1
|
Sudhakaran S, Mandlik R, Kumawat S, Raturi G, Gupta SK, Shivaraj SM, Patil G, Deshmukh R, Sharma TR, Sonah H. Evolutionary analysis of tonoplast intrinsic proteins (TIPs) unraveling the role of TIP3s in plant seed development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109022. [PMID: 39137680 DOI: 10.1016/j.plaphy.2024.109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Tonoplast intrinsic proteins (TIPs) are crucial in facilitating the transportation of water and various small solutes across biological membranes. The evolutionary path and functional roles of TIPs is poorly understood in plants. In the present study, a total of 976 TIPs were identified in 104 diverse species and subsequently studied to trace their lineage-specific evolutionary path and tissue-specific function. Interestingly, TIPs were found to be absent in lower forms such as algae and fungi and they evolved later in primitive plants like bryophytes. Bryophytes possess a distant class of TIPs, denoted as TIP6, which is not found in higher plants. The aromatic/arginine (ar/R) selectivity filter found in TIP6 of certain liverworts share similarity with hybrid intrinsic protein (HIP), suggesting an evolutionary kinship. As plants evolved to more advanced forms, TIPs diversified into five different sub-groups (TIP1 to TIP5). Notably, TIP5 is a sub-group unique to angiosperms. The evolutionary history of the TIP subfamily reveals an interesting observation that the TIP3 subgroup has evolved within seed-bearing Spermatophyta. Further, TIPs exhibit tissue-specific expression that is conserved within various plant species. Specifically, the TIP3s were found to be exclusively expressed in seeds. Quantitative PCR analysis of TIP3s showed gradually increasing expression in soybean seed developmental stages. The expression of TIP3s in different plant species was also found to be gradually increasing during seed maturation. The results presented here address the knowledge gap concerning the evolutionary background of TIPs, specifically TIP3 in plants, and provide valuable insights for a deeper comprehension of the functions of TIPs in plants.
Collapse
Affiliation(s)
- Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Rushil Mandlik
- Department of Biotechnology, Central University of Haryana, Haryana, India
| | - Surbhi Kumawat
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- Department of Plant and Soil Sciences, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | | | - S M Shivaraj
- Department of Science, Alliance University, Bengaluru, India
| | - Gunvant Patil
- Department of Plant and Soil Sciences, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Haryana, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Haryana, India.
| |
Collapse
|
2
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
3
|
Gezer A, Aras SY, Baygutalp NK, Sari EK, Bedir G, Mokhtare B, Yilmaz K. Effect of vitamin D 3 and a stinging nettle extract on the gastric tissue of rats administered with trinitrobenzene sulfonic acid. VET MED-CZECH 2024; 69:84-93. [PMID: 38623153 PMCID: PMC11016305 DOI: 10.17221/111/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/23/2024] [Indexed: 04/17/2024] Open
Abstract
In this study, the effects of vitamin D3 (Vit. D) and a stinging nettle [Urtica dioica L. (UD)] extract were examined using histopathological and immunohistochemical methods in the stomach tissues of an experimentally created rat model of Crohn's disease (CD). The CD model was created using trinitrobenzene sulfonic acid (TNBS). The animals in the study were divided into control, TNBS, TNBS+Vit. D, and TNBS+UD groups. At the end of the experiment, the animals were euthanised and their stomach tissues were evaluated for necrosis, degeneration, apoptosis, and inflammation. Additionally, an immunohistochemical method was applied to determine the somatostatin (SSTR), aquaporin-1 (AQP-1), caspase-3, and tumour necrosis factor-alpha (TNF-α) immunoreactivity in the gastric tissues. In the evaluations, degenerative and necrotic changes and mononuclear cell infiltration areas were observed in the TNBS group, but such changes could be improved with Vit. D and UD applications. The results suggest that the combination of the Vit. D and UD extract may have a protective and therapeutic role in mitigating TNBS-induced damage to the gastric tissues, potentially through the regulation of SSTR, AQP-1, caspase-3, and TNF-α expression. This indicates a promising avenue for further research and the exploration of these compounds in the context of gastrointestinal health.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Ataturk University, Erzurum, Turkiye
| | - Sukran Yediel Aras
- Department of Midwifery, Faculty of Health Sciences, Kafkas University, Kars, Turkiye
| | | | - Ebru Karadag Sari
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkiye
| | - Gursel Bedir
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum, Turkiye
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Dicle University, Diyarbakir, Turkiye
| | - Kadriye Yilmaz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkiye
| |
Collapse
|
4
|
Wang W, Zhang XS, Wang ZN, Zhang DX. Evolution and phylogenetic diversity of the aquaporin gene family in arachnids. Int J Biol Macromol 2023; 240:124480. [PMID: 37068537 DOI: 10.1016/j.ijbiomac.2023.124480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Water flux across cells predominantly occurs through the pore formed by the aquaporin channels. Since water balance is one of the most important challenges to terrestrial animals, aquaporin evolution and diversity is known to play roles in animal terrestrialisation. Arachnids (Arthropoda: Chelicerata: Arachnida) are the second most diverse group and represent the pioneer land colonists in animals; however, there remains no thorough investigation on aquaporin evolution and diversity in this evolutionarily important lineage. Here we reported a phylogenetic study of aquaporin evolution and diversity using genomic data from 116 arachnid species covering almost all (15/16) extant orders. A previously unrecognised subfamily related to aquaporin-4 (i.e. Aqp4-like subfamily) via phylogenetic analysis was identified, suggesting certain underestimate of the arachnid aquaporin diversity in earlier studies probably due to limited taxonomic sampling. Further analysis indicates that this subfamily emerged deep within the life tree of arthropods. Gene tree of another Aqp4-like subfamily (PripL) shows an unexpected basal split between acariform mites (Acariformes) and other arachnids. A closer inspection demonstrated that the PripL evolved quickly and has been under differential selection pressure in acariform mites. Evidence is provided that the evolutionarily ancient Glp subfamily (i.e. aquaglyceroporin) is significantly expanded in terrestrial arachnids compared with their marine relatives. Finally, in spite of the phylogenetic diversity, there exists conservation of some exons in size, functional domain, and intron-insertion phase: an 81-bp and a 218-bp exon, respectively, in apq4-like and glp genes across Eumetazoa lineages including arachnids and human beings. Both exons encode the carboxyl-terminal NPA motif, implying the coding and splicing pressure during hundreds of million years of animal evolution. Hypotheses were tested to explore the possible link between these findings and arachnid terrestrialisation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xue-Shu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhen-Nan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - De-Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
5
|
Xu L, Guo X, Wang W, Li C. Classification and Gene Structure of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:1-13. [PMID: 36717483 DOI: 10.1007/978-981-19-7415-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, 13 AQPs, distributed widely in specific cell types in various organs and tissues, have been characterized in humans. A pair of NPA boxes forming a pore is highly conserved among all aquaporins and is also key residues for the classification of AQP superfamily into four groups according to primary sequences. AQPs may also be classified based on their transport properties. So far, chromosome localization and gene structure of 13 human AQPs have been identified, which is definitely helpful for studying phenotypes and potential targets in naturally occurring and synthetic mutations in human or cells.
Collapse
Affiliation(s)
- Long Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiangdong Guo
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Ishibashi K, Tanaka Y, Morishita Y. Evolutionary Overview of Aquaporin Superfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:81-98. [PMID: 36717488 DOI: 10.1007/978-981-19-7415-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are present not only in three domains of life, bacteria, eukaryotes, and archaea, but also in viruses. With the accumulating arrays of AQP superfamily, the evolutional relationship has attracted much attention with multiple publications on "the genome-wide identification and phylogenetic analysis" of AQP superfamily. A pair of NPA boxes forming a pore is highly conserved throughout the evolution and renders key residues for the classification of AQP superfamily into four groups: AQP1-like, AQP3-like, AQP8-like, and AQP11-like. The complexity of AQP family has mostly been achieved in nematodes and subsequent evolution has been directed toward increasing the number of AQPs through whole-genome duplications (WGDs) to extend the tissue specific expression and regulation. The discovery of the intracellular AQP (iAQP: AQP8-like and AQP11-like) and substrate transports by the plasma membrane AQP (pAQP: AQP1-like and AQP3-like) have accelerated the AQP research much more toward the transport of substrates with complex profiles. This evolutionary overview based on a simple classification of AQPs into four subfamilies will provide putative structural, functional, and localization information and insights into the role of AQP as well as clues to understand the complex diversity of AQP superfamily.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Division of Pathophysiology, Meiji Pharmaceutical University, Tokyo, Japan.
| | - Yasuko Tanaka
- Division of Pathophysiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, Saitama Medical Center, Jichi Medical University, Ohmiya, Saitama-City, Saitama, Japan
| |
Collapse
|
7
|
Miotelo L, Ferro M, Maloni G, Otero IVR, Nocelli RCF, Bacci M, Malaspina O. Transcriptomic analysis of Malpighian tubules from the stingless bee Melipona scutellaris reveals thiamethoxam-induced damages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158086. [PMID: 35985603 DOI: 10.1016/j.scitotenv.2022.158086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The concern about pesticide exposure to neotropical bees has been increasing in the last few years, and knowledge gaps have been identified. Although stingless bees, (e.g.: Melipona scutellaris), are more diverse than honeybees and they stand out in the pollination of several valuable economical crops, toxicity assessments with stingless bees are still scarce. Nowadays new approaches in ecotoxicological studies, such as omic analysis, were pointed out as a strategy to reveal mechanisms of how bees deal with these stressors. To date, no molecular techniques have been applied for the evaluation of target and/or non-target organs in stingless bees, such as the Malpighian tubules (Mt). Therefore, in the present study, we evaluated the differentially expressed genes (DEGs) in the Mt of M. scutellaris after one and eight days of exposure to LC50/100 (0.000543 ng a.i./μL) of thiamethoxam (TMX). Through functional annotation analysis of four transcriptome libraries, the time course line approach revealed 237 DEGs (nine clusters) associated with carbon/energy metabolism and cellular processes (lysosomes, autophagy, and glycan degradation). The expression profiles of Mt were altered by TMX in processes, such as detoxification, excretion, tissue regeneration, oxidative stress, apoptosis, and DNA repair. Transcriptome analysis showed that cell metabolism in Mt was mainly affected after 8 days of exposure. Nine genes were selected from different clusters and validated by RT-qPCR. According to our findings, TMX promotes several types of damage in Mt cells at the molecular level. Therefore, interference of different cellular processes directly affects the health of M. scutellaris by compromising the function of Mt.
Collapse
Affiliation(s)
- Lucas Miotelo
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Geovana Maloni
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Igor Vinicius Ramos Otero
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | | | - Mauricio Bacci
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
8
|
Genome-wide identification and expression analysis of the aquaporin gene family reveals the role in the salinity adaptability in Nile tilapia (Oreochromis niloticus). Genes Genomics 2022; 44:1457-1469. [DOI: 10.1007/s13258-022-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
9
|
Pérez-Sánchez R, Cano-Argüelles AL, González-Sánchez M, Oleaga A. First Data on Ornithodoros moubata Aquaporins: Structural, Phylogenetic and Immunogenic Characterisation as Vaccine Targets. Pathogens 2022; 11:pathogens11060694. [PMID: 35745548 PMCID: PMC9227307 DOI: 10.3390/pathogens11060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Ornithodoros moubata transmits African swine fever and human relapsing fever in Africa. The elimination of O. moubata populations from anthropic environments is expected to improve the prevention and control of these diseases. Tick vaccines have emerged as a sustainable method for tick control, and tick aquaporins (AQPs) are promising targets for tick vaccines due to their vital functions, immunogenicity and ease of access by neutralising host antibodies. This study aimed at the systematic identification of the AQPs expressed by O. moubata (OmAQPs) and their characterisation as vaccine targets. Therefore, AQP coding sequences were recovered from available transcriptomic datasets, followed by PCR amplification, cloning, sequence verification and the analysis of the AQP protein structure and epitope exposure. Seven OmAQPs were identified and characterised: six were aquaglyceroporins, and one was a water-specific aquaporin. All of these were expressed in the salivary glands and midgut and only three in the coxal glands. Epitope exposure analysis identified three extracellular domains in each AQP, which concentrate overlapping B and T cell epitopes, making them interesting vaccine targets. Based on these domain sequences, a set of ten antigenic peptides was designed, which showed adequate properties to be produced and tested in pilot vaccine trials.
Collapse
|
10
|
Mucciolo S, Desiderato A, Salonna M, Mamos T, Prodocimo V, Di Domenico M, Mastrototaro F, Lana P, Gissi C, Calamita G. Finding Aquaporins in Annelids: An Evolutionary Analysis and a Case Study. Cells 2021; 10:3562. [PMID: 34944070 PMCID: PMC8700629 DOI: 10.3390/cells10123562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/26/2023] Open
Abstract
Aquaporins (AQPs) are a family of membrane channels facilitating diffusion of water and small solutes into and out of cells. Despite their biological relevance in osmoregulation and ubiquitous distribution throughout metazoans, the presence of AQPs in annelids has been poorly investigated. Here, we searched and annotated Aqp sequences in public genomes and transcriptomes of annelids, inferred their evolutionary relationships through phylogenetic analyses and discussed their putative physiological relevance. We identified a total of 401 Aqp sequences in 27 annelid species, including 367 sequences previously unrecognized as Aqps. Similar to vertebrates, phylogenetic tree reconstructions clustered these annelid Aqps in four clades: AQP1-like, AQP3-like, AQP8-like and AQP11-like. We found no clear indication of the existence of paralogs exclusive to annelids; however, several gene duplications seem to have occurred in the ancestors of some Sedentaria annelid families, mainly in the AQP1-like clade. Three of the six Aqps annotated in Alitta succinea, an estuarine annelid showing high salinity tolerance, were validated by RT-PCR sequencing, and their similarity to human AQPs was investigated at the level of "key" conserved residues and predicted three-dimensional structure. Our results suggest a diversification of the structures and functions of AQPs in Annelida comparable to that observed in other taxa.
Collapse
Affiliation(s)
- Serena Mucciolo
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.D.); (T.M.)
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, Pontal do Paraná 83255-976, PR, Brazil; (M.D.D.); (P.L.)
| | - Andrea Desiderato
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.D.); (T.M.)
| | - Marika Salonna
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK;
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (C.G.); (G.C.)
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.D.); (T.M.)
| | - Viviane Prodocimo
- Laboratório de Fisiologia Comparativa da Osmorregulação, Departamento de Fisiologia, Setor de Ciências Biológicas, Campus Politécnico, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba 81531-980, PR, Brazil;
| | - Maikon Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, Pontal do Paraná 83255-976, PR, Brazil; (M.D.D.); (P.L.)
| | - Francesco Mastrototaro
- CoNISMa LRU, 70124 Bari, Italy;
- Dipartimento di Biologia, Università degli Studi di Bari “A. Moro”, 70124 Bari, Italy
| | - Paulo Lana
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, Pontal do Paraná 83255-976, PR, Brazil; (M.D.D.); (P.L.)
| | - Carmela Gissi
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (C.G.); (G.C.)
- CoNISMa LRU, 70124 Bari, Italy;
- IBIOM, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Giuseppe Calamita
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (C.G.); (G.C.)
| |
Collapse
|
11
|
Desiderato A, Mamos T, Rewicz T, Burzynski A, Mucciolo S. First Glimpse at the Diverse Aquaporins of Amphipod Crustaceans. Cells 2021; 10:3417. [PMID: 34943925 PMCID: PMC8699810 DOI: 10.3390/cells10123417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
The importance of aquaporins (AQPs) in the transport of water and solutes through cell membranes is well recognized despite being relatively new. To date, despite their abundance, diversity, and presence in disparate environments, amphipods have only been mentioned in studies about the AQPs of other animals and have never been further investigated. In this work, we aimed to recover from public data available AQPs of these crustaceans and reconstruct phylogenetic affinities. We first performed BLAST searches with several queries of diverse taxa against different NCBI databases. Then, we selected the clades of AQPs retrieving the amphipod superfamily Gammaroidea as monophyletic and ran phylogenetic analyses to assess their performances. Our results show how most of the AQPs of amphipods are similar to those of other crustaceans, despite the Prip-like displayed different paralogs, and report for the first time a putative Aqp8-like for arthropods. We also found that the candidate genes of Prip-like, Bib-like, Aqp12-like, and Glp-like help solve deeper relationships in phylogenies of amphipods while leaving uncertainties in shallower parts. With our findings, we hope to increase attention to the study of amphipods as models for AQP functioning and evolution.
Collapse
Affiliation(s)
- Andrea Desiderato
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| | - Tomasz Rewicz
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| | - Artur Burzynski
- Department of Genetics and Marine Biotechnology, Polish Academy of Sciences, Institute of Oceanology, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Serena Mucciolo
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| |
Collapse
|
12
|
Quintana JF, Field MC. Evolution, function and roles in drug sensitivity of trypanosome aquaglyceroporins. Parasitology 2021; 148:1137-1142. [PMID: 33602349 PMCID: PMC8311954 DOI: 10.1017/s0031182021000354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Aquaglyceroporins (AQPs) are membrane proteins that function in osmoregulation and the uptake of low molecular weight solutes, in particular glycerol and urea. The AQP family is highly conserved, with two major subfamilies having arisen very early in prokaryote evolution and retained by eukaryotes. A complex evolutionary history indicates multiple lineage-specific expansions, losses and not uncommonly a complete loss. Consequently, the AQP family is highly evolvable and has been associated with significant events in life on Earth. In the African trypanosomes, a role for the AQP2 paralogue, in sensitivity to two chemotherapeutic agents, pentamidine and melarsoprol, is well established, albeit with the mechanisms for cell entry and resistance unclear until very recently. Here, we discuss AQP evolution, structure and mechanisms by which AQPs impact drug sensitivity, suggesting that AQP2 stability is highly sensitive to mutation while serving as the major uptake pathway for pentamidine.
Collapse
Affiliation(s)
- Juan F. Quintana
- Wellcome Centre for Integrative Parasitology (WCIP), Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, GlasgowG61 1QH, UK
| | - Mark C. Field
- School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005Ceske Budejovice, Czech Republic
| |
Collapse
|
13
|
Song WY, Wang Y, Hou XM, Tian CC, Wu L, Ma XS, Jin HX, Yao GD, Sun YP. Different expression and localization of aquaporin 7 and aquaporin 9 in granulosa cells, oocytes, and embryos of patients with polycystic ovary syndrome and the negatively correlated relationship with insulin regulation. Fertil Steril 2021; 115:463-473. [PMID: 33579525 DOI: 10.1016/j.fertnstert.2020.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To investigate the expression of aquaporin 7 (AQP7) and aquaporin 9 (AQP9) in the granulosa cells of patients with polycystic ovary syndrome (PCOS) and healthy women and detect their localization in oocytes at the germinal vesicle (GV), metaphase I (MI), MII, embryo, and blastocyst stages and the in vitro response to insulin stimulation. DESIGN Randomized, assessor-blinded study. SETTING Reproductive medical center. PATIENT(S) A total of 40 women (aged 20-38 years) comprising 29 cases of primary infertility and 11 cases of secondary infertility, of whom 17 had an initial diagnosis of PCOS and three received a PCOS diagnosis after an infertility examination. INTERVENTION(S) Controlling different concentrations of insulin and different treatment times in cultures of normal human granulosa cells in vitro. MAIN OUTCOME MEASURE(S) Expression of AQP7 and AQP9 genes and proteins in granulosa cells detected by real-time quantitative polymerase chain reaction, and localization in oocytes at the GV, MI, MII, embryo, and blastocyst stages by Western blot, immunohistochemical, and immunofluorescence assays, and concentrations of insulin in follicular fluid by enzyme-linked immunosorbent assay. RESULT(S) The expression levels of the AQP7 mRNA and protein in the granulosa cells of patients with PCOS were higher than found in healthy controls. We found AQP7 protein expressed in human oocytes at GV, MI, MII, embryo, and blastocyst stages; it was mainly located in the nucleoplasm. In the PCOS group, the expression level of AQP9 mRNA and protein in granulosa cells was lower, and AQP9 protein was expressed in oocytes at the GV, MI, MII, embryo, and blastocyst stages; it was localized on the nuclear membrane. Compared with healthy women, the insulin expression in patients with PCOS was higher. In cultures of normal human granulosa cells in vitro, the expression of AQP7 and AQP9 mRNA and protein decreased with the increase in insulin concentration; expression statistically significantly decreased when the insulin concentration was 100 nmol/L, and after 6 to 24 hours of exposure the lowest expression levels were found at 12 hours. CONCLUSION(S) The different localization and expression of AQP7 and AQP9 between the two groups suggests that they might be involved in oocyte maturation and embryonic development through different regulatory pathways. The expression levels of AQP7 and AQP9 were negatively correlated with insulin regulation, suggesting that insulin might affect the maturation of PCOS follicles by changing AQP7 and AQP9 expression.
Collapse
Affiliation(s)
- Wen-Yan Song
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuan Wang
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiao-Man Hou
- Department of Reproductive Medicine, Nanyang Central Hospital, Nanyang, People's Republic of China
| | - Cheng-Cheng Tian
- Department of Reproductive Medicine, Nanyang Central Hospital, Nanyang, People's Republic of China
| | - Liang Wu
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xue-Shan Ma
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hai-Xia Jin
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Gui-Dong Yao
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
14
|
Bird aquaporins: Molecular machinery for urine concentration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183688. [PMID: 34242632 DOI: 10.1016/j.bbamem.2021.183688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022]
Abstract
Water conservation is one of the most challenging processes for terrestrial vertebrates and is necessary for their survival. Birds are the only vertebrate animals other than mammals that have the ability to concentrate their urine. Previously, we identified and characterized aquaporins (AQP)1-4 responsible for urine concentration in Japanese quail kidneys. Today, a total of 13 orthologs for these genes have been reported in birds. Bird AQPs can be classified into four subfamilies: 1) Classical AQPs (AQP0-5 and novel member, AQP4-like) that conserve the selectivity filter; 2) aquaglyceroporins (AQP3, 7, 9 and 10) that retain an aspartic acid residue in the second NPA box and expand the pore to accept larger molecules; 3) unorthodox AQPs (AQP11-12) which structurally resemble their mammalian counterparts; 4) AQP8-type, a subfamily that differs from mammalian AQP8. Interestingly, over the course of time, birds lost their mammalian counterpart AQP6 but obtained a novel AQP4-like aquaporin member. In quail and/or chicken kidneys, at least six AQPs are expressed. Quail AQP1 (qAQP1) is expressed in both cortical and medullary proximal tubules but is absent in the descending limb (DL) and the thick ascending limb (TAL), supporting our previous finding that the DL and TAL are water impermeable. AQP2, an arginine vasotocin (AVT)-sensitive water channel, is exclusively expressed in the principal cells of the collecting duct (CD). AQP4 is unlikely to participate in free water resorption from the collecting duct (CD), and only AQP3 may represent an exit pathway for water reabsorbed apically via AQP2. While AQP9 is not expressed in mammalian kidneys, AQP9 was recently found in chicken kidneys. This review summarizes the current knowledge of the structure, function and expression of bird AQPs.
Collapse
|
15
|
Shen Y, Li H, Zhao J, Tang S, Zhao Y, Gu Y, Chen X. Genomic and expression characterization of aquaporin genes from Siniperca chuatsi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 38:100819. [PMID: 33652294 DOI: 10.1016/j.cbd.2021.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 02/21/2021] [Indexed: 01/07/2023]
Abstract
Aquaporins (AQPs) are major intrinsic proteins that form pores in the membranes of biological cells. We first cloned the full-length sequences of aqp0, 1, 3, 4, 7, 8, 9, 10, 11, and 12 genes in Siniperca chuatsi. The 10 S. chuatsi aqp (Sc-aqp) genes included complete open reading frames and exhibited different exon-intron organizations. Sc-aqp1, 3, 8, 9, 10, and 11 were mostly expressed in the gallbladder, gills, gastric cecum, liver, ovaries, and spleen, respectively; Sc-aqp0 and 4 were mostly expressed in larvae at 1 day after hatching and in gastrula; Sc-aqp7 and 12 were mostly expressed in 2K-cell embryos. The expression levels of Sc-aqp1, 3, 7, 8, 9, and 10 after 10 part per thousand (ppt) salt treatment had significantly changed compared with those after 0 ppt salt treatment. Real-time quantitative PCR analysis further showed that in the intestines, the mRNA levels of Sc-aqp1 and 10 significantly decreased by approximately 2.07- and 2.85-fold, respectively, whereas those of Sc-aqp8 and 9 significantly increased by approximately 7.08- and 4.14-fold, respectively. Sc-aqp1, 8, 9, and 10 showed no significant differences in the gills. Sc-aqp3 significantly decreased by approximately 1.51- and 1.67-fold in the gills and intestines, respectively. Sc-aqp7 significantly increased by approximately 4.18- and 7.04-fold in the gills and intestines, respectively. This study was the first to investigate the tissue expression profiles and response to salt stress of aqp genes in S. chuatsi. Moreover, altering diet and suffering from immune stress could cause changes in the expression level of aqps. This study provided valuable reference information for AQPs' roles in osmoregulation in freshwater fish.
Collapse
Affiliation(s)
- Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huiyang Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Shoujie Tang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yifeng Gu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
The role of mammalian superaquaporins inside the cell: An update. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183617. [PMID: 33811846 DOI: 10.1016/j.bbamem.2021.183617] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
The progress on mammalian superaquaporin (sAQP), AQP11 and AQP12, in the past seven years is brought up to date from the previous review. This subfamily is separated because of the very low homology with other AQP subfamilies and it is present only in multicellular organisms excluding fungi and plants. Its unique intracellular localization, specifically in the ER has made its functional studies challenging, but it may function as glyceroporin, aquaporin and peroxiporin, H2O2 transporter. Knowledge on AQP11 has been expanded by tissue specific conditional knockout mice and by the identification of a SNP associated with kidney diseases. Moreover, the functional identification of AQP11 as a peroxiporin has expanded the role of AQP11 to the regulation of intracellular H2O2 homeostasis to prevent ER stress, which awaits further in vivo studies. As kidney-specific AQP11 knockout of developed kidney has produced little phenotype, AQP11 is critical for kidney development but its physiological significance remains to be clarified. On the other hand, little has been known on pancreas-specific AQP12. To move this field forward, the results of sAQP in lower animals will be necessary to obtain the insights into the role of mammalian sAQP, which hopefully will lead to the discovery of therapeutic targets.
Collapse
|