1
|
Wong NKY, Dong X, Lin YY, Xue H, Wu R, Lin D, Collins C, Wang Y. Framework of Intrinsic Immune Landscape of Dormant Prostate Cancer. Cells 2022; 11:cells11091550. [PMID: 35563856 PMCID: PMC9105276 DOI: 10.3390/cells11091550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the standard therapy for men with advanced prostate cancer (PCa). PCa often responds to ADT and enters a dormancy period, which can be recognized clinically as a minimal residual disease. However, the majority of these patients will eventually experience a relapse in the form of castration-resistant PCa with poor survival. Therefore, ADT-induced dormancy is a unique time window for treatment that can provide a cure. The study of this well-recognized phase of prostate cancer progression is largely hindered by the scarcity of appropriate clinical tissue and clinically relevant preclinical models. Here, we report the utility of unique and clinically relevant patient-derived xenograft models in the study of the intrinsic immune landscape of dormant PCa. Using data from RNA sequencing, we have reconstructed the immune evasion mechanisms that can be utilized by dormant PCa cells. Since dormant PCa cells need to evade the host immune surveillance for survival, our results provide a framework for further study and for devising immunomodulatory mechanisms that can eliminate dormant PCa cells.
Collapse
Affiliation(s)
- Nelson K. Y. Wong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Yen-Yi Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
- Correspondence: ; Tel.: +1-604-675-8013
| |
Collapse
|
2
|
Abstract
The existence of progenitors within pancreatic ducts has been studied for decades, but the hypothesis that they may help regenerate the adult endocrine compartment (chiefly insulin-producing β-cells) remains contentious. Here, we examine the single-cell transcriptome of the human ductal tree. Our data confirm the paradigm-shifting notion that specific lineages, long thought to be cast in stone, are in fact in a state of flux between differentiation stages. In addition to pro-ductal and pro-acinar transcriptomic gradients, our analysis suggests the existence of a third (ducto-endocrine) differentiation axis. Such prediction was experimentally validated by transplanting sorted progenitor-like cells, which revealed their tri-lineage differentiation potential. Our findings further indicate that progenitors might be activated in situ for therapeutic purposes. We have described multipotent progenitor-like cells within the major pancreatic ducts (MPDs) of the human pancreas. They express PDX1, its surrogate surface marker P2RY1, and the bone morphogenetic protein (BMP) receptor 1A (BMPR1A)/activin-like kinase 3 (ALK3), but not carbonic anhydrase II (CAII). Here we report the single-cell RNA sequencing (scRNA-seq) of ALK3bright+-sorted ductal cells, a fraction that harbors BMP-responsive progenitor-like cells. Our analysis unveiled the existence of multiple subpopulations along two major axes, one that encompasses a gradient of ductal cell differentiation stages, and another featuring cells with transitional phenotypes toward acinar tissue. A third potential ducto-endocrine axis is revealed upon integration of the ALK3bright+ dataset with a single-cell whole-pancreas transcriptome. When transplanted into immunodeficient mice, P2RY1+/ALK3bright+ populations (enriched in PDX1+/ALK3+/CAII− cells) differentiate into all pancreatic lineages, including functional β-cells. This process is accelerated when hosts are treated systemically with an ALK3 agonist. We found PDX1+/ALK3+/CAII− progenitor-like cells in the MPDs of types 1 and 2 diabetes donors, regardless of the duration of the disease. Our findings open the door to the pharmacological activation of progenitor cells in situ.
Collapse
|
3
|
Zamani M, Yaghoubi Y, Movassaghpour A, Shakouri K, Mehdizadeh A, Pishgahi A, Yousefi M. Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use? J Cell Physiol 2019; 234:17172-17186. [PMID: 30912141 DOI: 10.1002/jcp.28496] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Hemoderivative materials are used to treat different diseases. These derivatives include platelet-rich plasma, serum, platelet gel, and platelet lysate (PL). Among them, PL contains more growth factors than the others and its production is inexpensive and easy. PL is one of the proper sources of platelet release factors. It is used in cells growth and proliferation and is a good alternative to fetal bovine serum. In recent years, the clinical use of PL has gained more appeal by scientists. PL is a solution saturated by growth factors, proteins, cytokines, and chemokines and is administered to treat different diseases such as wound healing, bone regeneration, alopecia, oral mucositis, radicular pain, osteoarthritis, and ocular diseases. In addition, it can be used in cell culture for cell therapy and tissue transplantation purposes. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor, transforming growth factor β, and vascular endothelial growth factor are key PL growth factors playing a major role in cell proliferation, wound healing, and angiogenesis. In this paper, we scrutinized recent advances in using PL and PL-derived growth factors to treat diseases and in regenerative medicine, and the ability to replace PL with other hemoderivative materials.
Collapse
Affiliation(s)
- Majid Zamani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Shakouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Pishgahi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Browning LM, Pietrzak M, Kuczma M, Simms CP, Kurczewska A, Refugia JM, Lowery DJ, Rempala G, Gutkin D, Ignatowicz L, Muranski P, Kraj P. TGF-β-mediated enhancement of T H17 cell generation is inhibited by bone morphogenetic protein receptor 1α signaling. Sci Signal 2018; 11:eaar2125. [PMID: 30154100 PMCID: PMC8713300 DOI: 10.1126/scisignal.aar2125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The cytokines of the transforming growth factor-β (TGF-β) family promote the growth and differentiation of multiple tissues, but the role of only the founding member, TGF-β, in regulating the immune responses has been extensively studied. TGF-β is critical to prevent the spontaneous activation of self-reactive T cells and sustain immune homeostasis. In contrast, in the presence of proinflammatory cytokines, TGF-β promotes the differentiation of effector T helper 17 (TH17) cells. Abrogating TGF-β receptor signaling prevents the development of interleukin-17 (IL-17)-secreting cells and protects mice from TH17 cell-mediated autoimmunity. We found that the receptor of another member of TGF-β family, bone morphogenetic protein receptor 1α (BMPR1α), regulates T helper cell activation. We found that the differentiation of TH17 cells from naive CD4+ T cells was inhibited in the presence of BMPs. Abrogation of BMPR1α signaling during CD4+ T cell activation induced a developmental program that led to the generation of inflammatory effector cells expressing large amounts of IL-17, IFN-γ, and TNF family cytokines and transcription factors defining the TH17 cell lineage. We found that TGF-β and BMPs cooperated to establish effector cell functions and the cytokine profile of activated CD4+ T cells. Together, our data provide insight into the immunoregulatory function of BMPs.
Collapse
Affiliation(s)
- Lauren M Browning
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Colin P Simms
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Agnieszka Kurczewska
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Justin M Refugia
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Dustin J Lowery
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Grzegorz Rempala
- College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Dmitriy Gutkin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Pawel Muranski
- Columbia University Medical Center, New York, NY 10032, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
5
|
Ortega-Francisco S, de la Fuente-Granada M, Alvarez Salazar EK, Bolaños-Castro LA, Fonseca-Camarillo G, Olguin-Alor R, Alemán-Muench GR, López-Casillas F, Raman C, García-Zepeda EA, Soldevila G. TβRIII is induced by TCR signaling and downregulated in FoxP3+ regulatory T cells. Biochem Biophys Res Commun 2017; 494:82-87. [DOI: 10.1016/j.bbrc.2017.10.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022]
|