1
|
Yogi A, Banderali U, Moreno MJ, Martina M. Preclinical Animal Models to Investigate the Role of Na v1.7 Ion Channels in Pain. Life (Basel) 2025; 15:640. [PMID: 40283194 PMCID: PMC12028925 DOI: 10.3390/life15040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic pain is a maladaptive neurological disease that remains a major global healthcare problem. Voltage-gated sodium channels (Navs) are major drivers of the excitability of sensory neurons, and the Nav subtype 1.7 (Nav1.7) has been shown to be critical for the transmission of pain-related signaling. This is highlighted by demonstrations that gain-of-function mutations in the Nav1.7 gene SCN9A result in various pain pathologies, whereas loss-of-function mutations cause complete insensitivity to pain. A substantial body of evidence demonstrates that chronic neuropathy and inflammation result in an upregulation of Nav1.7, suggesting that this channel contributes to pain transmission and sensation. As such, Nav1.7 is an attractive human-validated target for the treatment of pain. Nonetheless, a lack of subtype selectivity, insufficient efficacy, and adverse reactions are some of the issues that have hindered Nav1.7-targeted drug development. This review summarizes the pain behavior profiles mediated by Nav1.7 reported in multiple preclinical models, outlining the current knowledge of the biophysical, physiological, and distribution properties required for a Nav1.7 inhibitor to produce analgesia.
Collapse
Affiliation(s)
- Alvaro Yogi
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (U.B.); (M.J.M.); (M.M.)
| | | | | | | |
Collapse
|
2
|
Xu J, Wang Y, Zhang J, Tang J, Zhou Z. The role of branched-chain amino acids in cardio-oncology: A review. Life Sci 2025; 372:123614. [PMID: 40189196 DOI: 10.1016/j.lfs.2025.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Cancer and cardiovascular diseases (CVDs) are global health challenges. In cancer patients, CVD is the second leading cause of death following disease progression. There are few specialized services for cardio-oncology patients worldwide currently. Branched-chain amino acids (BCAAs) are essential amino acids that promote protein synthesis and energy homeostasis. The disruption of BCAAs metabolism facilitates the development of cancer and CVDs while the benefit of BCAA supplement is full of controversy. In this review, we summarized BCAA-related studies in cardiometabolism, cancer and chemotherapy-induced cardiotoxicity, and provided our perspectives on the roles of BCAAs in cardio-oncology. We find that supplementation of BCAAs presents protective effects in cardiometabolic diseases, while the influence on cancer is intricate and varies across different types of cancers. Large-scale clinical studies are needed to understand the long-term effects of BCAA intake and its impact on different stages of the disease. BCAAs have potential to mitigate chemotherapy-induced cardiotoxicity. Continued research is still essential to understand the precise mechanisms, determine optimal dosage and timing, and assess the effectiveness of BCAA supplement in cardio-oncology, in particular clinical research.
Collapse
Affiliation(s)
- Jiaqi Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Cardiology, The First Hospital of Hebei Medical University, Hebei, China
| | - Jing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jingyi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhongyan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Latulippe J, Roy LO, Gobeil F, Fortin D. Optimization of Intra-Arterial Administration of Chemotherapeutic Agents for Glioblastoma in the F98-Fischer Glioma-Bearing Rat Model. Biomolecules 2025; 15:421. [PMID: 40149957 PMCID: PMC11940523 DOI: 10.3390/biom15030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Glioblastoma (GBM) is a difficult disease to treat for different reasons, with the blood-brain barrier (BBB) preventing therapeutic drugs from reaching the tumor being one major hurdle. The median overall survival is only 14.6 months after the standard first line of treatment. At relapse, there is no recognized standard second-line treatment. Our team uses intra-arterial (IA) chemotherapy as a means to bypass the BBB, hence achieving an overall median survival of 25 months. However, most patients eventually fail the treatment and progress. This is why we wish to expand our portfolio of options in terms of chemotherapy agents available for IA administration. In this study, we tested topotecan, cytarabine, and new formulations of carboplatin and paclitaxel by IA administration in the F98-Fischer glioma-bearing rat model as a screening tool for identifying potential candidate drugs. The topotecan IA group showed increased survival compared to the intravenous (IV) group (29.0 vs. 23.5), whereas the IV cytarabine group survived longer than the IA group (26.5 vs. 22.5). The new formulation of carboplatin showed a significant increase in survival compared to two previous studies with the conventional form (37.5 vs. 26.0 and 30.0). As for paclitaxel, it was too neurotoxic for IA administration. Topotecan and the new formulation of carboplatin demonstrated significant results, warranting their transition for consideration in clinical trials.
Collapse
Affiliation(s)
- Juliette Latulippe
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (J.L.); (F.G.)
| | - Laurent-Olivier Roy
- Division of Neurosurgery, Department of Surgery, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Fernand Gobeil
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (J.L.); (F.G.)
| | - David Fortin
- Division of Neurosurgery, Department of Surgery, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
4
|
Elahi A, Qamar M, Khan FM, Babar R, Zahid MJ, Ahmad MO, Wali S, Afzal S, Ikram M, Shah SAA, Rehman MEU, Cheema HA, Anwar U, Tahir MM, Bellos I. Efficacy of drug-coated balloon versus uncoated balloon for dysfunctional dialysis access: a systematic review and meta-analysis. Clin Exp Nephrol 2025:10.1007/s10157-025-02642-7. [PMID: 39992495 DOI: 10.1007/s10157-025-02642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Dysfunctional vascular access is a major cause of morbidity and mortality in patients undergoing hemodialysis, affecting both arteriovenous fistulas and grafts. The most optimal strategy to restore long-term patency has not been established. This meta-analysis compares drug-coated balloon (DCB) versus uncoated balloon (UCB) angioplasty for dysfunctional vascular access. METHODS We performed a systematic literature search across multiple databases from inception to June 2024. Randomized-controlled trials (RCTs) comparing DCB and UCB in dialysis patients with dysfunctional vascular access were included. Risk ratios were pooled using a random-effects model. RESULTS Twenty-seven RCTs (2645 patients) were included. Target lesion patency (TLP) at 6 months was significantly superior in the DCB group (RR 1.22, 95% CI 1.07-1.39, p = 0.003). The two regimens were comparable for TLP at 3 months (RR 1.14, p = 0.24) and 12 months (RR 1.14, p = 0.10). The two regimens were comparable in terms of circuit patency rate, target-lesion revascularization, and all-cause mortality. CONCLUSION DCB has significantly superior TLP and a comparable risk of mortality to UCB. Further research is warranted to identify factors affecting outcomes following DCB angioplasty for dysfunctional dialysis access.
Collapse
Affiliation(s)
| | | | - Fasih Mand Khan
- Fatima Memorial College of Medicine and Dentistry, Lahore, Pakistan
| | | | | | | | - Shah Wali
- Mohtarma Shaheed Benazir Bhutto General Hospital, Quetta, Pakistan
| | | | - Moeen Ikram
- Frontier Medical and Dental College, Abbottabad, Pakistan
| | | | | | | | - Usama Anwar
- Department of Interventional Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Muhammad Mohid Tahir
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, NY, USA
| | - Ioannis Bellos
- Department of Nephrology and Renal Transplantation, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Zhang Y, Yang Y, Zhou J, Yu Q, Chen L, Zhao L, Meng Y, Wang J, Yan L, Huang Z, Song S, Bai W, Sun R, Yang X. Patient-derived tumor xenograft animal model of gastric cancer in precision chemotherapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03903-8. [PMID: 39969603 DOI: 10.1007/s00210-025-03903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
This study aims to establish a patient-derived tumor xenograft (PDX) model for gastric cancer and apply it in pharmacodynamic studies for chemotherapeutic agents. So as to provide guidance for personalized treatment in gastric cancer patients. Fresh gastric cancer tissues were collected from surgical patients and transplanted into NOG mice to establish PDX model. Human source markers were identified by immunofluorescence and immunohistochemistry methods. Exon sequencing was used to verify the retention of humanized features in the PDX model. The efficacy of six chemotherapeutic drugs (oxaliplatin, cisplatin, paclitaxel, fluorouracil, Tegafur, capecitabine) and optimal dose of capecitabine were evaluated by the PDX model. The study has successfully established the PDX model of gastric cancer with transplantation success rates of P0 to P1 (45%), P1 to P2 (88.89%), and P2 to P3 (87.5%). Importantly, original tumor features were effectively preserved till P3. Drug screening results revealed notable antitumor effect of capecitabine in the PDX model of gastric cancer. The study has successfully established a gastric cancer PDX model, highlighting its potential for chemotherapy drug screening and personalized treatment. The transplantation success rates and preservation of original tumor features underscore the model's reliability and relevance for future studies. Findings from drug screening, especially capecitabine's effectiveness, suggest a promising avenue for precision treatment strategies in gastric cancer patients.
Collapse
Affiliation(s)
- Yiyin Zhang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yongming Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Jiayi Zhou
- Arts and Science Faculty, Master of Media Practice, University of Sydney, Sydney, NSW, Australia
| | - Qianqian Yu
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Lixia Chen
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Lili Zhao
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yongsheng Meng
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Jing Wang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Lei Yan
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Ziyang Huang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Shuchen Song
- Rehabilitation Therapeutics, The First Clinical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenqi Bai
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China.
| | - Ruifang Sun
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China.
| | - Xihua Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
6
|
Pagano G, Lyakhovich A, Thomas PJ, Catalayud FVP, Tiano L, Zatterale A, Trifuoggi M. Prooxidant state in anticancer drugs and prospect use of mitochondrial cofactors and anti-inflammatory agents in cancer prevention. Inflammopharmacology 2025; 33:431-441. [PMID: 39656417 DOI: 10.1007/s10787-024-01613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 02/22/2025]
Abstract
An extensive body of literature has associated cancer with redox imbalance and inflammatory conditions. Thus, several studies and current clinical practice have relied on the use of anticancer drugs known to be associated with prooxidant state. On the other hand, a number of studies have reported on the effects of several antioxidants, anti-inflammatory agents and of mitochondrial cofactors (also termed mitochondrial nutrients, MNs) in counteracting or slowing carcinogenesis, or in controlling cancer growth. In the available literature, a body of evidence points on the roles of anti-inflammatory agents and of individual MNs against carcinogenesis or in controlling cancer cell proliferation, but only a few reports on the combined use of two or the effect of three MNs. These combinations are proposed as potentially successful tools to counteract carcinogenesis in prospective animal model studies or in adjuvant cancer treatment strategies. A "triad" of MNs are suggested to restore redox balance, mitigate side effects of prooxidative anticancer drugs, or aid in cancer prevention and/or adjuvant therapy. By elucidating their mechanistic underpinnings and appraising their clinical efficacy, we aim to contribute with a comprehensive understanding of these therapeutic modalities.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, 80136, Naples, Italy.
| | | | - Philippe J Thomas
- Environment and Climate Change Canada, Science Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, ON, K1A 0H3, Canada
| | | | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, Ancona, Italy
| | | | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, 80136, Naples, Italy
| |
Collapse
|
7
|
Long L, Wang L, Liang Y, Ye F, Jin Y, Luo D, Li X, Wang Y, Li Y, Han D, Chen B, Zhao W, Wang L, Yang Q. UGCG promotes chemoresistance and breast cancer progression via NF-κB and Wnt/β-catenin pathway activation. Transl Oncol 2025; 52:102241. [PMID: 39674092 PMCID: PMC11700287 DOI: 10.1016/j.tranon.2024.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Taxane-based chemotherapy is the primary treatment for triple-negative breast cancer (TNBC), yet clinical outcomes remain unsatisfactory due to the persistence of chemoresistance. Identifying key factors that contribute to chemoresistance and understanding the associated molecular mechanisms is therefore essential. METHOD The GEO databases were utilized to pinpoint factors related to chemoresistance, which were subsequently validated using clinical tissue samples. The role of UGCG in the malignant progression and chemoresistance of TNBC was assessed through various functional assays. Western blotting, qRT-PCR, and immunohistochemistry were employed to investigate the signaling pathways associated with UGCG in TNBC. RESULTS UGCG expression was notably elevated in chemoresistant breast cancer tissues and cells, as identified in GEO databases and confirmed through immunohistochemistry. Additionally, findings from our cohorts indicated that higher levels of UGCG expression correlated with a lower rate of pathological complete response (pCR), suggesting it could serve as an independent predictor of chemotherapy effectiveness. Gain- and loss-of-function experiments demonstrated that UGCG enhanced the proliferation, metastasis, and stemness of breast cancer cells. Furthermore, treatment with paclitaxel or docetaxel resulted in increased UGCG expression, which in turn reduced chemotherapy-induced cell apoptosis and improved drug resistance and metastatic capabilities. Mechanistically, UGCG was found to amplify the activation of NF-κB and Wnt/β-catenin pathways, and the use of inhibitors targeting these pathways diminished the UGCG-induced malignant effects. CONCLUSION Our findings underscore the significant role of UGCG in the chemoresistance and progression of breast cancer, suggesting it as a predictive biomarker and potential therapeutic target to combat chemoresistance in this disease.
Collapse
Affiliation(s)
- Li Long
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China; Department of Breast Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, PR China
| | - Lei Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoyan Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China; Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China; Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
8
|
Wang J, Yan S. Integration of histone modification-based risk signature with drug sensitivity analysis reveals novel therapeutic strategies for lower-grade glioma. Front Pharmacol 2025; 15:1523779. [PMID: 39872055 PMCID: PMC11770009 DOI: 10.3389/fphar.2024.1523779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Background Lower-grade glioma (LGG) exhibits significant heterogeneity in clinical outcomes, and current prognostic markers have limited predictive value. Despite the growing recognition of histone modifications in tumor progression, their role in LGG remains poorly understood. This study aimed to develop a histone modification-based risk signature and investigate its relationship with drug sensitivity to guide personalized treatment strategies. Methods We performed single-cell RNA sequencing analysis on LGG samples (n = 4) to characterize histone modification patterns. Through integrative analysis of TCGA-LGG (n = 513) and CGGA datasets (n = 693 and n = 325), we constructed a histone modification-related risk signature (HMRS) using machine learning approaches. The model's performance was validated in multiple independent cohorts. We further conducted comprehensive analyses of molecular mechanisms, immune microenvironment, and drug sensitivity associated with the risk stratification. Results We identified distinct histone modification patterns across five major cell populations in LGG and developed a robust 20-gene HMRS from 129 candidate genes that effectively stratified patients into high- and low-risk groups with significantly different survival outcomes (training set: AUC = 0.77, 0.73, and 0.71 for 1-, 3-, and 5-year survival; P < 0.001). Integration of HMRS with clinical features further improved prognostic accuracy (C-index >0.70). High-risk tumors showed activation of TGF-β and IL6-JAK-STAT3 signaling pathways, and distinct mutation profiles including TP53 (63% vs 28%), IDH1 (68% vs 85%), and ATRX (46% vs 20%) mutations. The high-risk group demonstrated significantly elevated immune and stromal scores (P < 0.001), with distinct patterns of immune cell infiltration, particularly in memory CD4+ T cells (P < 0.001) and CD8+ T cells (P = 0.001). Drug sensitivity analysis revealed significant differential responses to six therapeutic agents including Temozolomide and targeted drugs (P < 0.05). Conclusion Our study establishes a novel histone modification-based prognostic model that not only accurately predicts LGG patient outcomes but also reveals potential therapeutic targets. The identified associations between risk stratification and drug sensitivity provide valuable insights for personalized treatment strategies. This integrated approach offers a promising framework for improving LGG patient care through molecular-based risk assessment and treatment selection.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Neurological Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuai Yan
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
9
|
Di Marino C, Llorente-Berzal Á, Diego AM, Bella A, Boullon L, Berrocoso E, Roche M, Finn DP. Characterisation of the effects of the chemotherapeutic agent paclitaxel on neuropathic pain-related behaviour, anxiodepressive behaviour, cognition, and the endocannabinoid system in male and female rats. Front Pharmacol 2025; 15:1505980. [PMID: 39830350 PMCID: PMC11739114 DOI: 10.3389/fphar.2024.1505980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Paclitaxel (PTX) is a commonly used chemotherapeutic drug, however, one of its major adverse effects is chronic neuropathic pain, with the incidence being higher in women than in men. The neurobiological mechanisms behind this sex difference are still largely unclear, and the endocannabinoid system, which exhibits sexual dimorphism and plays a key role in pain regulation, is a promising area for further studies. The present study aimed to characterise pain-, cognition-, anxiety-, and depression-related behaviours in male and female rats following PTX administration, and associated alterations in the endocannabinoid system. After the induction of the model, pain-related behaviours were assessed using von Frey, Acetone Drop and Hargreaves' tests, Novel Object Recognition and T-Maze Spontaneous Alternation tests were used for cognition-related behaviours, Elevated Plus Maze, Open Field, and Light Dark Box tests were used to assess anxiety-related behaviours, and Sucrose Preference, Sucrose Splash, and Forced Swim tests for depression-related behaviours. At each time point analysed, animals treated with PTX exhibited mechanical and cold hypersensitivity, with females displaying lower hind paw withdrawal thresholds to mechanical stimulation than males. No PTX-induced alterations in the other behavioural tests were detected. Post-mortem measurement of endocannabinoid and related N-acylethanolamine levels in spinal cord and discrete brain regions revealed a PTX-induced increase of 2-Arachidonoyl Glycerol (2-AG), N-Palmitoylethanolamine (PEA) and N-Oleoylethanolamine (OEA) levels in the amygdala of male and female animals, but not in the other areas. Collectively, these results suggest that PTX causes similar long-lasting hypersensitivity to mechanical and cold stimuli, but not heat, in rats of both sexes, effects accompanied by increases in amygdalar levels of endocannabinoids and N-acylethanolamines.
Collapse
Affiliation(s)
- Chiara Di Marino
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Department of Neuroscience, Neuropsychopharmacology and Psychobiology Research Group, University of Cádiz, Cádiz, Spain
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
| | - Alba M. Diego
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
| | - Ariadni Bella
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | - Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
| | - Esther Berrocoso
- Department of Neuroscience, Neuropsychopharmacology and Psychobiology Research Group, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Michelle Roche
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Patel P, Rajput HS, Chavda K, Mistry S, Bhagat S, Hadia R, Saiyed M, Khadela A. Assessing the effectiveness of gabapentin in paclitaxel-induced arthralgia, myalgia, and neuropathic pain: An observational, cohort study. J Oncol Pharm Pract 2025; 31:81-89. [PMID: 38179645 DOI: 10.1177/10781552231225148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
BACKGROUND AND OBJECTIVES Arthralgia, myalgia, and neuropathic pain are the most common side effects observed due to paclitaxel chemotherapy. The aim of this study was to investigate the prophylactic role, maintenance, remission, and re-occurrence of arthralgia, myalgia, and neuropathic pain post-gabapentin therapy. METHODOLOGY This study was conducted in the Department of Oncology, Dhiraj Hospital, Vadodara with a sample of 51 patients. Newly detected cancer patients who observed arthralgia, myalgia, and neuropathic pain due to paclitaxel were taken and a baseline pain assessment was done using the Common Terminology Criteria for Adverse Events (CTCAE) and painDETECT questionnaire. Gabapentin was given in the first cycle after symptoms appeared and prophylactic treatment was given in the subsequent three cycles and evaluation of pain was done post-gabapentin therapy to assess the symptomatic as well as prophylactic effect. RESULTS At baseline, neuropathic pain score was 22.7 ± 3.6 which reduced to 0.01 ± 0.14 on subsequent follow-ups. Grade 2 arthralgia, myalgia, and neuropathic pain were more observed at baseline which reduces to Grade 0 in the third cycle. The difference in baseline and post-gabapentin therapy was statistically analyzed by conducting t-test which showed p-value <0.00001 and t-value was less than -2 which indicated a statistically significant result. CONCLUSION This study shows that gabapentin reduces neuropathic pain. Prophylactic usage of gabapentin was highly effective at bringing about quick pain relief when compared to symptomatic treatment. In further follow-ups, it was noted that gabapentin maintained the impact throughout the cycles.
Collapse
Affiliation(s)
- Prashantkumar Patel
- Department of Oncology, Smt. B. K. Shah Medical Institute & Research Centre, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | - Hemraj Singh Rajput
- Pharmacy Practice, Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | - Khushboo Chavda
- Pharmacy Practice, Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | - Smit Mistry
- Pharmacy Practice, Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | - Sandesh Bhagat
- Pharmacy Practice, Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | - Rajesh Hadia
- L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Moinuddin Saiyed
- Department of Oncology, Smt. B. K. Shah Medical Institute & Research Centre, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | | |
Collapse
|
11
|
Bhullar AS, Jin K, Shi H, Jones A, Hironaka D, Xiong G, Xu R, Guo P, Binzel DW, Shu D. Engineered extracellular vesicles for combinatorial TNBC therapy: SR-SIM-guided design achieves substantial drug dosage reduction. Mol Ther 2024; 32:4467-4481. [PMID: 39369270 PMCID: PMC11638871 DOI: 10.1016/j.ymthe.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has no therapeutic targets, relies on chemotherapeutics for treatment, and is in dire need of novel therapeutic approaches for improved patient outcomes. Extracellular vesicles (EVs) serve as intercellular communicators and have been proposed as ideal drug delivery vehicles. Here, EVs were engineered with RNA nanotechnology to develop TNBC tumor inhibitors. Using super resolved-structured illumination microscopy, EVs were optimized for precise Survivin small interfering RNA (siRNA) conjugated to chemotherapeutics loading and CD44 aptamer ligand decoration, thereby enhancing specificity toward TNBC cells. Conventional treatments typically employ chemotherapy drugs gemcitabine (GEM) and paclitaxel (PTX) at dosages on the order of mg/kg respectively, per injection (intravenous) in mice. In contrast, engineered EVs encapsulating these drugs saw functional tumor growth inhibition at significantly reduced concentrations: 2.2 μg/kg for GEM or 5.6 μg/kg for PTX, in combination with 21.5 μg/kg survivin-siRNA in mice. The result is a substantial decrease in the chemotherapeutic dose required, by orders of magnitude, compared with standard regimens. In vivo and in vitro evaluations in a TNBC orthotopic xenograft mouse model demonstrated the efficacy of this decreased dosage strategy, indicating the potential for decreased chemotherapy-associated toxicity.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Jin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA
| | - Haizhu Shi
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Austen Jones
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dalton Hironaka
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Gaofeng Xiong
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Xu T, Na J, Liu Q, Kuang G, Zhang Q, Zhao Y. The function of albumin and its application in tumor therapy. MATERIALS TODAY COMMUNICATIONS 2024; 41:110575. [DOI: 10.1016/j.mtcomm.2024.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Ibrahim M, Fathalla Z, Fatease AA, Alamri AH, Abdelkader H. Breast cancer epidemiology, diagnostic barriers, and contemporary trends in breast nanotheranostics and mechanisms of targeting. Expert Opin Drug Deliv 2024; 21:1735-1754. [PMID: 39361257 DOI: 10.1080/17425247.2024.2412823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Breast cancer is one of the main causes of mortality in women globally. Early and accurate diagnosis represents a milestone in cancer management. Several breast cancer diagnostic agents are available. Many chemotherapeutic agents in conventional dosage forms are approved; nevertheless, they lack cancer cell specificity, resulting in improper treatment and undesirable side effects. Recently, nanotheranostics has emerged as a new paradigm to achieve safe and effective cancer diagnosis and management. AREA COVERED This review provides insight into breast cancer epidemiology, barriers hindering the early diagnosis, and effective delivery of chemotherapeutics. Also, conventional diagnostic agents and recent nanotheranostic platforms have been used in breast cancer. In addition, mechanisms of cancer cell targeting and nano-carrier surface functionalization as an effective approach for chemotherapeutic targeting were reviewed along with future perspectives. EXPERT OPINION We proposed that modified nano-carriers may provide an efficacious approach for breast cancer drug targeting. These nanotheranostics need more clinical evaluations to confirm their efficacy in cancer management. In addition, we recommend the use of artificial intelligence (AI) as a promising approach for early and efficient assessment of breast lesions. AI allows better interpretation and analysis of nanotheranostic data, which minimizes misdiagnosis and avoids the belated intervention of health care providers.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Zeinab Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Ye YT, Niu YL, Zhou ZY, Sun Y, Chang TF, Jing YT, Bai Q, Chu ZJ. Carbonic anhydrase inhibitor alleviates retinal barrier toxicity in paclitaxel-induced retinopathy and macular edema by inhibiting CAXIV. Int Ophthalmol 2024; 44:437. [PMID: 39578251 PMCID: PMC11584476 DOI: 10.1007/s10792-024-03362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE To investigate the mechanism of paclitaxel (PTX)-induced macular edema and the therapeutic effect of carbonic anhydrase inhibitors (CAI) on this condition. METHODS The effect of PTX on cell morphology was detected by immunofluorescence. Cell barrier was measured by measuring cell resistance across the epithelium. Western blotting analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to investigate the effects of PTX or PTX + CAI on the expression of carbonic anhydrase XIV (CAXIV), aquaporin 4 (AQP4) and inflammatory factors. After intraperitoneal injection of PTX in vivo, retinal electrophysiology (ERG) was used to evaluate the effects of drugs on visual electrophysiology. RESULTS PTX inhibited the proliferation of ARPE-19 and Müller cells, promoting their apoptosis, changing their morphology and cell cycle, reducing the transepithelial resistance of ARPE-19 cells and promoting the expression of inflammatory factors; This process was alleviated after temporary withdrawal. CAI inhibited the upregulation of inflammatory factors. Following treatment with PTX, the expression levels of AQP4 and CAXIV were higher than control group; nevertheless, the levels of ZO-1 and OCLN were lower than control group. In vivo, the ERG analysis showed that the light- and dark-adapted 3.0 ERG, and dark-adapted 3.0 oscillatory potentials decreased to different degrees following treatment with PTX. CONCLUSION PTX-induced macular edema is mainly due to Müller cell toxicity. The condition can be alleviated by regulating water channels and enhancing subretinal fluid absorption. Thus, CAI may provide a new therapeutic approach for PTX-induced macular edema.
Collapse
Affiliation(s)
- Ya-Ting Ye
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University (Xi'an First Hospital), Xi'an, 710002, China
| | - Ya-Li Niu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zi-Yi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Sun
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tian-Fang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Tong Jing
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Bai
- The Hospital of 26, Base of PLA Strategic Support Force, Xi'an, China
| | - Zhao-Jie Chu
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University (Xi'an First Hospital), Xi'an, 710002, China.
| |
Collapse
|
15
|
Lin Y, Kong L, Zhao Y, Zhai F, Zhan Z, Li Y, Jingfei Z, Chunhong Y, Jin X. The oncogenic role of EIF4A3/CDC20 axis in the endometrial cancer. J Mol Med (Berl) 2024; 102:1395-1410. [PMID: 39316093 DOI: 10.1007/s00109-024-02486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Eukaryotic initiation factor 4A-3 (EIF4A3) is a key component of the exon junction complex (EJC) and is extensively involved in RNA splicing, inducing mRNA decay, and regulating the cell cycle and apoptosis. However, the potential role of EIF4A3 in EC has not been comprehensively investigated and remains unknown. Here, we report that the expression level of EIF4A3 is dramatically elevated in endometrial cancer (EC) samples compared with normal EC samples via bioinformatics analysis and immunohistochemistry analysis, and that high expression of EIF4A3 promotes the proliferation, migration, and invasion of EC cells. Mechanistically, we found that high EIF4A3 expression stabilized cell division cyclin 20 (CDC20) mRNA, and high EIF4A3 expression induced pro-carcinogenic effects in EC cells that were efficiently antagonized upon knockdown of CDC20, as well as Apcin, an inhibitor of CDC20. These findings reveal a novel mechanism by which high expression of EIF4A3 induces CDC20 upregulation, thus leading to EC tumorigenesis and metastasis, indicating a potential treatment strategy for EC patients with high EIF4A3 expression using Apcin. KEY MESSAGES: The expression level of EIF4A3 was dramatically elevated in endometrial cancer (EC) samples compared with normal endometrial cancer samples. High EIF4A3 expression stabilized CDC20 mRNA, and high EIF4A3 expression induced pro-carcinogenic effect in EC cells which was efficiently antagonized upon knockdown of CDC20. Apcin, an inhibitor of CDC20, could effectively counteract high expression of EIF4A3 inducing EC tumourigenesis and metastasis, indicating the potential treatment strategy for EC patients with EIF4A3 high expression by using Apcin.
Collapse
Affiliation(s)
- Yan Lin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yiting Zhao
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Ziqing Zhan
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuxuan Li
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zheng Jingfei
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Yan Chunhong
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
16
|
Song G, Liu J, Tang X, Zhong J, Zeng Y, Zhang X, Zhou J, Zhou J, Cao L, Zhang Q, Li Y. Cell cycle checkpoint revolution: targeted therapies in the fight against malignant tumors. Front Pharmacol 2024; 15:1459057. [PMID: 39464635 PMCID: PMC11505109 DOI: 10.3389/fphar.2024.1459057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Malignant tumors are among the most important causes of death worldwide. The pathogenesis of a malignant tumor is complex and has not been fully elucidated. Studies have shown that such pathogenesis is related to abnormal cell cycle progression. The expression levels of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors as well as functions of the cell cycle checkpoints determine whether the cell cycle progression is smooth. Cell-cycle-targeting drugs have the advantages of high specificity, low toxicity, low side effects, and low drug resistance. Identifying drugs that target the cell cycle and applying them in clinical treatments are expected to promote chemotherapeutic developments against malignant tumors. This article aims to review drugs targeted against the cell cycle and their action mechanisms.
Collapse
Affiliation(s)
- Guangming Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jue Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, The affiliated Zhuzhou hospital Xiangya medical college, Central South University, Zhuzhou, Hunan, China
| | - Jie Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuhuan Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaodi Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianbin Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jie Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lu Cao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, The affiliated Zhuzhou hospital Xiangya medical college, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
17
|
Mahjoubin-Tehran M, Rezaei S, Kesharwani P, Sahebkar A. Nanospheres for curcumin delivery as a precision nanomedicine in cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2250-2274. [PMID: 38958210 DOI: 10.1080/09205063.2024.2371186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Cancer is ranked among the top causes of mortality throughout the world. Conventional therapies are associated with toxicity and undesirable side effects, rendering them unsuitable for prolonged use. Additionally, there is a high occurrence of resistance to anticancer drugs and recurrence in certain circumstances. Hence, it is essential to discover potent anticancer drugs that exhibit specificity and minimal unwanted effects. Curcumin, a polyphenol derivative, is present in the turmeric plant (Curcuma longa L.) and has chemopreventive, anticancer, radio-, and chemo-sensitizing activities. Curcumin exerts its anti-tumor effects on cancer cells by modulating the disrupted cell cycle through p53-dependent, p53-independent, and cyclin-dependent mechanisms. This review provides a summary of the formulations of curcumin based on nanospheres, since there is increasing interest in its medicinal usage for treating malignancies and tumors. Nanospheres are composed of a dense polymeric matrix, and have a size ranging from 10 to 200 nm. Lactic acid polymers, glycolic acid polymers, or mixtures of them, together with poly (methyl methacrylate), are primarily used as matrices in nanospheres. Nanospheres are suitable for local, oral, and systemic delivery due to their minuscule particle size. The majority of nanospheres are created using polymers that are both biocompatible and biodegradable. Previous investigations have shown that the use of a nanosphere delivery method can enhance tumor targeting, therapeutic efficacy, and biocompatibility of different anticancer agents. Moreover, these nanospheres can be easily taken up by mammalian cells. This review discusses the many curcumin nanosphere formulations used in cancer treatment.
Collapse
Affiliation(s)
| | - Samaneh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Hu J, Hu Y, Xu L, Chen J, Shi M, Wu W, Yang J, Han Y. P-glycoprotein-mediated herb-drug interaction evaluation between Tenacissoside G and paclitaxel. Biomed Chromatogr 2024; 38:e5984. [PMID: 39152775 DOI: 10.1002/bmc.5984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/06/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
P-glycoprotein (P-gp)-mediated herb-drug interactions (HDIs) may impact drug efficacy and safety. Tenacissoside G (Tsd-G), a major active component of Marsdenia tenacissima, exhibits anticancer activity. To analyze the effect of Tsd-G on the pharmacokinetics of paclitaxel (PTX), researchers selected 30 Sprague-Dawley (SD) rats, randomized into a solvent control group, a verapamil positive control group, and 20, 40, and 60 mg/kg Tsd-G groups. After seven consecutive days of intraperitoneal injection of verapamil or Tsd-G, a single dose of 6 mg/kg PTX was injected intravenously. Plasma samples were collected at different time points, and proteins were precipitated using a methanol-acetonitrile solution. An ultrahigh-performance liquid chromatography-tandem mass spectrometry method was developed, with docetaxel as an internal standard, and quantified using positive ion multiple reaction monitoring (MRM) mode. This analytical method's specificity, accuracy, precision, recovery, matrix effect, and sample stability meet the requirements for biological sample determination. After Tsd-G administration in rats, the mean residence time of PTX was significantly prolonged. And Tsd-G can stably bind to P-gp by forming hydrogen bonds and inhibiting the expression of P-gp in rat liver. Although the metabolites of PTX were not detected in this study, the above results still indicate the existence of HDIs between Tsd-G and PTX, and P-gp may be the main target to mediate HDIs.
Collapse
Affiliation(s)
- Jiudong Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Hu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyan Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meizhi Shi
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiao Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonglong Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Sa-Nguansai S, Sukphinetkul R. Development and Validation of a Clinical Prediction Model for Paclitaxel Hypersensitivity Reaction on the Basis of Real-World Data: Pac-HSR Score. JCO Glob Oncol 2024; 10:e2400318. [PMID: 39418625 DOI: 10.1200/go-24-00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Paclitaxel is effective chemotherapy against various cancers but can cause hypersensitivity reaction (HSR). This study aimed to identify predictors associated with paclitaxel HSR and develop a clinical prediction model to guide clinical decisions. METHODS Data were collected from the medical records database of Rajavithi Hospital. Patients with cancer treated with paclitaxel from 2015 to 2022 were included, and a multivariable logistic regression analysis identified predictors associated with paclitaxel HSR. The scoring system was transformed and calibrated on the basis of diagnostic parameters. Discrimination and calibration performances were assessed. Internal validation was conducted using bootstrap resampling with 1,000 replications. RESULTS This study involved 3,708 patients with cancer, with an incidence of paclitaxel HSR of 10.11%. An 11-predictor-based Pac-HSR scoring system was developed, involving the following factors: younger age; poor Eastern Cooperative Oncology Group performance status; previous history of paclitaxel HSR; medication allergy history; chronic obstructive airway disease; lung and cervical cancers; high actual dose of paclitaxel; no diphenhydramine premedication; low hemoglobin level; high WBC count; and high absolute lymphocyte count. The C-statistics was 0.73 (95% CI, 0.70 to 0.76), indicating acceptable discrimination. The P value of the Hosmer-Lemeshow goodness-of-fit test was 0.751. The ratio of observed and expected values was 1.00, indicating good calibration. At a cutoff point of 8, specificity was 75.28% and sensitivity was 57.07%. Internal validation indicated good performance with minimal bias, and decision curve analysis demonstrated improved prediction with the use of this scoring system in clinical decision making. CONCLUSION This study developed the 11-predictor-based Pac-HSR scoring system for predicting paclitaxel HSR in patients with cancer. High-risk patients identified by this score should be prioritized for close monitoring and early treatment prophylaxis.
Collapse
Affiliation(s)
- Sunatee Sa-Nguansai
- Oncology Unit, Department of Medicine, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand
| | - Radasar Sukphinetkul
- Oncology Unit, Department of Medicine, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand
| |
Collapse
|
20
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
21
|
Genc S, Cicek B, Yeni Y, Kuzucu M, Hacimuftuoglu A, Bolat I, Yildirim S, Zaker H, Zachariou A, Sofikitis N, Mamoulakis C, Tsatsakis A, Taghizadehghalehjoughi A. Morinda citrifolia protective effects on paclitaxel-induced testis parenchyma toxicity: An experimental study. Reprod Toxicol 2024; 127:108611. [PMID: 38782144 DOI: 10.1016/j.reprotox.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The current study aimed to investigate the sensitivity of male testis parenchyma cells to chemotherapy agents and the protective effects and mechanisms of Morinda citrifolia (Noni) administration against structural and functional changes before and after chemotherapy (Paclitaxel (PTX)). For this purpose, rats were randomly assigned into four groups (Control = G1, PTX 5 mg/kg = G2; PTX + Noni 10 mg/kg = G3, PTX + Noni 20 mg/kg = G4). PTX was injected intraperitoneally for 4 consecutive weeks, at a dose of 5 mg/kg to all groups except the control group. Then noni was administrated in 10 (G3) and 20 (G4) mg/kg groups orally (gavage) for 14 days. Biochemical analyses, Real-Time Polymerase Chain Reaction (PCR), and immunohistochemical analyses were performed. According to our results, Total Oxidative Stress (TOS) and Malondialdehyde (MDA) were significantly increased in the PTX group (P < 0.01). Superoxide Dismutase (SOD) enzyme activity and Total Antioxidant Capacity (TAC) levels were decreased (P < 0.01). The changes in the rats treated with PTX + Noni 20 mg/kg were noteworthy. The increased levels of IL1-β (Interleukin 1 beta) and TNFα (tumor necrosis factor-alpha) with PTX were down-regulated after treatment with PTX + Noni 20 mg/kg (P < 0.01) (9 % and 5 % respectively). In addition, Noni restored the testicular histopathological structure by reducing caspase-3 expression and significantly (61 %) suppressed oxidative DNA damage and apoptosis (by regulating the Bax (bcl-2-like protein 4)/Bcl-2 (B-cell lymphoma gene-2) ratio). In conclusion, Noni reduced cellular apoptosis and drastically changed Caspase 8 and Bax/Bcl-2 levels. Furthermore, it considerably decreases oxidative damage and can be used in testicular degeneration.
Collapse
Affiliation(s)
- Sidika Genc
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Yesim Yeni
- Faculty of Medicine, Department of Medical Pharmacology, Malatya Turgut Ozal University, Malatya 44210, Turkey
| | - Mehmet Kuzucu
- Faculty of Arts and Sciences, Department of Biology, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet Hacimuftuoglu
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum 25240, Turkey
| | - Ismail Bolat
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum 25240, Turkey
| | - Serkan Yildirim
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum 25240, Turkey
| | - Himasadat Zaker
- Histology and Microscopic Analysis division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Islamic Republic of Iran
| | | | - Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, Ioannina, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Medical School, Heraklion, Crete, Greece
| | - Ali Taghizadehghalehjoughi
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey.
| |
Collapse
|
22
|
Zhou J, Wan S, Wu Y, Hu H, Liu Y, Liao Z, Xu M, Wu J, Fan Q. Cancer cell membrane-camouflaged paclitaxel/PLGA nanoparticles for targeted therapy against lung cancer. Biomed Pharmacother 2024; 177:117102. [PMID: 38991303 DOI: 10.1016/j.biopha.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Paclitaxel (PTX) is a first-line drug for the treatment of lung cancer, but its targeting and therapeutic effect are unsatisfactory. Herein, lung cancer cell (A549) membrane biomimetic PTX-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (AM@PTX-NPs) were constructed to eliminate the shortcomings of PTX. The AM@PTX-NPs were successfully prepared with a high drug loading efficiency (10.90±0.06 %). Moreover, transmission electron microscopy, SDS-PAGE, and western blotting proved that AM@PTX-NPs were spherical nanoparticles camouflaged by the A549 cell membrane. Both in vitro and in vivo assays revealed that the AM@PTX-NPs displayed outstanding targeting capacity due to A549 membrane modification. The cytotoxicity experiment showed that the developed biomimetic formulation was able to effectively reduce the proliferation of A549 cells. Moreover, AM@PTX-NPs exhibited a significant tumor growth inhibition rate (73.00 %) with good safety in the tumor-bearing mice, which was higher than that of the PTX-NPs without A549 membrane coating (37.39 %). Overall, the constructed bioinspired vector could provide a novel platform for the PTX delivery and demonstrated a promising strategy for the targeted cancer treatment.
Collapse
Affiliation(s)
- Jiahan Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuesong Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haiyang Hu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Liu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zuyue Liao
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mengyao Xu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianming Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
23
|
Almeida TC, Giannotti KC, Ribeiro Silva LM, Marques-Porto R, DeOcesano-Pereira C, Camargo L, Chudzinski-Tavassi AM, Reid P, Picolo G. Crotoxin induces cytotoxic effects in human malignant melanoma cells in both native and detoxified forms. Front Pharmacol 2024; 15:1425446. [PMID: 39114354 PMCID: PMC11303296 DOI: 10.3389/fphar.2024.1425446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Melanoma, a highly aggressive skin cancer originating in melanocytes, poses a significant threat due to its metastatic potential. While progress has been made in treating melanoma with targeted therapies and immunotherapies, challenges persist. Crotoxin (CTX), the principal toxin in Crotalus durissus terrificus snake venom, exhibits various biological activities, including anti-tumoral effects across multiple cancers. However, its clinical use is limited by toxicity. Thus, exploring alternatives to mitigate adverse effects is crucial. Methods and Results: This study investigates the antitumoral potential of CTX in its native and in a detoxified form, in melanoma cells. Firstly, we demonstrated that detoxified CTX presented reduced phospholipase activity. Both forms proved to be more cytotoxic to SK-MEL-28 and MeWo melanoma cells than non-tumoral cells. In SK-MEL-28 cells, where cytotoxic effects were more pronounced, native and detoxified CTX induced increased necrosis and apoptosis rates. We also confirmed the apoptosis death demonstrated by the activation of caspase-3 and 7, and the formation of apoptotic bodies. Furthermore, both CTX caused cell cycle arrest at the G2/M phase, interfering with melanoma cell proliferation. Cell migration and invasion were also suppressed by both CTX. These results confirm the antitumoral potential of CTX. Discussion: The maintenance of the antiproliferative effects in the detoxified version, with reduced enzymatic activity often liked to harm effects, supports further studies to identify active parts of the molecule responsible for the interesting effects without causing substantial toxic events, contributing to the future use of CTX-derived drugs with safety and efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Lauren Camargo
- Centre of Excellence in New Target Discovering (CENTD), Butantan Institute, Sao Paulo, Brazil
| | | | - Paul Reid
- Celtic Biotech Ltd., Dublin, Ireland
| | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| |
Collapse
|
24
|
Filipiuc LE, Creangă-Murariu I, Tamba BI, Ababei DC, Rusu RN, Stanciu GD, Ștefanescu R, Ciorpac M, Szilagyi A, Gogu R, Filipiuc SI, Tudorancea IM, Solcan C, Alexa-Stratulat T, Cumpăt MC, Cojocaru DC, Bild V. JWH-182: a safe and effective synthetic cannabinoid for chemotherapy-induced neuropathic pain in preclinical models. Sci Rep 2024; 14:16242. [PMID: 39004628 PMCID: PMC11247095 DOI: 10.1038/s41598-024-67154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP), a condition with unmet treatment needs, affects over half of cancer patients treated with chemotherapeutics. Researchers have recently focused on the endocannabinoid system because of its critical role in regulating our bodies' most important functions, including pain. We used in vitro and in vivo methods to determine the toxicity profile of a synthetic cannabinoid, JWH-182, and whether it could be potentially effective for CINP alleviation. In vitro, we evaluated JWH-182 general toxicity, measuring fibroblast viability treated with various concentrations of compound, and its neuroprotection on dorsal root ganglion neurons treated with paclitaxel. In vivo, we performed an evaluation of acute and 28-day repeated dose toxicity in mice, with monitoring of health status and a complete histopathological examination. Finally, we evaluated the efficacy of JWH-182 on a CINP model in mice using specific pain assessment tests. JWH-182 has an acceptable toxicity profile, in both, in vitro and in vivo studies and it was able to significantly reduce pain perception in a CINP model in mice. However, the translation of these results to the clinic needs further investigation.
Collapse
Affiliation(s)
- Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Ioana Creangă-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania.
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania.
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Gabriela-Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Raluca Ștefanescu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Ivona-Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, "Ion Ionescu de La Brad" University of Life Sciences, 700490, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Marinela-Carmen Cumpăt
- Department of Medical Specialties I and III, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661, Iasi, Romania
| | - Doina-Clementina Cojocaru
- Department of Medical Specialties I and III, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661, Iasi, Romania
| | - Veronica Bild
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Iasi, Romania
| |
Collapse
|
25
|
Zou F, Zhang G, Mei G, Zhang H, Xie M, Dan M. CTEN-induced TGF-β1 expression facilitates EMT and enhances paclitaxel resistance in bladder cancer cells. Am J Transl Res 2024; 16:3248-3258. [PMID: 39114729 PMCID: PMC11301497 DOI: 10.62347/qwak3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/14/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES To investigate the role of C-terminal tensin-like (CTEN) in mediating chemotherapy resistance via epithelial-mesenchymal transition (EMT) in bladder cancer (BC) cells, through the regulation of transforming growth factor-β1 (TGF-β1) expression. METHODS Lentiviral vectors were used to create CTEN overexpression and knockdown constructs, which were then introduced into paclitaxel-resistant BC cell lines. The effects of CTEN manipulation on cell proliferation and drug sensitivity was assessed using the CCK-8 assay, and apoptosis was evaluated by flow cytometry. The expression levels of CTEN, TGF-β1, and EMT markers were quantified by RT-qPCR and Western blot analysis. The interaction between CTEN and TGF-β1 and its effect on TGF-β1 methylation were studied using bisulfite sequencing PCR and co-immunoprecipitation. RESULTS Overexpression of CTEN in BC cells was associated with decreased paclitaxel efficacy, reduced apoptosis, and elevated levels of TGF-β1 and EMT-related proteins. CTEN was found to bind TGF-β1, inhibiting its methylation and thereby promoting TGF-β1 upregulation. This increase in TGF-β1 expression facilitated the EMT process and enhanced drug resistance in BC cells. CONCLUSIONS The induction of TGF-β1 expression by CTEN promotes EMT and increases chemotherapy resistance in BC cells. Targeting CTEN or the EMT pathway could improve chemosensitivity in treatment-resistant BC, suggesting a novel therapeutic strategy to enhance chemotherapy effectiveness.
Collapse
Affiliation(s)
- Feng Zou
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical UniversityFoshan 528000, Guangdong, China
| | - Guofei Zhang
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical UniversityFoshan 528000, Guangdong, China
| | - Gang Mei
- Department of Orthopedics, The Seventh Affiliated Hospital, Southern Medical UniversityFoshan 528000, Guangdong, China
| | - Huantao Zhang
- Department of Urology Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen UniversityHuizhou 516200, Guangdong, China
| | - Mengliang Xie
- Department of Urology Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen UniversityHuizhou 516200, Guangdong, China
| | - Mingjiang Dan
- Department of Urology Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen UniversityHuizhou 516200, Guangdong, China
| |
Collapse
|
26
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
27
|
Gao C, Song XD, Chen FH, Wei GL, Guo CY. The protective effect of natural medicines in rheumatoid arthritis via inhibit angiogenesis. Front Pharmacol 2024; 15:1380098. [PMID: 38881875 PMCID: PMC11176484 DOI: 10.3389/fphar.2024.1380098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.
Collapse
Affiliation(s)
- Chang Gao
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Xiao-Di Song
- Gannan Medical University, Jiangxi, Ganzhou, China
| | - Fang-Hui Chen
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Gui-Lin Wei
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Chun-Yu Guo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| |
Collapse
|
28
|
Gao X, Zhang N, Xie W. Research on the Medicinal Chemistry and Pharmacology of Taxus × media. Int J Mol Sci 2024; 25:5756. [PMID: 38891943 PMCID: PMC11171555 DOI: 10.3390/ijms25115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Taxus × media, belonging to the genus Taxus of the Taxaceae family, is a unique hybrid plant derived from a natural crossbreeding between Taxus cuspidata and Taxus baccata. This distinctive hybrid variety inherits the superior traits of its parental species, exhibiting significant biological and medicinal values. This paper comprehensively analyzes Taxus × media from multiple dimensions, including its cultivation overview, chemical composition, and multifaceted applications in the medical field. In terms of chemical constituents, this study delves into the bioactive components abundant in Taxus × media and their pharmacological activities, highlighting the importance and value of these components, including paclitaxel, as the lead compounds in traditional medicine and modern drug development. Regarding its medicinal value, the article primarily discusses the potential applications of Taxus × media in combating tumors, antibacterial, anti-inflammatory, and antioxidant activities, and treating diabetes. By synthesizing clinical research and experimental data, the paper elucidates the potential and mechanisms of its primary active components in preventing and treating these diseases. In conclusion, Taxus × media demonstrates its unique value in biological research and tremendous potential in drug development.
Collapse
Affiliation(s)
- Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.G.); (N.Z.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ni Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.G.); (N.Z.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.G.); (N.Z.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
29
|
Ahmed KR, Rahman MM, Islam MN, Fahim MMH, Rahman MA, Kim B. Antioxidants activities of phytochemicals perspective modulation of autophagy and apoptosis to treating cancer. Biomed Pharmacother 2024; 174:116497. [PMID: 38552443 DOI: 10.1016/j.biopha.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
The study of chemicals extracted from natural sources should be encouraged due to the significant number of cancer deaths each year and the financial burden imposed by this disease on society. The causes of almost all cancers involve a combination of lifestyle, environmental factors, and genetic and inherited factors. Modern medicine researchers are increasingly interested in traditional phytochemicals as they hold potential for new bioactive compounds with medical applications. Recent publications have provided evidence of the antitumor properties of phytochemicals, a key component of traditional Chinese medicine, thereby opening new avenues for their use in modern medicine. Various studies have demonstrated a strong correlation between apoptosis and autophagy, two critical mechanisms involved in cancer formation and regulation, indicating diverse forms of crosstalk between them. Phytochemicals have the ability to activate both pro-apoptotic and pro-autophagic pathways. Therefore, understanding how phytochemicals influence the relationship between apoptosis and autophagy is crucial for developing a new cancer treatment strategy that targets these molecular mechanisms. This review aims to explore natural phytochemicals that have demonstrated anticancer effects, focusing on their role in regulating the crosstalk between apoptosis and autophagy, which contributes to uncontrolled tumor cell growth. Additionally, the review highlights the limitations and challenges of current research methodologies while suggesting potential avenues for future research in this field.
Collapse
Affiliation(s)
- Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Md Masudur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Nahidul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea
| | - Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
30
|
Xu D, Wang Z, Zhuang W, Zhang F, Xie Y, Wang T. Genome-Wide Identification and Expression Pattern Analysis of BAHD Acyltransferase Family in Taxus mairei. Int J Mol Sci 2024; 25:3777. [PMID: 38612586 PMCID: PMC11011543 DOI: 10.3390/ijms25073777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BAHD acyltransferases are involved in catalyzing and regulating the secondary metabolism in plants. Despite this, the members of BAHD family and their functions have not been reported in the Taxus species. In this study, a total of 123 TwBAHD acyltransferases from Taxus wallichiana var. mairei genome were identified and divided into six clades based on phylogenetic analysis, of which Clade VI contained a Taxus-specific branch of 52 members potentially involved in taxol biosynthesis. Most TwBAHDs from the same clade shared similar conserved motifs and gene structures. Besides the typical conserved motifs within the BAHD family, the YPLAGR motif was also conserved in multiple clades of T. mairei. Moreover, only one pair of tandem duplicate genes was found on chromosome 1, with a Ka/Ks ratio < 1, indicating that the function of duplicate genes did not differentiate significantly. RNA-seq analysis revealed different expression patterns of TwBAHDs in MeJA induction and tissue-specific expression experiments. Several TwBAHD genes in the Taxus-specific branch were highly expressed in different tissues of T. mairei, suggesting an important role in the taxol pathway. This study provides comprehensive information for the TwBAHD gene family and sets up a basis for its potential functions.
Collapse
Affiliation(s)
- Donghuan Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.X.); (Z.W.); (W.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.X.); (Z.W.); (W.Z.)
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.X.); (Z.W.); (W.Z.)
| | - Fan Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.X.); (Z.W.); (W.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.X.); (Z.W.); (W.Z.)
| |
Collapse
|
31
|
Lakra DS, Bharathiraja P, Dhanalakshmi T, Prasad NR. Andrographolide reverts multidrug resistance in KBCh R 8-5 cells through AKT signaling pathway. Cell Biochem Funct 2024; 42:e3948. [PMID: 38379216 DOI: 10.1002/cbf.3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy. P-glycoprotein (P-gp) one of the ATP-binding cassette (ABC) transporters plays an important role in MDR. In this study, we examined the sensitizing property of andrographolide (Andro) to reverse MDR in the drug-resistant KBChR 8-5 cells. Andro exhibited increased cytotoxicity in a concentration-dependent manner in the P-gp overexpressing KBChR 8-5 cells. Furthermore, Andro showed synergistic interactions with PTX and DOX in this drug-resistant cells. Andro co-administration enhanced PTX- and DOX-induced cytotoxicity and reduced cell proliferation in the MDR cancer cells. Moreover, reactive oxygen species (ROS) were elevated with a decrease in the mitochondrial membrane potential (MMP) during Andro and chemotherapeutic drugs combination treatment in the drug-resistant cells. Furthermore, Andro and PTX-induced cell cycle arrest was observed in the drug-resistant cell. We also noticed that the expression of ABCB1 and AKT were downregulated during Andro (4 µM) treatment. Furthermore, Andro treatment enhanced the expression of caspase 3 and caspase 9 in the combinational groups that support the enhanced apoptotic cell death in drug-resistant cancer cells. Therefore, the results reveal that Andro plays a role in the reversal of P-gp-mediated MDR in KBChR 8-5 cells which might be due to regulating ABCB1/AKT signaling pathway.
Collapse
Affiliation(s)
- Deepa S Lakra
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pradhapsingh Bharathiraja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - T Dhanalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
32
|
Sychra T, Spalenkova A, Balatka S, Vaclavikova R, Seborova K, Ehrlichova M, Truksa J, Sandoval-Acuña C, Nemcova V, Szabo A, Koci K, Tesarova T, Chen L, Ojima I, Oliverius M, Soucek P. Third-generation taxanes SB-T-121605 and SB-T-121606 are effective in pancreatic ductal adenocarcinoma. iScience 2024; 27:109044. [PMID: 38357661 PMCID: PMC10865389 DOI: 10.1016/j.isci.2024.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Pancreatic cancer is a severe malignancy with increasing incidence and high mortality due to late diagnosis and low sensitivity to treatments. Search for the most appropriate drugs and therapeutic regimens is the most promising way to improve the treatment outcomes of the patients. This study aimed to compare (1) in vitro efficacy and (2) in vivo antitumor effects of conventional paclitaxel and the newly synthesized second (SB-T-1216) and third (SB-T-121605 and SB-T-121606) generation taxanes in KRAS wild type BxPC-3 and more aggressive KRAS G12V mutated Paca-44 pancreatic cancer cell line models. In vitro, paclitaxel efficacy was 27.6 ± 1.7 nM, while SB-Ts showed 1.7-7.4 times higher efficacy. Incorporation of SB-T-121605 and SB-T-121606 into in vivo therapeutic regimens containing paclitaxel was effective in suppressing tumor growth in Paca-44 tumor-bearing mice at small doses (≤3 mg/kg). SB-T-121605 and SB-T-121606 in combination with paclitaxel are promising candidates for the next phase of preclinical testing.
Collapse
Affiliation(s)
- Tomas Sychra
- Department of Surgery, University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Alzbeta Spalenkova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Stepan Balatka
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Karolina Seborova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Marie Ehrlichova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, 252 50 Vestec, Czech Republic
| | - Cristian Sandoval-Acuña
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, 252 50 Vestec, Czech Republic
| | - Vlasta Nemcova
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Arpad Szabo
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Department of Pathology University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
| | - Kamila Koci
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Tereza Tesarova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Lei Chen
- Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Iwao Ojima
- Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Pavel Soucek
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| |
Collapse
|
33
|
Al-Kofahi T, Altrad B, Amawi H, Aljabali AA, Abul-Haija YM, Obeid MA. Paclitaxel-loaded niosomes in combination with metformin: development, characterization and anticancer potentials. Ther Deliv 2024; 15:109-118. [PMID: 38214106 DOI: 10.4155/tde-2023-0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Aim: This study aims to assess the efficacy of free and niosomes-loaded paclitaxel combined with the anti-diabetic drug metformin. Methods: Paclitaxel was successfully encapsulated in all niosome formulations, using microfluidic mixing, with a maximum encapsulation efficiency of 11.9%. Results: The half maximal inhibitory concentration (IC50) for free paclitaxel in T47D cells was significantly reduced from 0.2 to 0.048 mg/ml when combined with metformin 40 mg. The IC50 of paclitaxel was significantly reduced when loaded in niosomes to less than 0.06 mg/ml alone or with metformin. Conclusion: Paclitaxel combination (free or loaded into niosomes) with metformin significantly improved the anticancer efficacy of paclitaxel, which can serve as a method to reduce the paclitaxel dose and its associated side effects.
Collapse
Affiliation(s)
- Taqwa Al-Kofahi
- Department of Biological Science, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Bahaa Altrad
- Department of Biological Science, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Haneen Amawi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousef M Abul-Haija
- School of Molecular Biosciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, UK
| |
Collapse
|
34
|
Montero P, Sanz C, Pérez-Fidalgo JA, Pérez-Leal M, Milara J, Cortijo J. Paclitaxel alters melanogenesis and causes pigmentation in the skin of gynecological cancer patients. Fundam Clin Pharmacol 2024; 38:183-191. [PMID: 37483143 DOI: 10.1111/fcp.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Paclitaxel (PTX) is a microtubule-stabilizing antineoplastic that has been shown to damage healthy tissues like the skin. Hyperpigmentation can be found among the adverse effects caused by PTX, but the literature is limited and the mechanisms driving PTX-induced pigmentary alterations are unknown. OBJECTIVES This study aimed to describe the pigmentary alterations caused by PTX and to determine the effects of PTX on melanocytes. METHODS Pigmentary skin alterations were measured in 20 gynecological cancer patients under PTX treatment by using specific probes, which determine the melanin index and the pigmentation level. Melanocytes were incubated with paclitaxel to analyze melanogenesis markers gene expression, melanin content, and transcription factors activation. RESULTS Paclitaxel induced alterations in the skin pigmentation with no visible clinical manifestations. Gynecological cancer patients under paclitaxel treatment had an increase in the melanin index and pigmentation levels. In vitro, PTX exposure to melanocytes increased the expression of melanogenesis markers, melanin content, and induced activation of ERK and MITF. CONCLUSIONS The results suggest that PTX alters pigmentation in patients with no clinically visible manifestations, and these alterations might be driven by its capacity to stimulate melanogenesis on melanocytes through the MITF activation pathway.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Celia Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Jose Alejandro Pérez-Fidalgo
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Cancer (CIBERONC), Health Institute Carlos III, Madrid, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Martín Pérez-Leal
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
35
|
Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38:939-969. [PMID: 38102850 DOI: 10.1002/ptr.8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
36
|
sofi S, Mehraj U, Jan N, Almilaibary A, Ahmad I, Ahmad F, Ahmad Mir M. Clinicopathological Significance and Expression Pattern of Bcl2 in Breast Cancer: A Comprehensive in silico and in vitro Study. Saudi J Biol Sci 2024; 31:103916. [PMID: 38223131 PMCID: PMC10787292 DOI: 10.1016/j.sjbs.2023.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
B-cell lymphoma/leukemia gene-2 (Bcl-2) is the primary proto-oncogene that has been shown to work by preventing apoptosis/programmed cell death. Bcl-2 combines a variety of cell-generated signals associated to the survival and death of cells. In glioma, lung, and breast cancer, Bcl-2 over-expression has been linked to an increase in invasion and migration. Many treatment regimens that target Bcl2 have been established and approved, and thus increasing the survival rates of the patients. The primary goal of this research was to recognize new therapeutic compounds that target Bcl2 and assess Bcl2 expression pattern in BC patients. We used various bioinformatic tools as well as several in vitro assays to look out the expression and inhibition of Bcl2 in BC. Our study depicted that Bcl2 had a strong connection with tumour stroma, notably with suppressor cells originating from myeloid tissues. Moreover, in vitro and in silico research identified Paclitaxel as a promising natural substance that targets Bcl2. Overall, this work shows that Bcl2 overexpression accelerates the development of BC, and that targeting Bcl2 in combination with other drugs will dramatically improve BC patient's response to treatment and prevent the emergence of drug resistance.
Collapse
Affiliation(s)
- Shazia sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of pathology, Duke University, Durham, NC 27708, United States
| | - Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Abdullah Almilaibary
- Department of Family & Community Medicine, Faculty of Medicine, Al Baha University, Albaha 65511, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, CAMS, King Khalid University, Abha, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
37
|
Song B, Chen Q, Tong C, Li Y, Li S, Shen X, Niu W, Hao M, Ma Y, Wang Y. Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers. Curr Drug Deliv 2024; 21:1050-1061. [PMID: 37818569 DOI: 10.2174/0115672018255493230922101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 10/12/2023]
Abstract
Immunomodulatory mechanisms are indispensable and key factors in maintaining the balance of the environment in humans. When the immune function of the immune system is impaired, autoimmune diseases occur. Excessive body fatigue, natural aging of the human body, malnutrition, genetic factors and other reasons cause low immune function, due to which the body is prone to being infected by bacteria or cancer. Clinically, the existing therapeutic drugs still have problems such as high toxicity, long treatment cycle, drug resistance and high price, so we still need to explore and develop a high efficiency and low toxicity drug. Poly(lactic-co-glycolic acid) (PLGA) refers to a nontoxic polymer compound that exhibits excellent biocompatibility. Traditional Chinese medicine (TCM) monomers come from natural plants, and have the characteristics of high efficiency and low toxicity. Applying PLGA to TCM monomers can make up for the defects of traditional dosage forms, improve bioavailability, reduce the frequency and dosage of drug use, and reduce toxicity and side effects, thus having the characteristics of sustained release and targeting. Accordingly, PLGA nanoparticles loaded with TCM monomers have been the focus of development. The previous research on drug loading advantages, preparation methods, and immune regulation of TCM PLGA nanoparticles is summarized in the following sections.
Collapse
Affiliation(s)
- Bocui Song
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qian Chen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Chunyu Tong
- Department of Biological Science, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuqi Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Shuang Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Xue Shen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Wenqi Niu
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Meihan Hao
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Yunfei Ma
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Department of Biological Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
38
|
Amat-Santos IJ, Marengo G, Ybarra LF, Fernández-Diaz JA, Regueiro A, Gutiérrez A, Martín-Moreiras J, Sánchez-Luna JP, González-Gutiérrez JC, Fernandez-Cordon C, Carrasco-Moraleja M, Rinfret S. Drug‐Coated versus Conventional Balloons to Improve Recanalization of a Coronary Chronic Total Occlusion after Failed Attempt: The Improved‐CTO Registry. J Interv Cardiol 2024; 2024. [DOI: 10.1155/2024/2797561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/22/2024] [Indexed: 01/07/2025] Open
Abstract
Background. Chronic total occlusion (CTO) plaque modification (CTO‐PM) is often used for unsuccessful CTO interventions. Methods. A multicenter, prospective study included consecutive patients with failed CTO recanalization. At the end of the failed procedure, patients received either a conventional (CB) or drug‐coated balloon (DCB) for CTO‐PM at the operator’s discretion and underwent a new attempt of CTO recanalization ∼3 months later. Results. A total of 55 patients were enrolled (DCB: 22; CB: 33), with a median age of 66 years. The median J‐score was 3, and CCS angina classes III–IV were present in 45% of the patients. After the first CTO‐PCI attempt, no in‐hospital cardiac deaths were registered. The overall rate of in‐hospital myocardial infarction was 3.6%, without significant differences between the DCB and CB groups (4.5% after DCB vs 3.0% after CB, p = 0.999). The success rate of the second CTO‐PCI attempt was 86.8%, with a periprocedural complication rate of 5.7% and with an overall rate of in‐hospital complications of 24.5%, without significant differences between the 2 groups (13.6% in the DCB group vs 32.2% in the CB group, p = 0.195). Compared with CB, in the DCB group, the second CTO‐PCI required a shorter median fluoroscopy time (33 vs 60 min, p < 0.001), a lower contrast volume (170 vs 321 cc, p < 0.001), and a lower radiation dose (1.7 vs 3.3 Gy, p < 0.001). At 1‐year follow‐up, outcomes were comparable between the 2 strategies, target vessel failure occurred in 5.7% and major adverse cardiovascular events in 18.2% (13.6% in the DCB group vs 21.2% in the CB group, p = 0.494). Conclusions. PM after CTO recanalization failure is safe and warrants high success rates when a second attempt is performed. A DCB strategy for CTO‐PM does not seem to ensure higher success or better clinical outcomes, but its use was associated with simpler staged procedures. This trial is registered with NCT05158686.
Collapse
|
39
|
Meng Z, Chen J, Xu L, Xiao X, Zong L, Han Y, Jiang B. Study on Cytochrome P450 Metabolic Profile of Paclitaxel on Rats using QTOF-MS. Curr Drug Metab 2024; 25:330-339. [PMID: 39039675 DOI: 10.2174/0113892002308509240711100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Paclitaxel (PTX) is a key drug used for chemotherapy for various cancers. The hydroxylation metabolites of paclitaxel are different between humans and rats. Currently, there is little information available on the metabolic profiles of CYP450 enzymes in rats. OBJECTIVE This study evaluated the dynamic metabolic profiles of PTX and its metabolites in rats and in vitro. METHODS Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and LC-MS/MS were applied to qualitative and quantitative analysis of PTX and its metabolites in rats, liver microsomes and recombinant enzyme CYP3A1/3A2. Ten specific inhibitors [NF (CYP1A1), FFL (CYP1A2), MOP (CYP2A6), OND (CYP2B6), QCT (CYP2C8), SFP (CYP2C9), NKT (CYP2C19), QND (CYP2D6), MPZ (CYP2E1) and KTZ (CYP3A4)] were used to identify the metabolic pathway in vitro. RESULTS Four main hydroxylated metabolites of PTX were identified. Among them, 3'-p-OH PTX and 2-OH PTX were monohydroxylated metabolites identified in rats and liver microsome samples, and 6α-2-di-OH PTX and 6α-5"-di-OH PTX were dihydroxylated metabolites identified in rats. CYP3A recombinant enzyme studies showed that the CYP3A1/3A2 in rat liver microsomes was mainly responsible for metabolizing PTX into 3'-p- OH-PTX and 2-OH-PTX. However, 6α-OH PTX was not detected in rat plasma and liver microsome samples. CONCLUSION The results indicated that the CYP3A1/3A2 enzyme, metabolizing PTX into 3'-p-OH-PTX and 2- OH-PTX, is responsible for the metabolic of PTX in rats. The CYP2C8 metabolite 6α-OH PTX in humans was not detected in rat plasma in this study, which might account for the interspecies metabolic differences between rats and humans. This study will provide evidence for drug-drug interaction research in rats.
Collapse
Affiliation(s)
- Zhaoyang Meng
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, P. R. China
| | - Junjun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Lingyan Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Xiao Xiao
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Ling Zong
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Bo Jiang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| |
Collapse
|
40
|
Albanna H, Gjoni A, Robinette D, Rodriguez G, Djambov L, Olson ME, Hart PC. Activation of Adrenoceptor Alpha-2 (ADRA2A) Promotes Chemosensitization to Carboplatin in Ovarian Cancer Cell Lines. Curr Issues Mol Biol 2023; 45:9566-9578. [PMID: 38132444 PMCID: PMC10741744 DOI: 10.3390/cimb45120598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Recurrence of ovarian cancer (OvCa) following surgery and standard carboplatin/paclitaxel first-line therapy signifies poor median progression-free survival (<24 months) in the majority of patients with OvCa. The current study utilized unbiased high-throughput screening (HTS) to evaluate an FDA-approved compound library for drugs that could be repurposed to improve OvCa sensitivity to carboplatin. The initial screen revealed six compounds with agonistic activity for the adrenoceptor alpha-2a (ADRA2A). These findings were validated in multiple OvCa cell lines (TYKnu, CAOV3, OVCAR8) using three ADRA2A agonists (xylazine, dexmedetomidine, and clonidine) and two independent viability assays. In all the experiments, these compounds enhanced the cytotoxicity of carboplatin treatment. Genetic overexpression of ADRA2A was also sufficient to reduce cell viability and increase carboplatin sensitivity. Taken together, these data indicate that ADRA2A activation may promote chemosensitivity in OvCa, which could be targeted by widely used medications currently indicated for other disease states.
Collapse
Affiliation(s)
| | | | | | | | | | - Margaret E. Olson
- College of Science, Health and Pharmacy, Roosevelt University, 1400 N Roosevelt Blvd, Schaumburg, IL 60173, USA; (H.A.); (A.G.); (D.R.); (G.R.); (L.D.)
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, 1400 N Roosevelt Blvd, Schaumburg, IL 60173, USA; (H.A.); (A.G.); (D.R.); (G.R.); (L.D.)
| |
Collapse
|
41
|
Zlotnikov ID, Krylov SS, Semenova MN, Semenov VV, Kudryashova EV. Triphenylphosphine Derivatives of Allylbenzenes Express Antitumor and Adjuvant Activity When Solubilized with Cyclodextrin-Based Formulations. Pharmaceuticals (Basel) 2023; 16:1651. [PMID: 38139778 PMCID: PMC10747112 DOI: 10.3390/ph16121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine (PPh3) derivatives of allylbenzenes are two to three orders of magnitude more potent than original allylbenzenes in terms of IC50. The inhibition of efflux pumps has been reported for allylbenzenes, and the PPh3 moiety is deemed to be responsible for preferential mitochondrial accumulation and the depolarization of mitochondrial membranes. However, due to poor solubility, the practical use of these substances has never been an option. Here, we show that this problem can be solved by using a complex formation with cyclodextrin (CD-based molecular containers) and polyanionic heparin, stabilizing the positive charge of the PPh3 cation. Such containers can solubilize both allylbenzenes and their PPh3 derivatives up to 0.4 mM concentration. Furthermore, we have observed that solubilized PPh3 derivatives indeed work as adjuvants, increasing the antitumor activity of paclitaxel against adenocarcinomic human alveolar basal epithelial cells (A549) by an order of magnitude (in terms of IC50) in addition to being quite powerful cytostatics themselves (IC50 in the range 1-10 µM). Even more importantly, CD-solubilized PPh3 derivatives show pronounced selectivity, being highly toxic for the A549 tumor cell line and minimally toxic for HEK293T non-tumor cells, red blood cells and sea urchin embryos. Indeed, in many cancers, the mitochondrial membrane is more prone to depolarization compared to normal cells, which probably explains the observed selectivity of our compounds, since PPh3 derivatives are known to act as mitochondria-targeting agents. According to the MTT test, 100 µM solution of PPh3 derivatives of allylbenzenes causes the death of up to 85% of A549 cancer cells, while for HEK293T non-cancer cells, only 15-20% of the cells died. The hemolytic index of the studied substances did not exceed 1%, and the thrombogenicity index was < 1.5%. Thus, this study outlines the experimental foundation for developing combined cytostatic medications, where effectiveness and selectivity are achieved through decreased concentration of the primary ingredient and the inclusion of adjuvants, which are safe or practically harmless substances.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Sergey S. Krylov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Marina N. Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
42
|
Li L, Li F, Zhao Z, Xie R, Xu D, Ding M, Zhang J, Shen D, Fei J. An exploratory research on antitumor effect of drug-eluting slow-releasing electrospinning membranes. Heliyon 2023; 9:e20295. [PMID: 37822614 PMCID: PMC10562749 DOI: 10.1016/j.heliyon.2023.e20295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Objective To evaluate the long-term inhibition of malignant biliary tumor growth using paclitaxel (PTX)-covered polycaprolactone (PCL) electrospun membranes. Methods A mixture of PCL, a material used to fabricate polymer stents, and PTX, a widely used chemotherapeutic agent, was synthesized by electrospinning. After preparing the drug-eluting membrane, drug release and fiber degradation were assessed in vitro under different pH conditions. The QBC939 cholangiocarcinoma cell line was cultured to establish a xenograft nude mouse model. Finally, the drug-eluting membrane was implanted into the mouse model, and the relative tumor inhibition rate was evaluated. Results A new PTX-loaded PCL electrospun fiber membrane was developed. The drug release rate was about 20-40% in the 32-day release cycle, and the release quantity was between 20 and 170 mg. As pH decreased, the release rate increased significantly. The degradation rate of the fiber membranes in vitro was approximately 20-48%, and was positively correlated with the drug loading rate. In animal experiments, the growth of tumors in mice was suppressed using drug-eluting membranes. Conclusion The PTX-loaded PCL electrospun fiber membrane enhanced the long-term drug release and exhibited excellent antitumor effects in vivo.
Collapse
Affiliation(s)
- Li Li
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Feng Li
- Department of Emergency, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhifeng Zhao
- Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Rongli Xie
- Department of General Surgery, Ruijin Hospital Luwan Branch, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Dan Xu
- Department of General Surgery, Ruijin Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Min Ding
- Department of General Surgery, Ruijin Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Dongjie Shen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Ahmed K, Jha S. Oncoviruses: How do they hijack their host and current treatment regimes. Biochim Biophys Acta Rev Cancer 2023; 1878:188960. [PMID: 37507056 DOI: 10.1016/j.bbcan.2023.188960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Viruses have the ability to modulate the cellular machinery of their host to ensure their survival. While humans encounter numerous viruses daily, only a select few can lead to disease progression. Some of these viruses can amplify cancer-related traits, particularly when coupled with factors like immunosuppression and co-carcinogens. The global burden of cancer development resulting from viral infections is approximately 12%, and it arises as an unfortunate consequence of persistent infections that cause chronic inflammation, genomic instability from viral genome integration, and dysregulation of tumor suppressor genes and host oncogenes involved in normal cell growth. This review provides an in-depth discussion of oncoviruses and their strategies for hijacking the host's cellular machinery to induce cancer. It delves into how viral oncogenes drive tumorigenesis by targeting key cell signaling pathways. Additionally, the review discusses current therapeutic approaches that have been approved or are undergoing clinical trials to combat malignancies induced by oncoviruses. Understanding the intricate interactions between viruses and host cells can lead to the development of more effective treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Kainat Ahmed
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sudhakar Jha
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
44
|
Bhat BA, Saifi I, Khamjan NA, Hamdani SS, Algaissi A, Rashid S, Alshehri MM, Ganie SA, Lohani M, Abdelwahab SI, Dar SA. Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opin Ther Targets 2023; 27:841-860. [PMID: 37712621 DOI: 10.1080/14728222.2023.2259096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite cancer treatment strides, mortality due to ovarian cancer remains high globally. While immunotherapy has proven effective in treating cancers with low cure rates, it has limitations. Growing evidence suggests that both tumoral and non-tumoral components of the tumor immune microenvironment (TIME) play a significant role in cancer growth. Therefore, developing novel and focused therapy for ovarian cancer is critical. Studies indicate that TIME is involved in developing ovarian cancer, particularly genome-, transcriptome-, and proteome-wide studies. As a result, TIME may present a prospective therapeutic target for ovarian cancer patients. AREAS COVERED We examined several TIME-targeting medicines and the connection between TIME and ovarian cancer. The key protagonists and events in the TIME and therapeutic strategies that explicitly target these events in ovarian cancer are discussed. EXPERT OPINION We highlighted various targeted therapies against TIME in ovarian cancer, including anti-angiogenesis therapies and immune checkpoint inhibitors. While these therapies are in their infancy, they have shown promise in controlling ovarian cancer progression. The use of 'omics' technology is helping in better understanding of TIME in ovarian cancer and potentially identifying new therapeutic targets. TIME-targeted strategies could account for an additional treatment strategy when treating ovarian cancer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Ifra Saifi
- Department of Botany, Chaudhary Charan Singh University, Meerut India
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Syed Suhail Hamdani
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Safeena Rashid
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
45
|
Cheng M, Xin Q, Ma S, Ge M, Wang F, Yan X, Jiang B. Advances in the Theranostics of Oesophageal Squamous Carcinoma. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202200251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 01/04/2025]
Abstract
AbstractOesophageal squamous carcinoma (ESCC) is one of the most lethal human malignancies, and it is a more aggressive form of oesophageal cancer (EC) that comprises over 90% of all EC cases in China compared with oesophageal adenocarcinoma (EAC). The high mortality of ESCC is attributed to the late‐stage diagnosis, chemoradiotherapy resistance, and lack of appropriate therapeutic targets and corresponding therapeutic formulations. Recently, emerging clinical and translational investigations have involved genome analyses, diagnostic biomarkers, and targeted therapy for ESCC, and these studies provide a new horizon for improving the clinical outcomes of patients with ESCC. Here, the latest research advances in the theranostics of ESCC are reviewed and the unique features of ESCC (including differences from EAC, genomic alterations, and microbe infections), tissue and circulating biomarkers, chemoradiotherapy resistance, clinical targeted therapy for ESCC, identification of novel therapeutic targets, and designation of nanotherapeutic systems for ESCC are particularly focused on. Finally, the perspectives for future clinical and translational theranostic research of ESCC are discussed and the obstacles that must be overcome in ESCC theranostics are described.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Qi Xin
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Saiyu Ma
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Mengyue Ge
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Feng Wang
- Oncology Department The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 China
| | - Xiyun Yan
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| | - Bing Jiang
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
| |
Collapse
|
46
|
Zhang Y, Dong P, Yang L. The role of nanotherapy in head and neck squamous cell carcinoma by targeting tumor microenvironment. Front Immunol 2023; 14:1189323. [PMID: 37292204 PMCID: PMC10244756 DOI: 10.3389/fimmu.2023.1189323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) refers to a group of highly malignant and pathogenically complex tumors. Traditional treatment methods include surgery, radiotherapy, and chemotherapy. However, with advancements in genetics, molecular medicine, and nanotherapy, more effective and safer treatments have been developed. Nanotherapy, in particular, has the potential to be an alternative therapeutic option for HNSCC patients, given its advantageous targeting capabilities, low toxicity and modifiability. Recent research has highlighted the important role of the tumor microenvironment (TME) in the development of HNSCC. The TME is composed of various cellular components, such as fibroblasts, vascular endothelial cells, and immune cells, as well as non-cellular agents such as cytokines, chemokines, growth factors, extracellular matrix (ECM), and extracellular vesicles (EVs). These components greatly influence the prognosis and therapeutic efficacy of HNSCC, making the TME a potential target for treatment using nanotherapy. By regulating angiogenesis, immune response, tumor metastasis and other factors, nanotherapy can potentially alleviate HNSCC symptoms. This review aims to summarize and discuss the application of nanotherapy that targets HNSCC's TME. We highlight the therapeutic value of nanotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Pengbo Dong
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
47
|
Fang X, Lan H, Jin K, Qian J. Pancreatic cancer and exosomes: role in progression, diagnosis, monitoring, and treatment. Front Oncol 2023; 13:1149551. [PMID: 37287924 PMCID: PMC10242099 DOI: 10.3389/fonc.2023.1149551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most dangerous diseases that threaten human life, and investigating the details affecting its progression or regression is particularly important. Exosomes are one of the derivatives produced from different cells, including tumor cells and other cells such as Tregs, M2 macrophages, and MDSCs, and can help tumor growth. These exosomes perform their actions by affecting the cells in the tumor microenvironment, such as pancreatic stellate cells (PSCs) that produce extracellular matrix (ECM) components and immune cells that are responsible for killing tumor cells. It has also been shown that pancreatic cancer cell (PCC)-derived exosomes at different stages carry molecules. Checking the presence of these molecules in the blood and other body fluids can help us in the early stage diagnosis and monitoring of PC. However, immune system cell-derived exosomes (IEXs) and mesenchymal stem cell (MSC)-derived exosomes can contribute to PC treatment. Immune cells produce exosomes as part of the mechanisms involved in the immune surveillance and tumor cell-killing phenomenon. Exosomes can be modified in such a way that their antitumor properties are enhanced. One of these methods is drug loading in exosomes, which can significantly increase the effectiveness of chemotherapy drugs. In general, exosomes form a complex intercellular communication network that plays a role in developing, progressing, diagnosing, monitoring, and treating pancreatic cancer.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
48
|
Zlotnikov ID, Dobryakova NV, Ezhov AA, Kudryashova EV. Achievement of the Selectivity of Cytotoxic Agents against Cancer Cells by Creation of Combined Formulation with Terpenoid Adjuvants as Prospects to Overcome Multidrug Resistance. Int J Mol Sci 2023; 24:ijms24098023. [PMID: 37175727 PMCID: PMC10178335 DOI: 10.3390/ijms24098023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Oncological diseases are difficult to treat even with strong drugs due to development the multidrug resistance (MDR) of cancer cells. A strategy is proposed to increase the efficiency and selectivity of cytotoxic agents against cancer cells to engage the differences in the morphology and microenvironment of tumor and healthy cells, including the pH, membrane permeability, and ion channels. Using this approach, we managed to develop enhanced formulations of cytotoxic agents with adjuvants (which are known as efflux inhibitors and as ion channel inhibitors in tumors)-with increased permeability in A549 and a protective effect on healthy HEK293T cells. The composition of the formulation is as follows: cytotoxic agents (doxorubicin (Dox), paclitaxel (Pac), cisplatin) + adjuvants (allylbenzenes and terpenoids) in the form of inclusion complexes with β-cyclodextrin. Modified cyclodextrins make it possible to obtain soluble forms of pure substances of the allylbenzene and terpenoid series and increase the solubility of cytotoxic agents. A comprehensive approach based on three methods for studying the interaction of drugs with cells is proposed: MTT test-quantitative identification of surviving cells; FTIR spectroscopy-providing information on the molecular mechanisms inaccessible to study by any other methods (including binding to DNA, surface proteins, or lipid membrane); confocal microscopy for the visualization of observed effects of Dox accumulation in cancer or healthy cells depending on the drug formulation as a direct control of the correctness of interpretation of the results obtained by the two other methods. We found that eugenol (EG) and apiol increase the intracellular concentration of cytostatic in A549 cells by 2-4 times and maintain it for a long time. However, an important aspect is the selectivity of the enhancing effect of adjuvants on tumor cells in relation to healthy ones. Therefore, the authors focused on adjuvant's effect on the control healthy cells (HEK293T): EG and apiol demonstrate "protective" properties from cytostatic penetration by reducing intracellular concentrations by about 2-3 times. Thus, a combined formulation of cytostatic drugs has been found, showing promise in the aspects of improving the efficiency and selectivity of antitumor drugs; thereby, one of the perspective directions for overcoming MDR is suggested.
Collapse
Affiliation(s)
- Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Natalia V Dobryakova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Alexander A Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
49
|
Gao F, Zhao X, Si Q, Niu X, Hou S, Liu S, Guo J, Wang L, Zhang F. Gemini surfactant-like peptide-based nanocages with β-sheet-enhanced stability and encapsulation efficiency of hydrophobic anticancer drugs. RSC Adv 2023; 13:12863-12868. [PMID: 37114030 PMCID: PMC10126818 DOI: 10.1039/d3ra01950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Peptide-based scaffolds have been widely applied to drug delivery because of their ease and high yields of synthesis, well-defined structure, biocompatibility, diversity, tunability of properties, and molecular recognition abilities. However, the stability of peptide-based nanostructures highly depends on the intermolecular assembling manner, e.g., α-helix based coiled coils, β-sheet. Inspired by the robust protein fibril structures in amyloidosis, herein we constructed a β-sheet-forming gemini surfactant-like peptide to self-assemble into nanocages with the help of molecular dynamics simulation. As expected, the experimental results showed that nanocages can be formed with the inner diameter of up to ∼400 nm, which were robust enough even under both transmission electron microscopy and atomic force microscopy, indicating the significant contribution of β-sheet conformation. The β-nanocages can load hydrophobic anticancer drugs, e.g., paclitaxel with a very high encapsulation efficiency, which holds great potential for clinic drug delivery due to the improved anticancer effect as compared with paclitaxel alone.
Collapse
Affiliation(s)
- Feng Gao
- School of Life Science, Inner Mongolia Agricultural University Hohhot 010010 China
| | - Xinmin Zhao
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Qiankang Si
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xingkun Niu
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Shaojie Hou
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Shihao Liu
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Jun Guo
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Liping Wang
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Feng Zhang
- School of Life Science, Inner Mongolia Agricultural University Hohhot 010010 China
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| |
Collapse
|
50
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|