1
|
Liu J, Zou J, Wang J, Wang R, Zhai S, Chang X, Zhang X, Sun J, Luan F, Shi Y. Extraction, purification, structural features, and pharmacological properties of polysaccharides from Houttuynia cordata: A review. Int J Biol Macromol 2024; 279:135230. [PMID: 39218180 DOI: 10.1016/j.ijbiomac.2024.135230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Houttuynia cordata Thunb, also known as "Chinese medicine antibiotic", is a medicine food homology plant. It has functions of clearing heat, eliminating toxins, in folk medicine. The extraction purification and bioactivity of Houttuynia cordata polysaccharides (HCPs) have been of wide interest to researchers in recent years studies. Studies have confirmed that HCPs exhibit various biofunctionalities, such as anti-inflammatory, antiviral, antibacterial, antioxidant, immunomodulatory, regulation of gut microbiota, and gut-lung axis, as well as anti-radiation, and anti-cancer properties. Therefore, a comprehensive systematic review is needed to summarize the recent advances of HCPs and facilitate a better understanding of their biofunctionalities. This paper reviews the research progress of HCPs in extraction and purification methods, chemical structures, biological activities, possible mechanisms of action, and potential application prospects, which can provide some valuable insights and updated information for their further development and application of HCPs in the fields of therapeutic agents, functional foods, cosmetics, animal feeds.
Collapse
Affiliation(s)
- Jing Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jingyuan Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Xing Chang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
2
|
Wei P, Luo Q, Hou Y, Zhao F, Li F, Meng Q. Houttuynia Cordata Thunb.: A comprehensive review of traditional applications, phytochemistry, pharmacology and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155195. [PMID: 37956635 DOI: 10.1016/j.phymed.2023.155195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Houttuynia Cordata Thunb. (H. cordata; Saururaceae) is a medicine food homology plant that is grown in many Asian countries. Its main phytochemical constituents are volatile oils, flavonoids, polysaccharides and alkaloids. It has considerable clinical applications and health benefits. PURPOSE This paper reviews the existing literatures and patents, summarizes the phytochemistry, pharmacological activity, safety and economic botanical applications of H. cordata, and provides a reference for systematic study of the pharmacological effects of H. cordata, improvement of quality standards and further development of its medicinal resources. METHODS A comprehensive search of literature and patents on H. cordata and its active ingredients published before June 2023 was conducted using PubMed, Google Scholar, Web of Science, and China Knowledge Network. RESULTS H. cordata is not only edible and medicinal but also used in various aspects of daily life such as fermented beverages, nutraceuticals, feed and cosmetics. The main phytochemical constituents of H. cordata are volatile oils, flavonoids, organic acids and alkaloids. Several in vitro and in vivo studies and clinical trials have found that H. cordata extracts possess antioxidant, anti-inflammatory, antitumor, antibacterial, hepatoprotective and renal, immunomodulatory and potent antiviral effects. The mechanisms of expression of these pharmacological effects are related to the blood-brain barrier, lipophilicity, cAMP signaling and skin permeability, including blocking the MAPK signaling pathway, inhibiting the secretion of inflammatory factors such as TNF-α and IL-1β, and activating the AMPK pathway. CONCLUSION This paper provides a comprehensive review of the progress of research on the traditional applications, botany, chemical composition, pharmacological effects and safety of H. cordata and discusses for the first time the economic botanical aspects, which were not explored in the previous reviews. H. cordata has a wide range of bioactive substances whose therapeutic potential has not been fully exploited, and it could provide a new non-toxic approach to many diseases. This traditional medicinal food plant should receive more attention and in-depth research in the future.
Collapse
Affiliation(s)
- Panpan Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qin Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yun Hou
- Department of Histology and Embryology, Basic Medical College, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
3
|
Win EHA, Mumu S, Fahim N, Parajuli K, Blumenthal E, Palu R, Mustafa A. Comparative physiological study of sea cucumbers from eastern waters of United States. PLoS One 2023; 18:e0293481. [PMID: 37903114 PMCID: PMC10615258 DOI: 10.1371/journal.pone.0293481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Sea cucumbers, belonging to the phylum Echinodermata, are known to possess valuable bioactive compounds that have medicinal properties. In several countries, such as Korea, China, and Japan, they are cultured in the aquaculture industries for food and medicinal purposes. Research has shown that different species of sea cucumbers each possesses unique medicinal values. As a result, we strive towards finding species with better health resilience in aquaculture system to be cultured for nutritional and medicinal purposes. In this paper, we compared the physiological and immunological parameters of three species of sea cucumbers, Cucumaria frondosa (C. frondosa), Isostychopus badionotus (I. badionotus), and Pentacta pygmaea (P. Pygmaea) from the waters of the eastern United States as they have not been studied extensively. Four different cells of sea cucumbers, phagocytic, red spherule, white spherule, and vibratile cells, that contribute to their immunity were counted. C. frondosa exhibited the highest concentrations of phagocytic cells, white spherule cells, and vibratile cells, compared to the two other species. Due to its high phagocytic cell concentration, the highest phagocytic capacity was seen in C. frondosa although it was not statistically significant. We also observed that C. frondosa had the highest total cell count and the highest concentration of coelomic protein among the three species. Lastly, C. frondosa possessed the highest lysozyme activity. Taken together, we concluded that C. frondosa is the best of the three species compared to be reared in the aquaculture systems for use in the food and biomedicine industries due to its immunological and physiological properties.
Collapse
Affiliation(s)
- Eaint Honey Aung Win
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Sinthia Mumu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Nahian Fahim
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Kusum Parajuli
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Elliott Blumenthal
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Rebecca Palu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Ahmed Mustafa
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
4
|
Wang R, Yang Y, Deng Y, Hu D, Lu P. Multiresidue analysis and dietary risk assessment of pesticides in eight minor vegetables from Guizhou, China. Food Chem 2022; 380:131863. [PMID: 34996635 DOI: 10.1016/j.foodchem.2021.131863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 11/04/2022]
Abstract
Several minor vegetables are widely employed as hot pot dishes and condiments in Southwest China. To gain insight into pesticide exposure risk via the intake of minor vegetables, vegetable samples (400) obtained from different farms in Guizhou were subjected to multiresidue analyses. Gas chromatography-tandem mass spectrometry and high performance liquid chromatography-tandem mass spectrometry were developed to detect and quantify 97 pesticide residues simultaneously in samples using modified QuEChERS methods. The results showed that no pesticides were detected in 248 samples. Pesticides of different levels were detected in 152 samples, of which 69 samples exhibited residue concentrations exceeding maximum residue limit of European Union. The acute and chronic dietary exposure risk of 15 pesticides in eight minor vegetables were accepted. The risk ranking result showed the most samples contained low-risk pesticides. The results will provide a reference for designing future pesticide supervision programs and risk management programs.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ya Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yao Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Mauro M, Queiroz V, Arizza V, Campobello D, Custódio MR, Chiaramonte M, Vazzana M. Humoral responses during wound healing in Holothuria tubulosa (Gmelin, 1788). Comp Biochem Physiol B Biochem Mol Biol 2020; 253:110550. [PMID: 33359143 DOI: 10.1016/j.cbpb.2020.110550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023]
Abstract
Wounds in living organisms trigger tissue-repair mechanisms. The sea cucumber (Holoturia tubulosa) is an excellent model species for achieving a better understanding of the humoral and cellular aspects involved in such healing processes. Consequently, this study assesses data on its morphometric, physiological and humoral responses 1, 2, 6, 24 and 48h after wound induction. In particular, morphometric data on the weight, width, length and coelomic-fluid volume of the species were estimated at different times during our experiments. In addition, the humoral aspects related to the enzymatic activity of esterase, alkaline phosphatase and peroxidase, as well as the cytotoxic activity of cell lysates (CL) and cell-free coelomic fluids (CfCf) are evaluated for the first time. Our results reveal a significant decrease in body length and weight, along with time-dependent, significant changes in the esterase, alkaline phosphatase, peroxidase and cytotoxic activity in both the CL and CfCf. The data obtained lead to the pioneering finding that there is an important time-dependent involvement of morphometric (changes in weight and length) and humoral (enzymatic and cytotoxic) responses in wound healing.
Collapse
Affiliation(s)
- Manuela Mauro
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Vinicius Queiroz
- Departamento de Fisiologia, Instituto de Biociências and Centro de Biologia Marinha (NP-BioMar), Universidade de São Paulo, São Paulo, Brazil
| | - Vincenzo Arizza
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Daniela Campobello
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Márcio Reis Custódio
- Departamento de Fisiologia, Instituto de Biociências and Centro de Biologia Marinha (NP-BioMar), Universidade de São Paulo, São Paulo, Brazil
| | - Marco Chiaramonte
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy.
| |
Collapse
|
6
|
Azimzadeh M, Mahmoodi M, Kazemi M, Hakemi MG, Jafarinia M, Eslami A, Salehi H, Amirpour N. The immunoregulatory and neuroprotective effects of human adipose derived stem cells overexpressing IL-11 and IL-13 in the experimental autoimmune encephalomyelitis mice. Int Immunopharmacol 2020; 87:106808. [PMID: 32693359 DOI: 10.1016/j.intimp.2020.106808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 02/05/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelination disease in the central nervous system (CNS) characterized by incomplete endogenous remyelination in the chronic phase. A shift of the balance between pro and anti-inflammatory cytokines is one of the important markers in the pathogenesis of MS. This study aimed to evaluate the effects of human adipose derived stem cells (hADSCs) overexpressing interleukin 11 and interleukin 13 (IL-11, 13-hADSCs) on the experimental autoimmune encephalomyelitis (EAE), an animal model of MS.12 days after immunization of C57Bl/6 female mice with MOG35-55 and initial clinical symptoms appearance, the IL-11, 13-hADSCs were injected via the tail vein into the EAE mice. Then, the mice were sacrificed at 30 days post-immunization (DPI) and the spinal cords of experimental groups were extracted for histopathological and real-time RT-PCR studies.The results indicated that the clinical scores and mononuclear cells infiltration into the spinal cords of EAE mice were significantly reduced in mice treated with IL-11, 13-hADSCs. Likewise, the remyelination and oligodendrogenesis were significantly enhanced in the mentioned treatment group. Real-time results demonstrated that pro/anti-inflammatory cytokine genes expression was reversed in IL-11, 13-hADSCs treatment group in comparison to the untreated EAE group.Expression of IL-11 as a neurotrophic cytokine and IL-13 as an anti-inflammatory cytokine by hADSCs could increase the immunomodulatory and neuroprotective effects of hADSCs and be a powerful candidate in stem cell therapy for future treatment of MS.
Collapse
Affiliation(s)
- Maryam Azimzadeh
- Department of Anatomical Science, School Of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Merat Mahmoodi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Morteza Jafarinia
- Department of Immunology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Science, School Of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| | - Noushin Amirpour
- Department of Anatomical Science, School Of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
7
|
Song M, Lan Y, Wu X, Han Y, Wang M, Zheng J, Li Z, Li F, Zhou J, Xiao J, Cao Y, Xiao H. The chemopreventive effect of 5-demethylnobiletin, a unique citrus flavonoid, on colitis-driven colorectal carcinogenesis in mice is associated with its colonic metabolites. Food Funct 2020; 11:4940-4952. [PMID: 32459257 PMCID: PMC10726105 DOI: 10.1039/d0fo00616e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
5-Demethylnobiletin (5DN) is a unique flavonoid mainly found in citrus fruits. In this study, we determined the chemopreventive effects of 5DN and its major colonic metabolites on both a colitis-driven colon carcinogenesis mouse model and a human colon cancer cell model. In azoxymethane/dextran sulfate sodium-treated mice, dietary 5DN (0.05% w/w in the diet) significantly decreased the tumor incidence, multiplicity and burden, and showed potent anti-proliferative, proapoptotic, and anti-inflammatory activities in mouse colon tissue. Three major metabolites of 5DN, named 5,3'-didemethylnobiletin (M1), 5,4'-didemethylnobiletin (M2) and 5,3',4'-tridemethylnobiletin (M3), were found in the colonic mucosa of 5DN-treated mice, and the combined level of these metabolites in mouse colonic mucosa was 1.56-fold higher than that of 5DN. Cell culture studies revealed that 5DN and its colonic metabolites profoundly inhibited the growth of human colon cancer cells by inducing cell cycle arrest, triggering apoptosis and modulating key signaling proteins related to cell proliferation and apoptosis. Importantly, the colonic metabolites, especially M1, showed much stronger effects than those produced by 5DN itself. Overall, our results demonstrated that dietary 5DN significantly inhibited colitis-driven colon carcinogenesis in mice, and this chemopreventive effect was associated with its metabolites in the colon.
Collapse
Affiliation(s)
- Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China and Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, MA, USA. and Department of Kinesiology and Health, Miami University, Oxford, OH, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| | - Minqi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| | - Jinkai Zheng
- Department of Food Science, University of Massachusetts, Amherst, MA, USA. and Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| | - Fang Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| | - Jiazhi Zhou
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
8
|
Ren Y, Zhang J, Wang Y, Chen J, Liang C, Li R, Li Q. Non-specific immune factors differences in coelomic fluid from polian vesicle and coelom of Apostichopus japonicus, and their early response after evisceration. FISH & SHELLFISH IMMUNOLOGY 2020; 98:160-166. [PMID: 31901421 DOI: 10.1016/j.fsi.2019.12.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Coelomic fluid contains a population of coelomocytes, enzymes, nutrients and kinds of molecules that could be essential for Apostichopus japonicus live. The coelom and polian vesicle are the main tissues that hold the most coelomic fluid in the animal, but whether there exists any immunological difference of the coelomic fluid from the two tissues remains unknown. In this study, we first extracted the coelomic fluid both from the coelom and polian vesicle, and compared their non-specific immune factors. It was found that the ACP and AKP activities in the polian vesicle were significantly higher than those in the coelom, but it was contrary for the SOD and CAT. Meanwhile, the expression levels of several immune-related genes including AjC3-2, AjMKK3/6, AjTLR3 and AjToll in the polian vesicle were significantly lower than those in the coelom. Besides, the early changes of non-specific immune factors were further monitored after eviscerated. During 7 days post evisceration, the immunoenzymes activities of ACP, AKP, SOD and CAT were decreased first and then recovered gradually in the coelomic fluid from the coelom. In the polian vesicle, the ACP and AKP activities showed a similar trend with the coelom, while the SOD and CAT activities showed a transitory increase during 2 h post evisceration (hpe) to 12 hpe. Moreover, the expression profiles of the immune-related genes in the coelom reached the peak at 3 days post evisceration (dpe), while their expression levels in the polian vesicle reached the peak at 7 dpe. All the results suggested that the immunocompetence of coelomic fluid differed in the coelom and polian vesicle, and thus may exert their respective immunological functions. It was likely that the respond speed in the coelom would be faster than that in the polian vesicle after evisceration. Our data will provide a basis for better understanding of the immune defense mechanism of A. japonicus.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Jialin Zhang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yinan Wang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jing Chen
- Liaoning Agricultural Tural Development & Service Center, Dalian, 116013, China
| | - Chunlei Liang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Ruijun Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Qiang Li
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
9
|
Doan HV, Hoseinifar SH, Sringarm K, Jaturasitha S, Khamlor T, Dawood MAO, Esteban MÁ, Soltani M, Musthafa MS. Effects of elephant's foot (Elephantopus scaber) extract on growth performance, immune response, and disease resistance of nile tilapia (Oreochromis niloticus) fingerlings. FISH & SHELLFISH IMMUNOLOGY 2019; 93:328-335. [PMID: 31344457 DOI: 10.1016/j.fsi.2019.07.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Medicinal plant has been applied as an alternative strategy for antibiotics and chemotherapeutics for controlling the outbreak of diseases in tilapia farming. In this study, five doses of Elephantopus scaber extract (ESE) were added to the basal diet at 0, 2.5, 5, 10, and 20 g kg-1 feed of Nile tilapia fingerlings (13.92 ± 0.06 g initial weight) in triplicate. After 4- and 8- weeks post-feeding, fish were sampled to determine the effects of the ESE supplemented on fish's growth performance, humoral, and skin mucus immune response. After 8 weeks post-feeding, a challenge test against Streptococcus agalactiae was carried out using 10 fish from each tank. Fish fed ESE showed significantly increased serum lysozyme (SL), serum peroxidase (SP), alternative complement (ACH50), phagocytosis (PI), and respiratory burst (RB) compared to the control group (P < 0.05). The skin mucus lysozyme (SMLA) and skin peroxidase (SMPA) were stimulated in fish fed ESE diets. Dietary inclusion of ESE significantly (P < 0.05) promoted final body weight (FW), weight gain (WG), and specific growth rate (SGR); while a reduction in feed conversion ratio (FCR) was observed in fish fed 5 g kg-1 ESE, after 8 weeks post-feeding. The challenge study indicated that the relative percent survival (RSP) was 38.10%, 76.19%, 66.67%, and 47.62% in Diet 2, Diet 3, Diet 4, and Diet 5, respectively. Among the supplemented groups, dietary of 5 g kg-1 ESE showed significantly higher RPS and the highest resistance to S. agalactiae in comparison with other groups. In conclusion, supplementation of ESE (5 g kg-1) enhanced the humoral and mucosal immunity, promoted growth performance, and improved disease resistance of Nile tilapia against Streptococcus agalactiae.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd, Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sanchai Jaturasitha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd, Suthep, Muang, Chiang Mai, 50200, Thailand
| | - Trisadee Khamlor
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Maria Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain
| | - Mehdi Soltani
- Fresh water and Fish Health Group, Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Australia
| | | |
Collapse
|