1
|
Xing XH, Li XB. Progress in research of glucose transporters in molecular imaging of colorectal tumors. Shijie Huaren Xiaohua Zazhi 2025; 33:268-275. [DOI: 10.11569/wcjd.v33.i4.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/28/2025] Open
Abstract
Colorectal cancer is one of the most common digestive tract malignant tumors in China. Due to the difficulty in early diagnosis, its morbidity and mortality are increasing year by year. Molecular imaging can monitor biological processes at cellular and molecular levels in vivo, having potential clinical diagnosis and treatment value. The key of molecular imaging is to develop new imaging technology and construct targeted molecular probes. Glucose transporters (Glut) are proteins distributed on various cell membranes in the human body. At present, it is believed that the abnormal expression of Glut1 is closely related to colorectal cancer, playing an important role in the occurrence and development of this malignancy. Therefore, Glut1 is expected to become a specific target for molecular imaging of colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Hong Xing
- Department of Radiology, Fengxian District Central Hospital, Shanghai 201499, China
| | - Xiao-Bing Li
- Department of Radiology, Fengxian District Central Hospital, Shanghai 201499, China
| |
Collapse
|
2
|
Kubelt C, Gilles L, Hellmold D, Blumenbecker T, Peschke E, Will O, Ahmeti H, Hövener JB, Jansen O, Lucius R, Synowitz M, Held-Feindt J. Temporal and regional expression changes and co-staining patterns of metabolic and stemness-related markers during glioblastoma progression. Eur J Neurosci 2024; 60:3572-3596. [PMID: 38708527 DOI: 10.1111/ejn.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Glioblastomas (GBMs) are characterized by high heterogeneity, involving diverse cell types, including those with stem-like features contributing to GBM's malignancy. Moreover, metabolic alterations promote growth and therapeutic resistance of GBM. Depending on the metabolic state, antimetabolic treatments could be an effective strategy. Against this background, we investigated temporal and regional expression changes and co-staining patterns of selected metabolic markers [pyruvate kinase muscle isozyme 1/2 (PKM1/2), glucose transporter 1 (GLUT1), monocarboxylate transporter 1/4 (MCT1/4)] in a rodent model and patient-derived samples of GBM. To understand the cellular sources of marker expression, we also examined the connection of metabolic markers to markers related to stemness [Nestin, Krüppel-like factor 4 (KLF4)] in a regional and temporal context. Rat tumour biopsies revealed a temporally increasing expression of GLUT1, higher expression of MCT1/4, Nestin and KLF4, and lower expression of PKM1 compared to the contralateral hemisphere. Patient-derived tumours showed a higher expression of PKM2 and Nestin in the tumour centre vs. edge. Whereas rare co-staining of GLUT1/Nestin was found in tumour biopsies, PKM1/2 and MCT1/4 showed a more distinct co-staining with Nestin in rats and humans. KLF4 was mainly co-stained with GLUT1, MCT1 and PKM1/2 in rat and human tumours. All metabolic markers yielded individual co-staining patterns among themselves. Co-staining mainly occurred later in tumour progression and was more pronounced in tumour centres. Also, positive correlations were found amongst markers that showed co-staining. Our results highlight a link between metabolic alterations and stemness in GBM progression, with complex distinctions depending on studied markers, time points and regions.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lea Gilles
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tjorven Blumenbecker
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Hajrullah Ahmeti
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
3
|
Yan J, Bhadane R, Ran M, Ma X, Li Y, Zheng D, Salo-Ahen OMH, Zhang H. Development of Aptamer-DNAzyme based metal-nucleic acid frameworks for gastric cancer therapy. Nat Commun 2024; 15:3684. [PMID: 38693181 PMCID: PMC11063048 DOI: 10.1038/s41467-024-48149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.
Collapse
Affiliation(s)
- Jiaqi Yan
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Meixin Ran
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Yuanqiang Li
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Hongbo Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
4
|
R P, Yuwanati M, Sekaran S, M S. miRNA Associated With Glucose Transporters in Oral Squamous Cell Carcinoma: A Systematic Review. Cureus 2023; 15:e46057. [PMID: 37900425 PMCID: PMC10605560 DOI: 10.7759/cureus.46057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a malignancy of the oral cavity with poor prognosis. Dysregulation in glycolytic pathways involving glucose transporters (GLUT) has been implicated in poor prognosis. Furthermore, GLUT expression in cancer cells is regulated by several miRNAs. However, there is a lack of data about miRNA involved in the regulation of GLUT in OSCC. The objective is to evaluate the role of miRNA in the regulation of GLUT in OSCC. Data sources include PubMed (MEDLINE), Scopus, and Web of Science. Studies evaluating the miRNA involved or associated with the regulation of GLUT in OSCC were included in the systematic review. Data pertaining to GLUT and associated miRNA expression were extracted from studies. Qualitative assessment was carried out for GLUT and miRNA. The Newcastle-Ottawa Scale was used for quality assessment. Ten study articles were included after analyzing 4675 papers. These studies evaluated the GLUT and miRNA expression between healthy and OSCC samples. There are variable expression patterns of GLUT in OSCC. Furthermore, it was dependent on miRNA. The GLUT1 and GLUT-3 were detected more frequently in OSCC, while no study reveals the expression of GLUT2, GLUT4, GLUT7, GLUT8, GLUT13, SGLT1, and SGLT2 with miRNA regulation. However, there was insufficient evidence on specific miRNA linked to GLUT1 or GLUT3 expression. There is evidence of the role of miRNA in the regulation of GLUT especially GLUT1 and GLUT3 in OSCC; however, a specific relation to miRNA was understudied. In the future, studies exploring a clearer understanding of the association between miRNA and the GLUT metabolic pathway in relation to OSCC are warranted. Furthermore, association of miRNA and GLUT with progression of disease, disease resistance, and prognosis is assessed for better treatment outcomes.
Collapse
Affiliation(s)
- Priyadharshini R
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Monal Yuwanati
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Saravanan Sekaran
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Senthilmurugan M
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Leischner C, Marongiu L, Piotrowsky A, Niessner H, Venturelli S, Burkard M, Renner O. Relevant Membrane Transport Proteins as Possible Gatekeepers for Effective Pharmacological Ascorbate Treatment in Cancer. Antioxidants (Basel) 2023; 12:antiox12040916. [PMID: 37107291 PMCID: PMC10135768 DOI: 10.3390/antiox12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Alban Piotrowsky
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
6
|
Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev 2022; 16:561. [PMID: 35340885 PMCID: PMC8941341 DOI: 10.4081/oncol.2022.561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
The primary metabolic substrate for cells is glucose, which acts as both a source of energy and a substrate in several processes. However, being lipophilic, the cell membrane is impermeable to glucose and specific carrier proteins are needed to allow transport. In contrast to normal cells, cancer cells are more likely to generate energy by glycolysis; as this process generates fewer molecules of adenosine triphosphate (ATP) than complete oxidative breakdown, more glucose molecules are needed. The increased demand for glucose in cancer cells is satisfied by overexpression of a number of glucose transporters, and decreased levels of others. As specific correlations have been observed between the occurrence of cancer and the expression of glucose carrier proteins, the presence of changes in expression of glucose transporters may be treated as a marker of diagnosis and/or prognosis for cancer patients.
Collapse
|
7
|
Glycosylated paclitaxel mixed nanomicelles: Increasing drug brain accumulation and enhancing its in vitro antitumoral activity in glioblastoma cell lines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Azcue P, Guerrero Setas D, Encío I, Ibáñez-Beroiz B, Mercado M, Vera R, Gómez-Dorronsoro ML. A Novel Prognostic Biomarker Panel for Early-Stage Colon Carcinoma. Cancers (Basel) 2021; 13:5909. [PMID: 34885019 PMCID: PMC8656725 DOI: 10.3390/cancers13235909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/09/2022] Open
Abstract
Molecular characterization of colorectal cancer has helped us understand better the biology of the disease. However, previous efforts have yet to provide significant clinical value in order to be integrated into clinical practice for patients with early-stage colon cancer (CC). The purpose of this study was to assess PD-L1, GLUT-1, e-cadherin, MUC2, CDX2, and microsatellite instability (dMMR) and to propose a risk-panel with prognostic capabilities. Biomarkers were immunohistochemically assessed through tissue microarrays in a cohort of 144 patients with stage II/III colon cancer. A biomarker panel consisting of PD-L1, GLUT-1, dMMR, and potentially CDX2 was constructed that divided patients into low, medium, and high risk of overall survival or disease-free survival (DFS) in equally sized groups. Compared with low-risk patients, medium-risk patients have almost twice the risk of death (HR = 2.10 (0.99-4.46), p = 0.054), while high-risk patients have almost four times the risk (HR = 3.79 (1.77-8.11), p = 0.001). The multivariate goodness of fit was 0.756 and was correlated with Kaplan-Meier curves (p = 0.002). Consistent results were found for DFS. This study provides a critical basis for the future development of an immunohistochemical assessment capable of discerning early-stage CC patients as a function of their prognosis. This tool may aid with treatment personalization in daily clinical practice and improve survival outcomes.
Collapse
Affiliation(s)
- Pablo Azcue
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
| | - David Guerrero Setas
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Campus Arrosadia, Public University of Navarra, 31006 Pamplona, Spain
- Molecular Pathology of Cancer Group–Navarrabiomed, 31008 Pamplona, Spain
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
| | - Ignacio Encío
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - Berta Ibáñez-Beroiz
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
- Unit of Methodology-Navarrabiomed-University Hospital of Navarra, 31008 Pamplona, Spain
- Research Network on Health Services Research and Chronic Diseases (REDISSEC), 31008 Pamplona, Spain
| | - María Mercado
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
| | - Ruth Vera
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - María Luisa Gómez-Dorronsoro
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| |
Collapse
|
9
|
Cazzato G, Colagrande A, Cimmino A, Abbatepaolo C, Bellitti E, Romita P, Lospalluti L, Foti C, Arezzo F, Loizzi V, Lettini T, Sablone S, Resta L, Cormio G, Ingravallo G, Rossi R. GLUT1, GLUT3 Expression and 18FDG-PET/CT in Human Malignant Melanoma: What Relationship Exists? New Insights and Perspectives. Cells 2021; 10:3090. [PMID: 34831313 PMCID: PMC8624914 DOI: 10.3390/cells10113090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Malignant melanoma is the most aggressive of skin cancers and the 19th most common cancer worldwide, with an estimated age-standardized incidence rate of 2.8-3.1 per 100,000; although there have been clear advances in therapeutic treatment, the prognosis of MM patients with Breslow thickness greater than 1 mm is still quite poor today. The study of how melanoma cells manage to survive and proliferate by consuming glucose has been partially addressed in the literature, but some rather interesting results are starting to be present. METHODS A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and a search of PubMed and Web of Sciences (WoS) databases was performed until 27 September 2021 using the terms: glucose transporter 1 and 3 and GLUT1/3 in combination with each of the following: melanoma, neoplasm and immunohistochemistry. RESULTS In total, 46 records were initially identified in the literature search, of which six were duplicates. After screening for eligibility and inclusion criteria, 16 publications were ultimately included. CONCLUSIONS the results discussed regarding the role and expression of GLUT are still far from definitive, but further steps toward understanding and stopping this mechanism have, at least in part, been taken. New studies and new discoveries should lead to further clarification of some aspects since the various mechanisms of glucose uptake by neoplastic cells are not limited to the transporters of the GLUT family alone.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Anna Colagrande
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Antonietta Cimmino
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Caterina Abbatepaolo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Emilio Bellitti
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Paolo Romita
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (P.R.); (L.L.); (C.F.)
| | - Lucia Lospalluti
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (P.R.); (L.L.); (C.F.)
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (P.R.); (L.L.); (C.F.)
| | - Francesca Arezzo
- Section of Ginecology and Obstetrics, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (F.A.); (V.L.); (G.C.)
| | - Vera Loizzi
- Section of Ginecology and Obstetrics, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (F.A.); (V.L.); (G.C.)
| | - Teresa Lettini
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Sara Sablone
- Section of Legal Medicine, Department of Interdisciplinary Medicine, Bari Policlinico Hospital, University of Bari, “Aldo Moro”, 70124 Bari, Italy;
| | - Leonardo Resta
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Gennaro Cormio
- Section of Ginecology and Obstetrics, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (F.A.); (V.L.); (G.C.)
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Roberta Rossi
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| |
Collapse
|
10
|
Wadsworth BJ, Decotret LR, Villamil C, Yapp D, Wilson D, Benard F, McKenzie M, Bennewith KL. Evaluation of 18F-EF5 for detection of hypoxia in localized adenocarcinoma of the prostate. Acta Oncol 2021; 60:1489-1498. [PMID: 34379579 DOI: 10.1080/0284186x.2021.1959636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND A common feature of solid tumours that are resistant to therapy is the presence of regions with low oxygen content (i.e., hypoxia). Oxygen electrode studies suggest that localized prostate adenocarcinoma is commonly hypoxic, although conflicting data have been reported between immunohistochemical detection of hypoxia-induced proteins in biopsy specimens and positron emission tomography (PET) imaging of 18F-labeled hypoxia reporters. Although the 2-nitroimidazole 18F-EF5 is well-established to label hypoxic tumour cells in pre-clinical tumour models and clinical trials of multiple primary tumour sites, it has yet to be tested in prostate cancer. The purpose of this study was to evaluate the feasibility of using 18F-EF5 to detect hypoxia in clinical prostate tumours. MATERIAL AND METHODS Patients with localized adenocarcinoma of the prostate were recruited for pre-treatment 18F-EF5 PET scans. Immunohistochemistry was conducted on diagnostic biopsies to assess the expression of glucose transporter 1 (GLUT1), osteopontin (OPN), and carbonic anhydrase IX (CAIX). Immunoreactivity scores of staining intensity and frequency were used to indicate the presence of tumour hypoxia. RESULTS We found low tumour-to-muscle ratios of 18F-EF5 uptake that were not consistent with tumour hypoxia, causing early termination of the study. However, we observed GLUT1 and OPN expression in all prostate tumour biopsies, indicating the presence of hypoxia in all tumours. CONCLUSION Our data do not support the use of 18F-EF5 PET to detect hypoxia in prostate adenocarcinoma, and suggest the use of immunohistochemistry to quantify expression of the hypoxia-inducible proteins GLUT1 and OPN as indications of prostate tumour hypoxia.
Collapse
Affiliation(s)
- Brennan J. Wadsworth
- Integrative Oncology, BC Cancer, Vancouver, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Lisa R. Decotret
- Integrative Oncology, BC Cancer, Vancouver, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | - Donald Yapp
- Experimental Therapeutics, BC Cancer, Vancouver, Canada
| | - Don Wilson
- Functional Imaging, BC Cancer, Vancouver, Canada
| | - Francois Benard
- Functional Imaging, BC Cancer, Vancouver, Canada
- Molecular Oncology, BC Cancer, Vancouver, Canada
| | | | - Kevin L. Bennewith
- Integrative Oncology, BC Cancer, Vancouver, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Prosniak M, Kenyon LC, Hooper DC. Glioblastoma Contains Topologically Distinct Proliferative and Metabolically Defined Subpopulations of Nestin- and Glut1-Expressing Cells. J Neuropathol Exp Neurol 2021; 80:674-684. [PMID: 34297838 DOI: 10.1093/jnen/nlab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The difficulty in treatment of glioblastoma is a consequence of its natural infiltrative growth and the existence of a population of therapy-resistant glioma cells that contribute to growth and recurrence. To identify cells more likely to have these properties, we examined the expression in tumor specimens of several protein markers important for glioma progression including the intermediate filament protein, Nestin (NES), a glucose transporter (Glut1/SLC2A1), the glial lineage marker, glial fibrillary acidic protein, and the proliferative indicator, Ki-67. We also examined the expression of von Willebrand factor, a marker for endothelial cells as well as the macrophage/myeloid markers CD163 and CD15. Using a multicolor immunofluorescence and hematoxylin and eosin staining approach with archival formalin-fixed, paraffin embedded tissue from primary, recurrent, and autopsy IDH1 wildtype specimens combined with high-resolution tissue image analysis, we have identified highly proliferative NES(+)/Glut1(-) cells that are preferentially perivascular. In contrast, Glut1(+)/NES(-) cells are distant from blood vessels, show low proliferation, and are preferentially located at the borders of pseudopalisading necrosis. We hypothesize that Glut1(+)/NES(-) cells would be naturally resistant to conventional chemotherapy and radiation due to their low proliferative capacity and may act as a reservoir for tumor recurrence.
Collapse
Affiliation(s)
| | - Lawrence C Kenyon
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
12
|
Zhang G, Dong R, Kong D, Liu B, Zha Y, Luo M. The Effect of GLUT1 on Survival Rate and the Immune Cell Infiltration of Lung Adenocarcinoma and Squamous Cell Carcinoma: A Meta and Bioinformatics Analysis. Anticancer Agents Med Chem 2021; 22:223-238. [PMID: 34238200 DOI: 10.2174/1871520621666210708115406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are two major subtypes of non-small cell lung cancer (NSCLC). Studies have shown that abnormal expression of glucose transport type 1 (GLUT1) in NSCLC patients has been associated with progression, aggressiveness, and poor clinical outcome. However, the clinical effect of GLUT1 expression on LUAD and LUSC is unclear. OBJECTIVE This study aims to learn more about the character of GLUT1 in LUAD and LUSC. METHODS A meta-analysis was performed to evaluate the GLUT1 protein level, and bioinformatics analysis was used to detect the GLUT1 mRNA expression level, survival differences, and the infiltration abundance of immune cells in samples from TCGA. Meanwhile, functional and network analysis was conducted to detect important signaling pathways and key genes with the Gene Expression Omnibus (GEO) dataset. RESULTS Our results showed that GLUT1 was over-expressed both in LUAD and LUSC. LUAD patients with high GLUT1 expression had a poor prognosis. Additionally, GLUT1 was related to B cell and neutrophil infiltration of LUAD. In LUSC, GLUT1 was correlated with tumor purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration. The GEO dataset analysis results suggested GLUT1 potentially participated in the p53 signaling pathway and metabolism of xenobiotics by cytochrome P450 and was associated with KDR, TOX3, AGR2, FOXA1, ERBB3, ANGPT1, and COL4A3 gene in LUAD and LUSC. CONCLUSION GLUT1 might be a potential biomarker for aggressive progression and poor prognosis in LUAD, and a therapeutic biomarker in LUSC.
Collapse
Affiliation(s)
- Guihua Zhang
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Rong Dong
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Yan Zha
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Meng Luo
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| |
Collapse
|
13
|
Onizuka H, Masui K, Amano K, Kawamata T, Yamamoto T, Nagashima Y, Shibata N. Metabolic Reprogramming Drives Pituitary Tumor Growth through Epigenetic Regulation of TERT. Acta Histochem Cytochem 2021; 54:87-96. [PMID: 34276102 PMCID: PMC8275863 DOI: 10.1267/ahc.21-00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenomas are common, benign brain tumors. Some tumors show aggressive phenotypes including early recurrence, local invasion and distant metastasis, but the underlying mechanism to drive the progression of pituitary tumors has remained to be clarified. Aerobic glycolysis known as the Warburg effect is one of the emerging hallmarks of cancer, which has an impact on the tumor biology partly through epigenetic regulation of the tumor-promoting genes. Here, we demonstrate metabolic reprogramming in pituitary tumors contributes to tumor cell growth with epigenetic changes such as histone acetylation. Notably, a shift in histone acetylation increases the expression of telomerase reverse transcriptase (TERT) oncogene, which drives metabolism-dependent cell proliferation in pituitary tumors. These indicate that epigenetic changes could be the specific biomarker for predicting the behavior of pituitary tumors and exploitable as a novel target for the aggressive types of the pituitary tumors.
Collapse
Affiliation(s)
- Hiromi Onizuka
- Department of Surgical Pathology, Tokyo Women’s Medical University
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women’s Medical University
| | - Kenta Masui
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women’s Medical University
| | - Kosaku Amano
- Department of Neurosurgery, Tokyo Women’s Medical University
| | | | - Tomoko Yamamoto
- Department of Surgical Pathology, Tokyo Women’s Medical University
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women’s Medical University
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women’s Medical University
| | - Noriyuki Shibata
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women’s Medical University
| |
Collapse
|
14
|
Elevation of Chemosensitivity of Lung Adenocarcinoma A549 Spheroid Cells by Claudin-2 Knockdown through Activation of Glucose Transport and Inhibition of Nrf2 Signal. Int J Mol Sci 2021; 22:ijms22126582. [PMID: 34205320 PMCID: PMC8235168 DOI: 10.3390/ijms22126582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Claudin-2 (CLDN2), a tight junctional protein, is involved in the chemoresistance in a three-dimensional spheroid culture model of human lung adenocarcinoma A549 cells. However, the mechanism has not been fully clarified. We found that the knockdown of CLDN2 expression by siRNA in the spheroid reduces the expression of glucose transporters and metabolic enzymes. In a two-dimensional culture model, the expression of these proteins was increased by glucose deprivation or fasentin, an inhibitor of glucose transporter. In addition, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant enzymes including heme oxygenase-1, NAD(P)H:quinone oxidoreductase-1, and a glutamate–cysteine ligase modifier subunit were increased by fasentin. The fluorescence intensities of JC-1, a probe of mitochondrial membrane potential, and MitoROS 580, a probe of mitochondrial superoxide production, were increased by fasentin. These results suggest that mitochondrial production of reactive oxygen species is increased by glucose deficiency. The knockdown of CLDN2 enhanced the flux of 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG), a fluorescent deoxyglucose derivative, in a transwell assay, and the accumulation of glucose and 2-NBDG in spheroid cells. The expression of Nrf2 was decreased by CLDN2 knockdown, which was inhibited by fasentin and sulforaphane, a typical Nrf2 activator, in spheroid cells. The sensitivity of spheroid cells to doxorubicin, an anthracycline antitumor antibiotic, was enhanced by CLDN2 knockdown, which was inhibited by fasentin and sulforaphane. We suggest that CLDN2 induces chemoresistance in spheroid cells mediated through the inhibition of glucose transport and activation of the Nrf2 signal.
Collapse
|
15
|
Wei J, Xia T, Chen W, Ran P, Chen M, Li X. Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments. J Tissue Eng Regen Med 2020; 14:774-788. [PMID: 32285997 DOI: 10.1002/term.3042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
With the rise of obesity, diabetes, and other metabolic diseases, in vitro hepatic cell and tissue models play an essential role in the identification of active pharmaceutical ingredients. Up to now, three-dimensional (3D) culture models have rarely focused on hepatic glucose and lipid metabolism. In addition, primary human liver cells suffer from limited availability and interdonor difference for establishing reproducible models. Thus, in the current study, the most available human liver cancer cell line (HepG2) and primary hepatocytes from rats (rPH) were proposed to construct 3D spheroids using injectable fiber fragments with galactose grafts (gSF) as the substrate. rPH and HepG2 spheroids show strong cell-cell and cell-fiber fragment interactions to promote the cell viability, albumin, and urea syntheses. Compared with HepG2 spheroids, rPH spheroids indicate stronger glucose metabolism abilities in terms of glucose consumption, intracellular glycogen content, gluconeogenesis rate, and sensitivity to glucose modulator hormones like insulin and glucagon. On the other hand, HepG2 spheroids display strong lipid metabolism abilities in producing significantly higher levels of total cholesterol and triglyceride. Compared with those without fiber fragments, the gSF-supported 3D culture establishes effective models for in vitro glucose (rPH spheroids) and lipid metabolisms (HepG2 spheroids). The screening models are confirmed from the respective enzyme activities and gene expressions and show significantly higher sensitivity and clinically related responses to hypoglycemic and lipid-lowering drugs. Thus, the culture configuration demonstrates a predictable in vitro platform for defining glucose and lipid metabolism profiles and screening therapeutic agents for metabolism disorders like diabetes and obesity.
Collapse
Affiliation(s)
- Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Tian Xia
- Department of Pathology, Western Theater Command Air Force Hospital, Chengdu, China
| | - Weijia Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
16
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
17
|
Evaluation of tumor hypoxia prior to radiotherapy in intermediate-risk prostate cancer using 18F-fluoromisonidazole PET/CT: a pilot study. Oncotarget 2018. [PMID: 29515786 PMCID: PMC5839367 DOI: 10.18632/oncotarget.24234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Hypoxia is a major factor in prostate cancer aggressiveness and radioresistance. Predicting which patients might be bad candidates for radiotherapy may help better personalize treatment decisions in intermediate-risk prostate cancer patients. We assessed spatial distribution of 18F-Misonidazole (FMISO) PET/CT uptake in the prostate prior to radiotherapy treatment. Materials and Methods Intermediate-risk prostate cancer patients about to receive high-dose (>74 Gy) radiotherapy to the prostate without hormonal treatment were prospectively recruited between 9/2012 and 10/2014. Prior to radiotherapy, all patients underwent a FMISO PET/CT as well as a MRI and 18F-choline-PET. 18F-choline and FMISO-positive volumes were semi-automatically determined using the fuzzy locally adaptive Bayesian (FLAB) method. In FMISO-positive patients, a dynamic analysis of early tumor uptake was performed. Group differences were assessed using the Wilcoxon signed rank test. Parameters were correlated using Spearman rank correlation. Results Of 27 patients (median age 76) recruited to the study, 7 and 9 patients were considered positive at 2.5h and 3.5h FMISO PET/CT respectively. Median SUVmax and SUVmax tumor to muscle (T/M) ratio were respectively 3.4 and 3.6 at 2.5h, and 3.2 and 4.4 at 3.5h. The median FMISO-positive volume was 1.1 ml. Conclusions This is the first study regarding hypoxia imaging using FMISO in prostate cancer showing that a small FMISO-positive volume was detected in one third of intermediate-risk prostate cancer patients.
Collapse
|
18
|
Zhou Y, Wen H, Gu L, Fu J, Guo J, Du L, Zhou X, Yu X, Huang Y, Wang H. Aminoglucose-functionalized, redox-responsive polymer nanomicelles for overcoming chemoresistance in lung cancer cells. J Nanobiotechnology 2017; 15:87. [PMID: 29179722 PMCID: PMC5704373 DOI: 10.1186/s12951-017-0316-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/04/2017] [Indexed: 01/30/2023] Open
Abstract
Background Chemotherapeutic drugs used for cancer therapy frequently encounter multiple-drug resistance (MDR). Nanoscale carriers that can target tumors to accumulate and release drugs intracellularly have the greatest potential for overcoming MDR. Glucose transporter-1 (GLUT-1) and glutathione (GSH) overexpression in cancer cells was exploited to assemble aminoglucose (AG)-conjugated, redox-responsive nanomicelles from a single disulfide bond-bridged block polymer of polyethylene glycol and polylactic acid (AG-PEG-SS-PLA). However, whether this dual functional vector can overcome MDR in lung cancer is unknown. Results In this experiment, AG-PEG-SS-PLA was synthetized successfully, and paclitaxel (PTX)-loaded AG-PEG-SS-PLA (AG-PEG-SS-PLA/PTX) nanomicelles exhibited excellent physical properties. These nanomicelles show enhanced tumor targeting as well as drug accumulation and retention in MDR cancer cells. Caveolin-dependent endocytosis is mainly responsible for nanomicelle internalization. After internalization, the disulfide bond of AG-PEG-SS-PLA is cleaved in the presence of high intracellular glutathione levels, causing the hydrophobic core to become a polar aqueous solution, which subsequently results in nanomicelle disassembly and the rapid release of encapsulated PTX. Reduced drug resistance was observed in cancer cells in vitro. The caspase-9 and caspase-3 cascade was activated by the AG-PEG-SS-PLA/PTX nanomicelles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the anti-apoptotic protein Bcl-2, thereby increasing apoptosis. Furthermore, significantly enhanced tumor growth inhibition was observed in nude mice bearing A549/ADR xenograft tumors after the administration of AG-PEG-SS-PLA/PTX nanomicelles via tail injection. Conclusions These promising results indicate that AG-PEG-SS-PLA/PTX nanomicelles could provide the foundation for a paradigm shift in MDR cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12951-017-0316-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Huaying Wen
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Liang Gu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Jijun Fu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Jiayi Guo
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Lingran Du
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiaoqin Zhou
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiyong Yu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yugang Huang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| | - He Wang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China. .,Center of Cancer Research, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
19
|
The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today 2017; 22:1637-1653. [DOI: 10.1016/j.drudis.2017.08.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|
20
|
Shan XH, Wang P, Xiong F, Gu N, Hu H, Qian W, Lu HY, Fan Y. MRI of High-Glucose Metabolism Tumors: a Study in Cells and Mice with 2-DG-Modified Superparamagnetic Iron Oxide Nanoparticles. Mol Imaging Biol 2016; 18:24-33. [PMID: 26150194 PMCID: PMC4722088 DOI: 10.1007/s11307-015-0874-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE This study aims to evaluate the effect of dimercaptosuccinic acid (DMSA)-coated superparamagnetic iron oxide (γ-Fe(2)O(3)@DMSA) bearing the 2-deoxy-D-glucose (2-DG) ligand on targeting tumors with high-glucose metabolism. PROCEDURES γ-Fe(2)O(3)@DMSA and 2-DG-conjugated γ-Fe(2)O(3)@DMSA (γ-Fe(2)O(3)@DMSA-DG) were prepared. The glucose consumption of MDA-MB-231 and MCF-7 breast cancer cells and human mammary epithelial cells (HMEpiCs) was assessed. Cells were incubated with γ-Fe(2)O(3)@DMSA or γ-Fe(2)O(3)@DMSA-DG, and MDA-MB-231 cells which exhibited the highest glucose consumption were used in breast cancer xenografts. Tumor targeting was studied by magnetic resonance imaging and Prussian blue staining in vivo. RESULTS Glucose consumption was highest in MDA-MB-231 and lowest in HMEpiCs. In vitro, there was significant uptake of γ-Fe(2)O(3)@DMSA-DG by MDA-MB-231 and MCF-7 cells within 2 h and this was inhibited by glucose. Uptake of γ-Fe(2)O(3)@DMSA-DG was significantly higher in MDA-MB-231 compared with MCF-7 cells, and there was no obvious uptake of γ-Fe(2)O(3)@DMSA in either cell line. In vivo, γ-Fe(2)O(3)@DMSA-DG could be detected in the liver and in tumors post-injection, while γ-Fe(2)O(3)@DMSA was nearly undetectable in tumors. CONCLUSIONS 2-DG-coated γ-Fe(2)O(3)@DMSA improved tumor targeting of γ-Fe(2)O(3)@DMSA which can be assessed by magnetic resonance imaging.
Collapse
Affiliation(s)
- Xiu Hong Shan
- Department of Radiology, The Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, 212002, China.
| | - Peng Wang
- Department of Radiology, The Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Hui Hu
- Department of Radiology, The Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Wei Qian
- Department of Radiology, The Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Hao Yue Lu
- Medical college, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Fan
- Oncology Institute, The Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, 212002, China
| |
Collapse
|
21
|
Muratori L, Petroni G, Antonuzzo L, Boni L, Iorio J, Lastraioli E, Bartoli G, Messerini L, Di Costanzo F, Arcangeli A. hERG1 positivity and Glut-1 negativity identifies high-risk TNM stage I and II colorectal cancer patients, regardless of adjuvant chemotherapy. Onco Targets Ther 2016; 9:6325-6332. [PMID: 27789963 PMCID: PMC5072508 DOI: 10.2147/ott.s114090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The identification of early-stage colorectal cancer (CRC) with high risk of progression is one major clinical challenge, mainly due to lack of validated biomarkers. The aims of the present study were to analyze the prognostic impact of three molecular markers belonging to the ion channels and transporters family: the ether-à-go-go-related gene 1 (hERG1) and the calcium-activated KCa3.1 potassium channels, as well as the glucose transporter 1 (Glut-1); and to define the impact of adjuvant chemotherapy in conjunction with the abovementioned biomarkers, in a cohort of radically resected stage I-III CRC patients. PATIENTS AND METHODS The expressions of hERG1, KCa3.1, and Glut-1 were tested by immunohistochemistry on 162 surgical samples of nonmetastatic, stage I-III CRC patients. The median follow-up was 32 months. The association between biological markers, clinicopathological features, and survival outcomes was investigated by evaluating both disease-free survival and overall survival. RESULTS Although no prognostic valence emerged for KCa3.1, evidence of a negative impact of hERG1 expression on survival outcomes was provided. On the contrary, Glut-1 expression had a positive impact. According to the results of the multivariate analysis, patients were stratified in four risk groups, based on TNM stage and hERG1/Glut-1 expression. After adjusting for adjuvant therapy, stage I and II, Glut-1-negative, and hERG1-positive patients showed the worst survival experience. CONCLUSION This study strongly indicates that the combination of hERG1 positivity and Glut-1 negativity behaves as a prognostic biomarker in radically resected CRC patients. This combination identifies a group of stage I and II CRC patients with a bad prognosis, even worse than that of stage III patients, regardless of adjuvant therapy accomplishment.
Collapse
Affiliation(s)
- Leonardo Muratori
- Department of Experimental and Clinical Medicine, University of Florence
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence
| | - Lorenzo Antonuzzo
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence; Department of Medical Biotechnologies, University of Siena, Siena
| | - Luca Boni
- Clinical Trials Coordinating Center, Istituto Toscano Tumori, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence; Department of Medical Biotechnologies, University of Siena, Siena
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence
| | - Gianluca Bartoli
- Department of Experimental and Clinical Medicine, University of Florence
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence
| | | | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence
| |
Collapse
|
22
|
Baker AF, Malm SW, Pandey R, Laughren C, Cui H, Roe D, Chambers SK. Evaluation of a hypoxia regulated gene panel in ovarian cancer. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2015; 8:45-56. [PMID: 25998313 PMCID: PMC4449346 DOI: 10.1007/s12307-015-0166-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/26/2015] [Indexed: 01/02/2023]
Abstract
A panel of nine hypoxia regulated genes, selected from a previously published fifty gene panel, was investigated for its ability to predict hypoxic ovarian cancer phenotypes. All nine genes including vascular endothelial growth factor A, glucose transporter 1, phosphoglycerate mutase 1, lactate dehydrogenase A, prolyl 4-hydroxylase, alpha-polypeptide 1, adrenomedullin, N-myc downstream regulated 1, aldolase A, and carbonic anhydrase 9 were upregulated in the HEY and OVCAR-3 human ovarian cell lines cultured in vitro under hypoxic compared to normoxic conditions as measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The gene panel was also elevated in HEY xenograft tumor tissue compared to HEY cells cultured in normoxia. The HEY xenograft tissue demonstrated heterogeneous positive immunohistochemical staining for the exogenous hypoxia biomarker pimonidazole, and the hypoxia regulated protein carbonic anhydrase IX. A quantitative nuclease protection assay (qNPA) was developed which included the nine hypoxia regulated genes. The qNPA assay provided similar results to those obtained using qRT-PCR for cultured cell lines. The qNPA assay was also evaluated using paraffin embedded fixed tissues including a set of five patient matched primary and metastatic serous cancers and four normal ovaries. In this small sample set the average gene expression was higher in primary and metastatic cancer tissue compared to normal ovaries for the majority of genes investigated. This study supports further evaluation by qNPA of this gene panel as an alternative or complimentary method to existing protein biomarkers to identify ovarian cancers with a hypoxic phenotype.
Collapse
Affiliation(s)
- Amanda F. Baker
- University of Arizona Cancer Center and College of Medicine, Tucson, Arizona ,University of Arizona Cancer Center, 1515 N. Campbell Ave Room 3977A, Tucson, AZ 85724 Arizona
| | - Scott W. Malm
- University of Arizona Cancer Center and College of Pharmacy, Tucson, Arizona
| | - Ritu Pandey
- University of Arizona Cancer Center, 1515 N. Campbell Ave Room 3977A, Tucson, AZ 85724 Arizona
| | - Cindy Laughren
- University of Arizona Cancer Center, 1515 N. Campbell Ave Room 3977A, Tucson, AZ 85724 Arizona
| | - Haiyan Cui
- University of Arizona Cancer Center, 1515 N. Campbell Ave Room 3977A, Tucson, AZ 85724 Arizona
| | - Denise Roe
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, Tucson, Arizona
| | - Setsuko K. Chambers
- University of Arizona Cancer Center and College of Medicine, Tucson, Arizona
| |
Collapse
|
23
|
Harshani JM, Yeluri S, Guttikonda VR. Glut-1 as a prognostic biomarker in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2015; 18:372-8. [PMID: 25948991 PMCID: PMC4409181 DOI: 10.4103/0973-029x.151318] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/06/2015] [Indexed: 02/04/2023] Open
Abstract
Introduction: Glut-1 is a glucose transporter protein, the expression of which is upregulated in malignant cells which show increased glucose uptake. Alterations in expression of Glut-1 have been reported in several pre-malignant and malignant lesions. The objectives of the present study were to compare the expression of Glut-1 in normal persons and in patients with oral squamous cell carcinoma (OSCC), to correlate the expression of Glut-1 with respect to clinical staging of OSCC and to evaluate the expression of Glut-1 with respect to different histopathological grades of OSCC. Materials and Methods: Thirty cases of OSCC were staged clinically and graded histopathologically. Immunohistochemical method was used to detect the expression of Glut-1 in OSCC and the same was compared with the normal subjects. The scores were compared using the chi-square test. Results: Glut-1 expression was detected in all grades of OSCC. A significant correlation with a P value of 0.00004 was found in immunostaining between normal and OSCC. The expression of Glut-1 was significant when compared with different clinical stages with significant P value of 0.0004 and in different histopathological grades of OSCC with a P value of 0.00001. Conclusion: Higher immunohistochemical staining scores were obtained with increased clinical staging and histopathological grades of OSCC. High expression of Glut-1 may be related to poor prognosis in OSCC.
Collapse
Affiliation(s)
- Jyotsna M Harshani
- Department of Oral Pathology and Microbiology, Mamata Dental College, Khammam, Andhra Pradesh, India
| | - Sivaranjani Yeluri
- Department of Oral Pathology and Microbiology, Mamata Dental College, Khammam, Andhra Pradesh, India
| | | |
Collapse
|
24
|
Xing X, Zhang B, Wang X, Liu F, Shi D, Cheng Y. An "imaging-biopsy" strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots. Biomaterials 2015; 48:16-25. [PMID: 25701028 DOI: 10.1016/j.biomaterials.2015.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/27/2022]
Abstract
Glucose transporter1 (Glut1) plays important roles in treatment of colorectal cancer (CRC) involving early-stage diagnosis, subtype, TNM stage, and therapeutic schedule. Currently, in situ marking and tracking of the tumor biomarkers via clinical imaging remains great challenges in early stage CRC diagnosis. In this study, we have developed a unique cell-targeted, paramagnetic-fluorescent double-signal molecular nanoprobe for CRC in vivo magnetic resonance imaging (MRI) diagnosis and subsequent biopsy. The unique molecular nanoprobe is composed of a fluorescent quantum dot (QD) core; a coating layer of paramagnetic DTPA-Gd coupled BSA ((Gd)DTPA∙BSA), and a surface targeting moiety of anti-Glut1 polyclonal antibody. The engineered (Gd)DTPA∙BSA@QDs-PcAb is 35 nm in diameter and colloidally stable under both basic and acidic conditions. It exhibits strong fluorescent intensities and high relaxivity (r1 and r2: 16.561 and 27.702 s(-1) per mM of Gd(3+)). Distribution and expression of Glut1 of CRC cells are investigated by in vitro cellular confocal fluorescent imaging and MR scanning upon treating with the (Gd)DTPA∙BSA@QDs-PcAb nanoprobes. In vivo MRI shows real-time imaging of CRC tumor on nude mice after intravenously injection of the (Gd)DTPA∙BSA@QDs-PcAb nanoprobes. Ex vivo biopsy is subsequently conducted for expression of Glut1 on tumor tissues. These nanoprobes are found biocompatible in vitro and in vivo. (Gd)DTPA∙BSA@QDs-PcAb targeted nanoprobe is shown to be a promising agent for CRC cancer in vivo MRI diagnosis and ex vivo biopsy analysis. The "imaging-biopsy" is a viable strategy for tumor reconfirmation with improved diagnostic accuracy and biopsy in personalized treatment.
Collapse
Affiliation(s)
- Xiaohong Xing
- Department of Radiology of the Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Bingbo Zhang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China.
| | - Xiaohui Wang
- Department of Radiology of the Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Fengjun Liu
- Department of Radiology of the Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Donglu Shi
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China; The Materials Science and Engineering Program, Dept of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, 200233, PR China.
| |
Collapse
|
25
|
Pujol-Gimenez J, de Heredia FP, Idoate MA, Airley R, Lostao MP, Evans AR. Could GLUT12 be a Potential Therapeutic Target in Cancer Treatment? A Preliminary Report. J Cancer 2015; 6:139-43. [PMID: 25561978 PMCID: PMC4280396 DOI: 10.7150/jca.10429] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/28/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recent studies proposed GLUT12 to be a major glucose transporter involved in the glycolytic metabolism of cancer cells. METHODS GLUT12 expression was determined by immunohistochemistry in a selection of cancer cell lines and a tumour spheroid model. RESULTS GLUT12 expression was high in A549 and RH-36; low in HT29; and absent in NB-EB cancer cell lines. GLUT12 expression was located in the necrotic centre of HT29 spheroids, which is characterised by anaerobic metabolism. CONCLUSION The data supports the involvement of GLUT12 in the glycolytic metabolism of cancer cells and therefore, its potential as a novel therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Jonai Pujol-Gimenez
- 1. Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Fátima Pérez de Heredia
- 2. School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Miguel Angel Idoate
- 3. Department of Pathology, Clínica Universidad de Navarra, Av. Pío XII 36, 31008 Pamplona, Spain
| | - Rachel Airley
- 4. School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - María Pilar Lostao
- 1. Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Andrew Robert Evans
- 5. School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
26
|
Liszka Ł, Pająk J, Gołka D. Serous neoplasms of the pancreas share many, but not all aspects of their microvascular and angiogenic profile with low-grade clear cell renal cell carcinomas. Pathol Res Pract 2014; 210:901-8. [DOI: 10.1016/j.prp.2014.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 03/26/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
|
27
|
Husain AN, Mirza MK, Gibbs A, Hiroshima K, Chi Y, Boumendjel R, Stang N, Krausz T, Galateau-Salle F. How useful is GLUT-1 in differentiating mesothelial hyperplasia and fibrosing pleuritis from epithelioid and sarcomatoid mesotheliomas? An international collaborative study. Lung Cancer 2014; 83:324-8. [DOI: 10.1016/j.lungcan.2013.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
28
|
Role of carbohydrate response element-binding protein (ChREBP) in generating an aerobic metabolic phenotype and in breast cancer progression. Br J Cancer 2014; 110:715-23. [PMID: 24366300 PMCID: PMC3915128 DOI: 10.1038/bjc.2013.765] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/08/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The lipogenic transcription factor carbohydrate response element-binding protein (ChREBP) may play a key role in malignant progression of breast cancer by allowing metabolic adaptations to take place in response to changes in oxygenation. METHODS Immunohistochemical analysis of ChREBP was carried out in human breast tumour tissue microarrays representative of malignant progression from normal breast through to metastatic cancer. The ChREBP protein and mRNA expressions were then analysed in a series of breast cancers for correlative analysis with common and breast-specific hypoxia signatures, and survival. RESULTS In invasive ductal carcinoma, ChREBP correlated significantly with mean 'downregulated' hypoxia scores (r=0.3, P<0.015, n=67) and in two distinct breast progression arrays, ChREBP protein also increased with malignant progression (P<0.001). However, bioinformatic analysis of a large data set (2136 cases) revealed an apparent reversal in the relationship between ChREBP mRNA level and clinical outcome - not only being significantly correlated with increased survival (log rank P<0.001), but also downregulated in malignant tissue compared with adjacent normal tissue. CONCLUSION The ChREBP expression may be reflective of an aerobic metabolic phenotype that may conflict with hypoxia-induced signalling but provide a mechanism for growth at the oxygenated edge of the tumours.
Collapse
|
29
|
Adams A, van Brussel ASA, Vermeulen JF, Mali WPTM, van der Wall E, van Diest PJ, Elias SG. The potential of hypoxia markers as target for breast molecular imaging--a systematic review and meta-analysis of human marker expression. BMC Cancer 2013; 13:538. [PMID: 24206539 PMCID: PMC3903452 DOI: 10.1186/1471-2407-13-538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background Molecular imaging of breast cancer is a promising emerging technology, potentially able to improve clinical care. Valid imaging targets for molecular imaging tracer development are membrane-bound hypoxia-related proteins, expressed when tumor growth outpaces neo-angiogenesis. We performed a systematic literature review and meta-analysis of such hypoxia marker expression rates in human breast cancer to evaluate their potential as clinically relevant molecular imaging targets. Methods We searched MEDLINE and EMBASE for articles describing membrane-bound proteins that are related to hypoxia inducible factor 1α (HIF-1α), the key regulator of the hypoxia response. We extracted expression rates of carbonic anhydrase-IX (CAIX), glucose transporter-1 (GLUT1), C-X-C chemokine receptor type-4 (CXCR4), or insulin-like growth factor-1 receptor (IGF1R) in human breast disease, evaluated by immunohistochemistry. We pooled study results using random-effects models and applied meta-regression to identify associations with clinicopathological variables. Results Of 1,705 identified articles, 117 matched our selection criteria, totaling 30,216 immunohistochemistry results. We found substantial between-study variability in expression rates. Invasive cancer showed pooled expression rates of 35% for CAIX (95% confidence interval (CI): 26-46%), 51% for GLUT1 (CI: 40-61%), 46% for CXCR4 (CI: 33-59%), and 46% for IGF1R (CI: 35-70%). Expression rates increased with tumor grade for GLUT1, CAIX, and CXCR4 (all p < 0.001), but decreased for IGF1R (p < 0.001). GLUT1 showed the highest expression rate in grade III cancers with 58% (45-69%). CXCR4 showed the highest expression rate in small T1 tumors with 48% (CI: 28-69%), but associations with size were only significant for CAIX (p < 0.001; positive association) and IGF1R (p = 0.047; negative association). Although based on few studies, CAIX, GLUT1, and CXCR4 showed profound lower expression rates in normal breast tissue and benign breast disease (p < 0.001), and high rates in carcinoma in situ. Invasive lobular carcinoma consistently showed lower expression rates (p < 0.001). Conclusions Our results support the potential of hypoxia-related markers as breast cancer molecular imaging targets. Although specificity is promising, combining targets would be necessary for optimal sensitivity. These data could help guide the choice of imaging targets for tracer development depending on the envisioned clinical application.
Collapse
Affiliation(s)
- Arthur Adams
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abouzeid AH, Patel NR, Rachman IM, Senn S, Torchilin VP. Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin. J Drug Target 2013; 21:994-1000. [PMID: 24098980 DOI: 10.3109/1061186x.2013.840639] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Treatment of late stage cancers has proven to be a very difficult task. Targeted therapy and combinatory drug administration may be the solution. PURPOSE The study was performed to evaluate the therapeutic efficacy of PEG-PE micelles, co-loaded with curcumin (CUR) and doxorubicin (DOX), and targeted with anti-GLUT1 antibody (GLUT1) against HCT-116 human colorectal adenocarcinoma cells both in vitro and in vivo. METHODS HCT-116 cells were treated with non-targeted and GLUT1-targeted CUR and DOX micelles as a single agent or in combination. Cells were inoculated in female nude mice. Established tumors were treated with the micellar formulations at a dose of 4 mg/kg CUR and 0.4 mg/kg DOX every 2 d for a total of 7 injections. RESULTS CUR + DOX-loaded micelles decorated with GLUT1 had a robust killing effect even at low doses of DOX in vitro. At the doses chosen, non-targeted CUR and CUR + DOX micelles did not exhibit any significant tumor inhibition versus control. However, GLUT1-CUR and GLUT1-CUR + DOX micelles showed a significant tumor inhibition effect with an improvement in survival. CONCLUSION We showed a dramatic improvement in efficacy between the non-targeted and GLUT1-targeted formulations both in vitro and in vivo. Hence, we confirmed that GLUT1-CUR + DOX micelles are effective and deserve further investigation.
Collapse
Affiliation(s)
- Abraham H Abouzeid
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, MA , USA and
| | | | | | | | | |
Collapse
|
31
|
Emerging metabolic targets in the therapy of hematological malignancies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:946206. [PMID: 24024216 PMCID: PMC3759275 DOI: 10.1155/2013/946206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
During the last decade, the development of anticancer therapies has focused on targeting neoplastic-related metabolism. Cancer cells display a variety of changes in their metabolism, which enable them to satisfy the high bioenergetic and biosynthetic demands for rapid cell division. One of the crucial alterations is referred to as the "Warburg effect", which involves a metabolic shift from oxidative phosphorylation towards the less efficient glycolysis, independent of the presence of oxygen. Although there are many examples of solid tumors having altered metabolism with high rates of glucose uptake and glycolysis, it was only recently reported that this phenomenon occurs in hematological malignancies. This review presents evidence that targeting the glycolytic pathway at different levels in hematological malignancies can inhibit cancer cell proliferation by restoring normal metabolic conditions. However, to achieve cancer regression, high concentrations of glycolytic inhibitors are used due to limited solubility and biodistribution, which may result in toxicity. Besides using these inhibitors as monotherapies, combinatorial approaches using standard chemotherapeutic agents could display enhanced efficacy at eradicating malignant cells. The identification of the metabolic enzymes critical for hematological cancer cell proliferation and survival appears to be an interesting new approach for the targeted therapy of hematological malignancies.
Collapse
|
32
|
Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mitochondrial superoxide in colorectal cancer cells. Cell Death Dis 2013; 4:e622. [PMID: 23640464 PMCID: PMC3674358 DOI: 10.1038/cddis.2013.149] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells may survive under oxygen and nutrient deprivation by metabolic reprogramming for high levels of anaerobic glycolysis, which contributes to tumor growth and drug resistance. Abnormally expressed glucose transporters (GLUTs) are colocalized with hypoxia (Hx) inducible factor (HIF)1α in peri-necrotic regions in human colorectal carcinoma. However, the underlying mechanisms of anti-necrotic resistance conferred by glucose metabolism in hypoxic cancer cells remain poorly understood. Our aim was to investigate signaling pathways of Hx-induced necroptosis and explore the role of glucose pyruvate metabolite in mechanisms of death resistance. Human colorectal carcinoma cells were Hx exposed with or without glucose, and cell necroptosis was examined by receptor-interacting protein (RIP)1/3 kinase immunoprecipitation and (32)P kinase assays. Our results showed increased RIP1/3 complex formation and phosphorylation in hypoxic, but not normoxic cells in glucose-free media. Blocking RIP1 signaling, by necrostatin-1 or gene silencing, decreased lactodehydrogenase (LDH) leakage and plasma membrane disintegration. Generation of mitochondrial superoxide was noted after hypoxic challenge; its reduction by antioxidants inhibited RIP signaling and cell necrosis. Supplementation of glucose diminished the RIP-dependent LDH leakage and morphological damage in hypoxic cells, whereas non-metabolizable sugar analogs did not. Hypoxic cells given glucose showed nuclear translocation of HIF1α associated with upregulation of GLUT-1 and GLUT-4 expression, as well as increase of intracellular ATP, pyruvate and lactate levels. The glucose-mediated death resistance was ablated by iodoacetate (an inhibitor to glyceraldehyde-3-phosphate dehydrogenase), but not by UK5099 (an inhibitor to mitochondrial pyruvate carrier), suggesting that glycolytic pathway was involved in anti-necrotic mechanism. Lastly, replacing glucose with cell-permeable pyruvate derivative also led to decrease of Hx-induced necroptosis by suppression of mitochondrial superoxide in an energy-independent manner. In conclusion, glycolytic metabolism confers resistance to RIP-dependent necroptosis in hypoxic cancer cells partly through pyruvate scavenging of mitochondrial free radicals.
Collapse
|
33
|
Abbondati E, Del-Pozo J, Hoather TM, Constantino-Casas F, Dobson JM. An immunohistochemical study of the expression of the hypoxia markers Glut-1 and Ca-IX in canine sarcomas. Vet Pathol 2013; 50:1063-9. [PMID: 23628694 DOI: 10.1177/0300985813486810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tumor hypoxia has been associated with increased malignancy, likelihood of metastasis, and increased resistance to radiotherapy and chemotherapy in human medicine. Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that is induced by tumor hypoxia and regulates the pathways involved in cellular response and adaptation to the hostile tumor microenvironment. HIF-1 induces transcription of different proteins, including Ca-IX and Glut-1, which are considered endogenous markers of chronic hypoxia in solid tumors in humans. In this study, sections from 40 canine sarcomas (20 histiocytic sarcomas and 20 low-grade soft-tissue sarcomas) were immunostained for these markers. Expression of Glut-1 was scored based on percentage of positive staining cells (0 = <1%; 1 = 1%-50%; 2 = >50%) and intensity of cellular staining (1 = weak; 2 = strong); Ca-IX was scored based on percentage of positive cells (0 = <1%; 1 = 1%-30%; 2 = >30%). Intratumoral microvessel density was measured using CD31 to assess intratumoral neoangiogenesis. Histiocytic sarcomas showed statistically significant higher Glut-1 immunoreactivity and angiogenesis than did low-grade soft-tissue sarcomas. Intratumoral microvessel density in histiocytic sarcomas was positively associated with Glut-1 immunoreactivity score. These findings suggest a potential role of hypoxia in the biology of these tumors and may provide a base for investigation of the potential prognostic use of these markers in naturally occurring canine tumors.
Collapse
Affiliation(s)
- E Abbondati
- School of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow, G611QH, UK.
| | | | | | | | | |
Collapse
|
34
|
Necrosis Degree Displayed in Computed Tomography Images Correlated With Hypoxia and Angiogenesis in Breast Cancer. J Comput Assist Tomogr 2013; 37:22-8. [DOI: 10.1097/rct.0b013e318279abd1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Martinez-Outschoorn UE, Balliet RM, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP. Hereditary ovarian cancer and two-compartment tumor metabolism: epithelial loss of BRCA1 induces hydrogen peroxide production, driving oxidative stress and NFκB activation in the tumor stroma. Cell Cycle 2012; 11:4152-66. [PMID: 23047606 DOI: 10.4161/cc.22226] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary ovarian cancers. Here, we used a co-culture approach to study the metabolic effects of BRCA1-null ovarian cancer cells on adjacent tumor-associated stromal fibroblasts. Our results directly show that BRCA1-null ovarian cancer cells produce large amounts of hydrogen peroxide, which can be abolished either by administration of simple antioxidants (N-acetyl-cysteine; NAC) or by replacement of the BRCA1 gene. Thus, the BRCA1 gene normally suppresses tumor growth by functioning as an antioxidant. Importantly, hydrogen peroxide produced by BRCA1-null ovarian cancer cells induces oxidative stress and catabolic processes in adjacent stromal fibroblasts, such as autophagy, mitophagy and glycolysis, via stromal NFκB activation. Catabolism in stromal fibroblasts was also accompanied by the upregulation of MCT4 and a loss of Cav-1 expression, which are established markers of a lethal tumor microenvironment. In summary, loss of the BRCA1 tumor suppressor gene induces hydrogen peroxide production, which then leads to metabolic reprogramming of the tumor stroma, driving stromal-epithelial metabolic coupling. Our results suggest that new cancer prevention trials with antioxidants are clearly warranted in patients that harbor hereditary/familial BRCA1 mutations.
Collapse
Affiliation(s)
- Ubaldo E Martinez-Outschoorn
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu YY, Bao YY, Zhou SH, Fan J. Effect on the expression of MMP-2, MT-MMP in laryngeal carcinoma Hep-2 cell line by antisense glucose transporter-1. Arch Med Res 2012; 43:395-401. [PMID: 22835601 DOI: 10.1016/j.arcmed.2012.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND AIMS Glucose transporter protein-1 (Glut-1) is correlated with biological behaviors of malignant tumors. However, there was no evidence that overexpression of Glut-1 mechanistically lead to invasion or metastasis of cancer cells. We hypothesized that Glut-1 regulates the expression of membrane type 1-MMP (MT1-MMP) and matrix metalloproteinase-2 (MMP-2). METHODS Analysis of the expression of Glut-1, MMP-2, β-actin, and MT1-MMP was performed using RT-PCR. Expression of Glut-1 protein, MMP-2, and MT1-MMP was detected by Western blotting. RESULTS At mRNA and protein levels, Glut-1 and MMP-2 were co-expressed in the Hep-2 laryngeal carcinoma cell line. After transfection, Glut-1 antisense oligodeoxynucleotide (AS-ODN) decreased the expression of MMP-2 mRNA and protein as well as Glut-1 mRNA and protein. Glut-1 AS-ODN also decreased the expression of MT1-MMP mRNA. CONCLUSIONS Co-expression of Glut-1 and MMP-2 in Hep-2 laryngeal carcinoma cells and Glut-1 may regulate MMP-2 and MT1-MMP expression.
Collapse
Affiliation(s)
- Ying-Ying Xu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
37
|
Mayer A, Schneider F, Vaupel P, Sommer C, Schmidberger H. Differential expression of HIF-1 in glioblastoma multiforme and anaplastic astrocytoma. Int J Oncol 2012; 41:1260-70. [PMID: 22825389 PMCID: PMC3583842 DOI: 10.3892/ijo.2012.1555] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/01/2012] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is an important factor mediating tumor progression and therapeutic resistance, in part through proteome changes mediated by the transcription factor hypoxia-inducible factor (HIF)-1. Since glioblastoma multiforme is the epitome of a highly aggressive tumor entity, while lower-grade astrocytomas often show a prolonged clinical course, a profound difference in the extent of hypoxic tissue areas and corresponding magnitude of HIF-1 activity may exist between these entities. In this study, to address this question, serial sections of 11 glioblastomas and 10 anaplastic astrocytomas were immunostained for HIF-1α, glucose transporter (GLUT)-1, carbonic anhydrase (CA) IX (i.e., hypoxia-related markers), Ki67 (proliferation), phosphorylated ribosomal protein S6 [p-rpS6; mammalian target of rapamycin (mTOR) activity] and CD34 (microvascular endothelium). Digital scans of whole tumor sections were registered to achieve geometric correspondence for subsequent morphometric operations. HIF-1α-, GLUT-1- and CA IX-positive staining was found in all 11 glioblastomas, showing a preferential expression in tissue areas adjacent to necroses. A considerable spatial overlap between GLUT-1 and CA IX, and a colocalization of these proteins with areas of enlarged mean diffusion distances were observed. Conversely, 8 of the 10 anaplastic astrocytomas were completely negative for hypoxia-related markers. The glioblastomas also showed significantly greater heterogeneity of intercapillary distances, larger diffusion-limited tissue fractions, significantly higher mTOR activity and a trend for higher proliferation rates. Microregionally, mTOR and proliferation showed a significant spatial overlap with areas of shorter mean diffusion distances. In conclusion, diffusion-limited hypoxia, leading to the expression of hypoxia-related markers is a pivotal element of the glioblastoma phenotype and may be driven by dysregulated growth and proliferation in normoxic subregions.
Collapse
Affiliation(s)
- Arnulf Mayer
- Department of Radiooncology and Radiotherapy, University Medical Center, D-55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
38
|
Lastraioli E, Bencini L, Bianchini E, Romoli MR, Crociani O, Giommoni E, Messerini L, Gasperoni S, Moretti R, Di Costanzo F, Boni L, Arcangeli A. hERG1 Channels and Glut-1 as Independent Prognostic Indicators of Worse Outcome in Stage I and II Colorectal Cancer: A Pilot Study. Transl Oncol 2012; 5:105-112. [PMID: 22496927 PMCID: PMC3323932 DOI: 10.1593/tlo.11250] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND There is a need to identify new markers to assess recurrence risk in early-stage colorectal cancer (CRC) patients. We explored the prognostic impact of ether-a-gò-gò-related gene 1 channels and some hypoxia markers, in patients with nonmetastatic (stage I, II, and III) CRC. METHODS The expression of hERG1, vascular endothelial growth factor A (VEGF-A), glucose transporter 1, carbonic anhydrase IX (CA-IX), epidermal growth factor receptor (EGF-R), and p53 was tested by immunohistochemistry in 135 patients. The median follow-up was 35 months. Clinicopathologic parameters and overall survival were evaluated. RESULTS hERG1 displayed a statistically significant association with Glut-1, VEGF-A, CA-IX, and EGF-R; p53 with VEGF-A and CA-IX; Glut-1 with the age of the patients; and EGF-R with TNM and mucin content. TNM and CA-IX were prognostic factors at the univariate analysis; TNM, hERG1, and Glut-1, at the multivariate analysis. Risk scores calculated from the final multivariate model allowed to stratify patients into four different risk groups: A) stage I-II, Glut-1 positivity, any hERG1; B) stage I-II, Glut-1 and hERG1 negativity; C) stage I-II, Glut-1 negativity, hERG1 positivity; D) stage III, any Glut-1 and any hERG1. CONCLUSIONS hERG1 positivity with Glut-1 negativity identifies a patient group with poor prognosis within stage I-II CRC. The possibility that these patients might benefit from adjuvant therapy, independently from the TNM stage, is discussed. IMPACT More robust prognostic and predictive markers, supplementing standard clinical and pathologic staging, are needed for node-negative patients.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental Pathology and Oncology, University of Florence, Istituto Toscano Tumori, Florence, Italy
| | - Lapo Bencini
- General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria, Careggi, Florence, Italy
| | - Elisa Bianchini
- Clinical Trials Coordinating Center, Azienda Ospedaliero-Universitaria, Careggi, Florence, Italy
| | - Maria Raffaella Romoli
- Department of Experimental Pathology and Oncology, University of Florence, Istituto Toscano Tumori, Florence, Italy
| | - Olivia Crociani
- Department of Experimental Pathology and Oncology, University of Florence, Istituto Toscano Tumori, Florence, Italy
| | - Elisa Giommoni
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Luca Messerini
- Department of Human Pathology and Oncology, University of Florence, Florence, Italy
| | - Silvia Gasperoni
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Renato Moretti
- General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria, Careggi, Florence, Italy
| | | | - Luca Boni
- Clinical Trials Coordinating Center, Azienda Ospedaliero-Universitaria, Careggi, Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Florence, Istituto Toscano Tumori, Florence, Italy
| |
Collapse
|
39
|
Ida-Yonemochi H, Nakatomi M, Harada H, Takata H, Baba O, Ohshima H. Glucose uptake mediated by glucose transporter 1 is essential for early tooth morphogenesis and size determination of murine molars. Dev Biol 2011; 363:52-61. [PMID: 22226978 DOI: 10.1016/j.ydbio.2011.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/11/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022]
Abstract
Glucose is an essential source of energy for body metabolism and is transported into cells by glucose transporters (GLUTs). Well-characterized class I GLUT is subdivided into GLUTs1-4, which are selectively expressed depending on tissue glucose requirements. However, there is no available data on the role of GLUTs during tooth development. This study aims to clarify the functional significance of class I GLUT during murine tooth development using immunohistochemistry and an in vitro organ culture experiment with an inhibitor of GLUTs1/2, phloretin, and Glut1 and Glut2 short interfering RNA (siRNA). An intense GLUT1-immunoreaction was localized in the enamel organ of bud-stage molar tooth germs, where the active cell proliferation occurred. By the bell stage, the expression of GLUT1 in the dental epithelium was dramatically decreased in intensity, and subsequently began to appear in the stratum intermedium at the late bell stage. On the other hand, GLUT2-immunoreactivity was weakly observed in the whole tooth germs throughout all stages. The inhibition of GLUTs1/2 by phloretin in the bud-stage tooth germs induced the disturbance of primary enamel knot formation, resulting in the developmental arrest of the explants and the squamous metaplasia of dental epithelial cells. Furthermore, the inhibition of GLUTs1/2 in cap-to-bell-stage tooth germs reduced tooth size in a dose dependent manner. These findings suggest that the expression of GLUT1 and GLUT2 in the dental epithelial and mesenchymal cells seems to be precisely and spatiotemporally controlled, and the glucose uptake mediated by GLUT1 plays a crucial role in the early tooth morphogenesis and tooth size determination.
Collapse
Affiliation(s)
- Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Effects of suppressing glucose transporter-1 by an antisense oligodeoxynucleotide on the growth of human hepatocellular carcinoma cells. Hepatobiliary Pancreat Dis Int 2011; 10:72-7. [PMID: 21269938 DOI: 10.1016/s1499-3872(11)60010-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The glucose transporter-1 (Glut-1), a key rate-limiting factor in the transport and metabolism of glucose in cancer cells, is over-expressed in many human cancer cells and this over-expression is correlated with poor biological behavior. The increased levels of Glut-1 expression in hepatocellular carcinoma (HCC) cells functionally affect tumorigenicity. This study was undertaken to investigate effects of suppressing Glut-1 by an antisense oligodeoxynucleotide (AS-ODN) on the growth of human hepatocellular carcinoma (HepG-2) cells. METHODS We used AS-ODN targeting against the Glut-1 gene in a HepG-2 cell line. There were four experimental groups: empty pcDNA3.1 vector (mock transfection), pcDNA3.1-anti-Glut (+), pcDNA3.1-Glut (+), and non-transfected HepG-2 cells. The Glut-1 mRNA expression was detected by RT-PCR and the Glut-1 protein expression by Western blotting after cell culture, and the glucose uptake was detected after glucose stimulation in each group. RESULTS Compared with non-transfected HepG-2 or Glut-1 pcDNA3.1, a down-regulation of Glut-1 mRNA in HepG-2 cells transfected with anti-Glut-1 pcDNA3.1 was noted (P<0.05). Glut-1 protein in HepG-2 cells transfected with Glut-1 AS-ODN was decreased compared with non-transfected HepG-2, Glut-1 pcDNA3.1, or empty vectors. Glucose uptake by the HepG-2 cells transfected with AS-ODN was decreased at 1 hour after glucose stimulation. CONCLUSIONS The application of Glut-1 AS-ODN can down-regulate the expression of Glut-1 at mRNA and protein, and inhibit glucose uptake partially in HepG-2 cells. The Glut-1 gene maybe a potential therapeutic target for HCC.
Collapse
|
41
|
Freeman A, Hetzel U, Cripps P, Mobasheri A. Expression of the plasma membrane markers aquaporin 1 (AQP1), glucose transporter 1 (GLUT1) and Na, K-ATPase in canine mammary glands and mammary tumours. Vet J 2010; 185:90-3. [PMID: 20570191 DOI: 10.1016/j.tvjl.2010.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated the expression of the plasma membrane markers aquaporin 1 (AQP1), glucose transporter 1 (GLUT1) and the alpha1 subunit of Na, K-ATPase in normal canine mammary glands and in benign and malignant mammary tumours, using immunohistochemistry and semi-quantitative histomorphometry. AQP1 immunoreactivity was absent from the majority of specimens studied. GLUT1 immunoreactivity was observed in normal mammary tissue and particularly in the epithelial and mesenchymal cells of benign, and in the epithelial cells of malignant tumours, respectively. Na, K-ATPase immunoreactivity was present in normal and neoplastic mammary epithelium and was significantly increased in the epithelium of both benign and malignant tumours. These results suggest that GLUT1 is more highly expressed in neoplastic epithelium and mesenchyme and that Na, K-ATPase is more highly expressed in neoplastic mammary epithelium. In consequence, these membrane proteins may have potential as diagnostic and prognostic biomarkers of canine mammary neoplasia.
Collapse
Affiliation(s)
- Alistair Freeman
- Small Animal Teaching Hospital, School of Veterinary Science, University of Liverpool, Leahurst Campus, Leahurst, Neston, Wirral CH64 7TE, UK
| | | | | | | |
Collapse
|