis, and target engagement of drugs in clinical trials. We reviewed fluid biomarkers of NDDs, considering their potential role as screening, diagnostic, or prognostic tool, and their present-day use in clinical trials (phase II and III). A special focus will be dedicated to novel techniques for the detection of misfolded proteins. Eventually, an applicative diagnostic algorithm will be proposed to translate the research data in clinical practice and select prodromal or early patients to be enrolled in the appropriate DMTs trials for NDDs.
Collapse
|
8
|
Cazzaniga FA, Bistaffa E, De Luca CMG, Bufano G, Indaco A, Giaccone G, Moda F. Sporadic Creutzfeldt-Jakob disease: Real-Time Quaking Induced Conversion (RT-QuIC) assay represents a major diagnostic advance. Eur J Histochem 2021; 65:3298. [PMID: 34657408 PMCID: PMC8529530 DOI: 10.4081/ejh.2021.3298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare and fatal neurodegenerative disorder with an incidence of 1.5 to 2 cases per million population/year. The disease is caused by a proteinaceous infectious agent, named prion (or PrPSc), which arises from the conformational conversion of the cellular prion protein (PrPC). Once formed, PrPSc interacts with the normally folded PrPC coercing it to undergo similar structural rearrangement. The disease is highly heterogeneous from a clinical and neuropathological point of view. The origin of this variability lies in the aberrant structures acquired by PrPSc. At least six different sCJD phenotypes have been described and each of them is thought to be caused by a peculiar PrPSc strain. Definitive sCJD diagnosis requires brain analysis with the aim of identifying intracerebral accumulation of PrPSc which currently represents the only reliable biomarker of the disease. Clinical diagnosis of sCJD is very challenging and is based on the combination of several clinical, instrumental and laboratory tests representing surrogate disease biomarkers. Thanks to the advent of the ultrasensitive Real-Time Quaking-Induced Conversion (RT-QuIC) assay, PrPSc was found in several peripheral tissues of sCJD patients, sometimes even before the clinical onset of the disease. This discovery represents an important step forward for the clinical diagnosis of sCJD. In this manuscript, we present an overview of the current applications and future perspectives of RT-QuIC in the field of sCJD diagnosis.
Collapse
Affiliation(s)
| | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan.
| | | | - Giuseppe Bufano
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan, Italy.
| | - Antonio Indaco
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan.
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan, Italy.
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan, Italy.
| |
Collapse
|