1
|
Xu X, Wang J, Xia Y, Yin Y, Zhu T, Chen F, Hai C. Autophagy, a double-edged sword for oral tissue regeneration. J Adv Res 2024; 59:141-159. [PMID: 37356803 PMCID: PMC11081970 DOI: 10.1016/j.jare.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Oral health is of fundamental importance to maintain systemic health in humans. Stem cell-based oral tissue regeneration is a promising strategy to achieve the recovery of impaired oral tissue. As a highly conserved process of lysosomal degradation, autophagy induction regulates stem cell function physiologically and pathologically. Autophagy activation can serve as a cytoprotective mechanism in stressful environments, while insufficient or over-activation may also lead to cell function dysregulation and cell death. AIM OF REVIEW This review focuses on the effects of autophagy on stem cell function and oral tissue regeneration, with particular emphasis on diverse roles of autophagy in different oral tissues, including periodontal tissue, bone tissue, dentin pulp tissue, oral mucosa, salivary gland, maxillofacial muscle, temporomandibular joint, etc. Additionally, this review introduces the molecular mechanisms involved in autophagy during the regeneration of different parts of oral tissue, and how autophagy can be regulated by small molecule drugs, biomaterials, exosomes/RNAs or other specific treatments. Finally, this review discusses new perspectives for autophagy manipulation and oral tissue regeneration. KEY SCIENTIFIC CONCEPTS OF REVIEW Overall, this review emphasizes the contribution of autophagy to oral tissue regeneration and highlights the possible approaches for regulating autophagy to promote the regeneration of human oral tissue.
Collapse
Affiliation(s)
- Xinyue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Jia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Yunlong Xia
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Tianxiao Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Faming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Chunxu Hai
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
2
|
Gutiérrez B, González-Quijón ME, Martínez-Rodríguez P, Alarcón-Apablaza J, Godoy K, Cury DP, Lezcano MF, Vargas-Chávez D, Dias FJ. Comprehensive Development of a Cellulose Acetate and Soy Protein-Based Scaffold for Nerve Regeneration. Polymers (Basel) 2024; 16:216. [PMID: 38257015 PMCID: PMC10820324 DOI: 10.3390/polym16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The elaboration of biocompatible nerve guide conduits (NGCs) has been studied in recent years as a treatment for total nerve rupture lesions (axonotmesis). Different natural polymers have been used in these studies, including cellulose associated with soy protein. The purpose of this report was to describe manufacturing NGCs suitable for nerve regeneration using the method of dip coating and evaporation of solvent with cellulose acetate (CA) functionalized with soy protein acid hydrolysate (SPAH). METHODS The manufacturing method and bacterial control precautions for the CA/SPAH NGCs were described. The structure of the NGCs was analyzed under a scanning electron microscope (SEM); porosity was analyzed with a degassing method using a porosimeter. Schwann cell (SCL 4.1/F7) biocompatibility of cell-seeded nerve guide conduits was evaluated with the MTT assay. RESULTS The method employed allowed an easy elaboration and customization of NGCs, free of bacteria, with pores in the internal surface, and the uniform wall thickness allowed manipulation, which showed flexibility; additionally, the sample was suturable. The NGCs showed initial biocompatibility with Schwann cells, revealing cells adhered to the NGC structure after 5 days. CONCLUSIONS The fabricated CA/SPAH NGCs showed adequate features to be used for peripheral nerve regeneration studies. Future reports are necessary to discuss the ideal concentration of CA and SPAH and the mechanical and physicochemical properties of this biomaterial.
Collapse
Affiliation(s)
- Brandon Gutiérrez
- Master Program in Dental Sciences, Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - María Eugenia González-Quijón
- Department of Chemical Engineering, Universidad de La Frontera, Temuco 4780000, Chile;
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Paulina Martínez-Rodríguez
- Oral Biology Research Centre (CIBO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Josefa Alarcón-Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Karina Godoy
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Diego Pulzatto Cury
- Department of Anatomy, Institute of Biomedical Sciences, Universidade de São Paulo (ICB-USP), São Paulo 05508-000, Brazil;
- Department of Cellular Biology and the Development, Institute of Biomedical Sciences, Universidade de São Paulo (ICB-USP), São Paulo 05508-000, Brazil
| | - María Florencia Lezcano
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
| | - Daniel Vargas-Chávez
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
- Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Escuela Medicina Veterinaria, Temuco 4780000, Chile
| | - Fernando José Dias
- Oral Biology Research Centre (CIBO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
3
|
Dias FJ, Cury DP, Dias PE, Borie E, Alarcón-Apablaza J, Lezcano MF, Martínez-Rodríguez P, Vargas D, Gutiérrez B, Fazan VPS. Effects of Low-Level Laser Therapy and Purified Natural Latex ( Hevea brasiliensis) Protein on Injured Sciatic Nerve in Rodents: Morpho-Functional Analysis. Int J Mol Sci 2023; 24:14031. [PMID: 37762333 PMCID: PMC10530799 DOI: 10.3390/ijms241814031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The present study analyzed the effects of low-level laser therapy (LLLT) and the purified natural latex protein (Hevea brasiliensis, F1 protein) on the morpho-function of sciatic nerve crush injuries in rats. One-hundred and eight male Wistar rats were randomly allocated to six groups (n = 18): 1. Control; 2. Exposed (nerve exposed); 3. Injury (injured nerve without treatment); 4. LLLT (injured nerve irradiated with LLLT (15 J/cm2, 780 nm)); 5. F1 (injured nerve treated with F1 protein (0.1%)); and 6. LLLT + F1 (injured nerve treated with LLLT and F1). On the 1st, 7th, 14th, and 56th days after injury, a functional sensory analysis of mechanical allodynia and mechanical hyperalgesia and a motor analysis of grip strength and gait were performed. After 3, 15, and 57 days, the animals were euthanized for morphometric/ultrastructural analyses. The treatments applied revealed improvements in morphometric/ultrastructural parameters compared to the injured group. Sensory analyses suggested that the improvements observed were associated with time progression and not influenced by the treatments. Motor analyses revealed significant improvements in grip strength from the 7th day in the LLLT group and in gait from the 56th day in all treated groups. We concluded that even though the morphological analyses showed improvements with the treatments, they did not influence sensory recovery, and LLLT improved motor recovery.
Collapse
Affiliation(s)
- Fernando José Dias
- Oral Biology Research Centre (CIBO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Diego Pulzatto Cury
- Department of Anatomy and Department of Cellular Biology and the Development—Institute of Biomedical Sciences, Universidade de São Paulo (ICB-USP), São Paulo 05508-000, Brazil;
| | - Paula Elisa Dias
- School of Pharmaceutical Sciences of Ribeirao Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto 14040-903, Brazil;
| | - Eduardo Borie
- Department of Integral Adults Dentistry, Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Josefa Alarcón-Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
- Doctoral Program in Morphological Sciences, Medical School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - María Florencia Lezcano
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
| | - Paulina Martínez-Rodríguez
- Oral Biology Research Centre (CIBO-UFRO), Dental School—Facultad de Odontología, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Daniel Vargas
- Doctoral Program in Morphological Sciences, Medical School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Brandon Gutiérrez
- Master Program in Dental Sciences, Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Valéria Paula Sassoli Fazan
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, Universidade de São Paulo (FMRP-USP), 14049-900 Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Repair of Long Nerve Defects with a New Decellularized Nerve Graft in Rats and in Sheep. Cells 2022; 11:cells11244074. [PMID: 36552838 PMCID: PMC9777287 DOI: 10.3390/cells11244074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Decellularized nerve allografts (DC) are an alternative to autografts (AG) for repairing severe peripheral nerve injuries. We have assessed a new DC provided by VERIGRAFT. The decellularization procedure completely removed cellularity while preserving the extracellular matrix. We first assessed the DC in a 15 mm gap in the sciatic nerve of rats, showing slightly delayed but effective regeneration. Then, we assayed the DC in a 70 mm gap in the peroneal nerve of sheep compared with AG. Evaluation of nerve regeneration and functional recovery was performed by clinical, electrophysiology and ultrasound tests. No significant differences were found in functional recovery between groups of sheep. Histology showed a preserved fascicular structure in the AG while in the DC grafts regenerated axons were grouped in small units. In conclusion, the DC was permissive for axonal regeneration and allowed to repair a 70 mm long gap in the sheep nerve.
Collapse
|
5
|
Smaniotto PH, Camargo CP, Kubrusly MS, Gemperli R. Comparison of three different strategies to treat sciatic nerve regeneration: an experimental study. Acta Cir Bras 2022; 37:e370501. [PMID: 35976339 PMCID: PMC9377207 DOI: 10.1590/acb370501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To compare the effect of vein conduit filled with adipose tissue stem cells (ASC) on peripheral nerve injury regeneration. METHODS We analyzed 30 male Wistar rats surgically submitted to a 5-mm gap on the sciatic nerve. Then, the animals were divided into three groups: nerve autografting (AG, n=10), autogenous inverted glycerol-conserved vein (VG, n=10), and autogenous inverted glycerol-conserved vein + ASC (VASCG, n=10). The study endpoints were neuromotor functional analysis, gastrocnemius muscle weight, and sciatic nerve graft histomorphometry analysis. In the histologic analysis, we added a control group (naïve nerve). RESULTS Regarding functional analysis (Walking tract- score), the findings at week 3 showed a difference between the AG and the VG (-96.6 vs. -59.6, p=0.01, respectively) and between the VG and the inverted vein + VASCG (-59.9 vs. -88.92, p=0.02). At week 12, this study showed a difference between the AG and the VG (-64.8 vs. -47.3, p=0.004, respectively), and also a difference between the VG and the VASCG (-47.3 vs. -57.4, p=0.02, respectively). There was no difference in the histomorphometry analysis (nerve diameter, Schwann cells counting). The gastrocnemius muscles on the intervention side were more atrophic when compared to the gastrocnemius muscles on the control side. CONCLUSIONS Our results suggested better functional recovery in the inverted vein group when compared to control group, and inverted vein + ASC group.
Collapse
Affiliation(s)
| | - Cristina Pires Camargo
- PhD. Universidade de São Paulo - Medical School -Microsurgery and Plastic Surgery Laboratory - São Paulo (SP), Brazil
| | - Marcia Saldanha Kubrusly
- PhD. Universidade de São Paulo - Medical School -Transplantation and Liver Surgery - São Paulo (SP), Brazil
| | - Rolf Gemperli
- Full Professor. Universidade de São Paulo - Medical School - Plastic Surgeon Division - São Paulo (SP), Brazil
| |
Collapse
|
6
|
Alarcón JB, Chuhuaicura PB, Sluka KA, Vance CG, Fazan VPS, Godoy KA, Fuentes RE, Dias FJ. Transcutaneous Electrical Nerve Stimulation in Nerve Regeneration: A Systematic Review of In Vivo Animal Model Studies. Neuromodulation 2022; 25:1248-1258. [DOI: 10.1016/j.neurom.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023]
|
7
|
Ülger M, Sezer G, Özyazgan İ, Özocak H, Yay A, Balcıoğlu E, Yalçın B, Göç R, Ülger B, Özyazgan TM, Yakan B. The effect of erythropoietin and umbilical cord-derived mesenchymal stem cells on nerve regeneration in rats with sciatic nerve injury. J Chem Neuroanat 2021; 114:101958. [PMID: 33864937 DOI: 10.1016/j.jchemneu.2021.101958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We aimed to investigate the effects of umbilical cord-derived mesenchymal stem cells and erythropoietin on nerve regeneration in the sciatic nerve 'crush injury' in a rat model. METHODS Experimental animals were randomly divided into 5 groups: Crush Injury, Sham, Crush Injury + Erythropoietin, Crush Injury + Mesenchymal Stem Cell, Crush Injury + Erythropoietin + Mesenchymal Stem Cell groups. Crush injury made with bulldog clamp. Mesencyhmal stem cells delivered by enjection locally. Erythropoietin administered by intraperitoneally. On the 0th, 14th and 28th days, all groups underwent a sciatic functional index test. On 28th day, sciatic nerves were harvested and histopathological appearance, axon number and axon diameter of the sciatic nerves were evaluated with Oil Red O staining. Immunoreactivity of nerve growth factor, neurofilament-H and caspase-3 were determined by immunofluorescence staining in nerve tissue. RESULTS In histopathological examination, axons and nerve bundles exhibiting normal nerve architecture in the Sham group. Crush Injury + Mesenchymal Stem Cell group has similar histological appearance to the Sham group. The number of axons were higher in the Mesenchymal Stem Cell groups compared to the Crush Injury group. Nerve growth factor immunoreactivity intensity was significantly lower in Crush Injury + Mesenchymal Stem Cell group compared to Crush Injury group. Neurofilament-H density was higher in the treatment groups when compared to the Crush Injury group. CONCLUSIONS In this study, it was found that umbilical cord-derived mesenchymal stem cells and erythropoietin treatments effects positively regeneration of crush injury caused by bulldog clamp in the sciatic nerve of rats.
Collapse
Affiliation(s)
- Menekşe Ülger
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Gülay Sezer
- Department of Pharmacology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - İrfan Özyazgan
- Department of Plastic Reconstructive and Aesthetic Surgery, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Hakan Özocak
- Department of Plastic Reconstructive and Aesthetic Surgery, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Esra Balcıoğlu
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Betül Yalçın
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Rümeysa Göç
- Department of Histology and Embryology, Cumhuriyet University, Faculty of Medicine, 058140, Sivas, Turkey.
| | - Birkan Ülger
- Department of Anesthesiology and Reanimation, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Tuğçe Merve Özyazgan
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Birkan Yakan
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| |
Collapse
|
8
|
Gong L, Wang D, Zhang L, Xie X, Sun H, Gu J. Genetic changes in rat proximal nerve stumps after sciatic nerve transection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:763. [PMID: 32042779 DOI: 10.21037/atm.2019.11.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Peripheral nerves can self-regenerate after traumatic injury, although their self-regeneration ability is limited after severe nerve injury. After peripheral nerve injury, the distal nerve stumps undergo Wallerian degeneration while the proximal nerve stumps undergo a regeneration process. Methods Here, to decipher genetic changes and involved biological processes in the proximal nerve stumps after peripheral nerve injury, microarray data (GSE30165) were analyzed. Differentially expressed genes in the proximal nerve stumps at 0.5 h, 1 h, 3 h, 6 h, 9 h, 1 d, 4 d, 7 d, and 14 d after rat sciatic nerve transection were subjected to Ingenuity pathway analysis (IPA) bioinformatic analysis. Results Cytokine signaling, cellular immune response, nuclear receptor signaling, disease-specific pathways, and organismal growth and development were significantly activated in the proximal nerve stumps after nerve transection. Organ development, inflammation and immune response, diseases and organ abnormalities, and cellular behavior-related biological functions were highly involved. Conclusions The expression levels of differentially expressed genes in biological function "Organismal Injury and Abnormalities" were displayed and validated. Our current study helps to obtain a better understanding of the biological processes of peripheral nerve regeneration, especially the regeneration process in the proximal nerve stumps, and thus may help to discover new therapeutic methods that can promote nerve regeneration.
Collapse
Affiliation(s)
- Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoying Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jun Gu
- Department of Orthopedics, Xishan People's Hospital, Wuxi 214000, China
| |
Collapse
|
9
|
Cheng XQ, Liang XZ, Wei S, Ding X, Han GH, Liu P, Sun X, Quan Q, Tang H, Zhao Q, Shang AJ, Peng J. Protein microarray analysis of cytokine expression changes in distal stumps after sciatic nerve transection. Neural Regen Res 2020; 15:503-511. [PMID: 31571662 PMCID: PMC6921340 DOI: 10.4103/1673-5374.266062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A large number of chemokines, cytokines, other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration. This microenvironment is one of the major factors for regenerative success. Therefore, it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury. However, the identities of specific cytokines at various time points after sciatic nerve injury have not been determined. The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze, by protein microarray, the expression of different cytokines in the distal nerve after injury. Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines, e.g., ciliary neurotrophic factor, were downregulated. The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines. Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways, Janus kinase/signal transducers and activators of transcription, phosphoinositide 3-kinase/protein kinase B, and notch signaling pathway. The cytokines involved in inflammation, immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes, cell-cell adhesion, and cell proliferation were up-regulated at 28 days after injury. Western blot analysis showed that the expression and changes of hepatocyte growth factor, glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis. The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration, as well as a basis for potential treatments of peripheral nerve injury. The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital, China (approval number: 2016-x9-07) in September 2016.
Collapse
Affiliation(s)
- Xiao-Qing Cheng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xue-Zhen Liang
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing; The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Shuai Wei
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiao Ding
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Gong-Hai Han
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xun Sun
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Quan
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - He Tang
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qing Zhao
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ai-Jia Shang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
10
|
De Masi A, Tonazzini I, Masciullo C, Mezzena R, Chiellini F, Puppi D, Cecchini M. Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films. Biophys Rev 2019; 11:807-815. [PMID: 31529358 PMCID: PMC6815298 DOI: 10.1007/s12551-019-00591-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
Regenerative medicine is continuously facing new challenges and it is searching for new biocompatible, green/natural polymer materials, possibly biodegradable and non-immunogenic. Moreover, the critical importance of the nano/microstructuring of surfaces is overall accepted for their full biocompatibility and in vitro/in vivo performances. Chitosan is emerging as a promising biopolymer for tissue engineering and its application can be further improved by exploiting its nano/microstructuration. Here, we report the state of the art of chitosan films and scaffolds nano/micro-structuration. We show that it is possible to obtain, by solvent casting, chitosan thin films with good mechanical properties and to structure them at the microscale and even nanoscale level, with resolutions down to 100 nm.
Collapse
Affiliation(s)
- Alessia De Masi
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy.
| | - Cecilia Masciullo
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Roberta Mezzena
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| |
Collapse
|
11
|
Schwann Cell-Like Cells Derived from Human Amniotic Mesenchymal Stem Cells Promote Peripheral Nerve Regeneration through a MicroRNA-214/c-Jun Pathway. Stem Cells Int 2019; 2019:2490761. [PMID: 31354837 PMCID: PMC6636479 DOI: 10.1155/2019/2490761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background The use of Schwann cell-like cells (SCLCs) derived from stem cells has been introduced as an effective strategy for promoting peripheral nerve regeneration (PNR). However, molecular mechanisms underlying therapeutic transplantation of SCLCs for PNR are often ignored. Objectives To explore the potential of SCLCs for the treatment of sciatic never injury and investigate the underlying molecule mechanisms. Method SCLCs differentiated from human amniotic mesenchymal stem cells (hAMSCs) and specific markers of Schwann cells were detected. SCLCs were transplanted into the injured sites of a rat model of sciatic nerve injury, and sciatic nerve functional index (SFI) was determined. Results SCLCs expressed specific markers of Schwann cells as well as secreted neurotrophic factors. The transplantation of SCLCs into injured sites of a rat model of sciatic nerve injury promoted the functional recovery. With regard to the underlying molecular mechanisms, we identified c-Jun as a negative regulator of the myelination of SCLCs. Moreover, we discovered a novel signaling transduction pathway in SCLCs; that is, miR-214 directly targets c-Jun to promote the myelination of SCLCs. Finally, we demonstrated that miR-214 upon overexpression in SCLCs enhanced the therapeutic effects of SCLCs on sciatic nerve injury. Conclusions We demonstrate that SCLCs have beneficial effect for myelination. Moreover, our results provide a previously unknown molecular basis underlying the treatment of peripheral nerve injury with SCLCs and also offer a practical strategy for future therapeutic promotion of PNR.
Collapse
|
12
|
Platelet-rich plasma and its utility in medical dermatology: A systematic review. J Am Acad Dermatol 2019; 81:834-846. [PMID: 31009668 DOI: 10.1016/j.jaad.2019.04.037] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023]
Abstract
The field of dermatology has seen numerous therapeutic innovations in the past decade with platelet-rich plasma (PRP), recently garnering significant interest in alopecia, acne scarring, and skin rejuvenation. In other conditions of dermatology, such as chronic wounds and vitiligo, PRP has been investigated but has received less attention. The objective of this literature review was to focus on conditions of medical dermatology and to consolidate the available evidence on PRP for the practicing dermatologist. This review evaluates the literature up to October 31, 2018, and a search was conducted in the PubMed database for "platelet-rich plasma," "platelet releasate," "platelet gel," "platelet-rich fibrin" or "PRP" and "dermatology," "skin," "cutaneous," "wound," or "ulcer." In total, 14 articles met the inclusion criteria for this review. In studies representing Levels of Evidence 1b-4 according to the Centre for Evidence-Based Medicine, Oxford, PRP significantly improved wound healing in chronic diabetic ulcers, venous ulcers, pressure ulcers, leprosy ulcers, acute traumatic wounds, and ulcers of multifactorial etiologies. Two studies also documented benefits of adjunctive PRP in stable vitiligo. In chronic wounds of multiple etiologies and vitiligo, PRP warrants further investigation because it represents a potential therapeutic adjunct or alternative with a favorable side effect profile.
Collapse
|
13
|
Ye K, Kuang H, You Z, Morsi Y, Mo X. Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics 2019; 11:E182. [PMID: 30991742 PMCID: PMC6523318 DOI: 10.3390/pharmaceutics11040182] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/03/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Electrospinning technologies have been applied in the field of tissue engineering as materials, with nanoscale-structures and high porosity, can be easily prepared via this method to bio-mimic the natural extracellular matrix (ECM). Tissue engineering aims to fabricate functional biomaterials for the repairment and regeneration of defective tissue. In addition to the structural simulation for accelerating the repair process and achieving a high-quality regeneration, the combination of biomaterials and bioactive molecules is required for an ideal tissue-engineering scaffold. Due to the diversity in materials and method selection for electrospinning, a great flexibility in drug delivery systems can be achieved. Various drugs including antibiotic agents, vitamins, peptides, and proteins can be incorporated into electrospun scaffolds using different electrospinning techniques and drug-loading methods. This is a review of recent research on electrospun nanofibrous scaffolds for tissue-engineering applications, the development of preparation methods, and the delivery of various bioactive molecules. These studies are based on the fabrication of electrospun biomaterials for the repair of blood vessels, nerve tissues, cartilage, bone defects, and the treatment of aneurysms and skin wounds, as well as their applications related to oral mucosa and dental fields. In these studies, due to the optimal selection of drugs and loading methods based on electrospinning, in vitro and in vivo experiments demonstrated that these scaffolds exhibited desirable effects for the repair and treatment of damaged tissue and, thus, have excellent potential for clinical application.
Collapse
Affiliation(s)
- Kaiqiang Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Haizhu Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC 3122, Australia.
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Dias FJ, Fazan VPS, Cury DP, de Almeida SRY, Borie E, Fuentes R, Coutinho-Netto J, Watanabe IS. Growth factors expression and ultrastructural morphology after application of low-level laser and natural latex protein on a sciatic nerve crush-type injury. PLoS One 2019; 14:e0210211. [PMID: 30625210 PMCID: PMC6326513 DOI: 10.1371/journal.pone.0210211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
The effects of low-level laser therapy (LLLT) and natural latex protein (F1, Hevea brasiliensis) were evaluated on crush-type injuries (15kg) to the sciatic nerve in the expressions of nerve growth factor (NGF) and vascular endothelium growth factor (VEGF) and ultrastructural morphology to associate with previous morphometric data using the same protocol of injury and treatment. Thirty-six male rats were allocated into six experimental groups (n = 6): 1-Control; 2-Exposed nerve; 3-Injured nerve; 4-LLLT (15J/cm2, 780nm, 30mW, Continuous Wave) treated injured nerve; 5-F1 (0,1mg) treated injured nerve; and 6-LLLT&F1 treated injured nerve. Four or eight weeks after, sciatic nerve samples were processed for analysis. NGF expression were higher (p<0.05) four weeks after in all injured groups in comparison to Control (Med:0.8; Q1:0; Q3:55.5%area). Among them, the Injured (Med:70.7; Q1:64.4; Q3:77.5%area) showed the highest expression, and F1 (Med:17.3; Q1:14.1; Q3:21.7%area) had the lowest. At week 8, NGF expressions decreased in the injured groups. VEGF was expressed in all groups; its higher expression was observed in the injured groups 4 weeks after (Injured. Med:29.5; F1. Med:17.7 and LLLT&F1. Med:19.4%area). At week 8, a general reduction of VEGF expression was noted, remaining higher in F1 (Med:35.1; Q1.30.6; Q3.39.6%area) and LLLT&F1 (Med:18.5; Q1:16; Q3:25%area). Ultrastructural morphology revealed improvements in the treated groups; 4 weeks after, the F1 group presented greater quantity and diameter of the nerve fibers uniformly distributed. Eight weeks after, the F1 and LLLT&F1 showed similar characteristics to the non-injured groups. In summary, these results and our previous studies indicated that F1 and LLLT may favorably influence the healing of nerve crush injury. Four weeks after nerve injury F1 group showed the best results suggesting recovery acceleration; at 8th week F1 and LLLT&F1 groups presented better features and higher vascularization that could be associated with VEGF maintenance.
Collapse
Affiliation(s)
- Fernando José Dias
- Department of Integral Dentistry, CICO—Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
- * E-mail:
| | - Valéria Paula Sassoli Fazan
- Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Diego Pulzatto Cury
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Eduardo Borie
- Department of Integral Dentistry, CICO—Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Ramón Fuentes
- Department of Integral Dentistry, CICO—Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Joaquim Coutinho-Netto
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ii-sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Geuna S, Muratori L, Fregnan F, Manfredi M, Bertolo R, Porpiglia F. Strategies to improve nerve regeneration after radical prostatectomy: a narrative review. MINERVA UROL NEFROL 2018; 70:546-558. [PMID: 30037210 DOI: 10.23736/s0393-2249.18.03157-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peripheral nerves are complex organs that spread throughout the entire human body. They are frequently affected by lesions not only as a result of trauma but also following radical tumor resection. In fact, despite the advancement in surgical techniques, such as nerve-sparing robot assisted radical prostatectomy, some degree of nerve injury may occur resulting in erectile dysfunction with significant impairment of the quality of life. The aim of this review was to provide an overview on the mechanisms of the regeneration of injured peripheral nerves and to describe the potential strategies to improve the regeneration process and the functional recovery. Yet, the recent advances in bio-engineering strategies to promote nerve regeneration in the urological field are outlined with a view on the possible future regenerative therapies which might ameliorate the functional outcome after radical prostatectomy.
Collapse
Affiliation(s)
- Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy - .,Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy -
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy
| | - Matteo Manfredi
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Riccardo Bertolo
- Department of Oncology, University of Turin, Orbassano, Turin, Italy.,Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
16
|
Gnavi S, Morano M, Fornasari BE, Riccobono C, Tonda-Turo C, Zanetti M, Ciardelli G, Gambarotta G, Perroteau I, Geuna S, Raimondo S. Combined Influence of Gelatin Fibre Topography and Growth Factors on Cultured Dorsal Root Ganglia Neurons. Anat Rec (Hoboken) 2018; 301:1668-1677. [DOI: 10.1002/ar.23846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Sara Gnavi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
| | - Michela Morano
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Benedetta Elena Fornasari
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Claudio Riccobono
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering; Politecnico of Torino; Torino 10100 Italy
| | - Marco Zanetti
- Nanostructured Interfaces and Surfaces, Department of Chemistry; University of Torino; Torino 10100 Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico of Torino; Torino 10100 Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Stefano Geuna
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Stefania Raimondo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| |
Collapse
|
17
|
Muratori L, Gnavi S, Fregnan F, Mancardi A, Raimondo S, Perroteau I, Geuna S. Evaluation of Vascular Endothelial Growth Factor (VEGF) and Its Family Member Expression After Peripheral Nerve Regeneration and Denervation. Anat Rec (Hoboken) 2018; 301:1646-1656. [DOI: 10.1002/ar.23842] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Luisa Muratori
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Sara Gnavi
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - F. Fregnan
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Anabella Mancardi
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| |
Collapse
|
18
|
Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair. Ann Biomed Eng 2018; 46:1013-1025. [PMID: 29603044 DOI: 10.1007/s10439-018-2011-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the "gold standard" clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was introduced into a chitosan (CS) matrix scaffold utilizing genipin (GP) as the crosslinking agent, to fabricate CS-GP-TNF-α inhibitor nerve conduits. The in vitro release kinetics of TNF-α inhibitors from the CS-GP-TNF-α inhibitor nerve conduits were investigated using high-performance liquid chromatography. The in vivo continuous release profile of the TNF-α inhibitors released from the CS-GP-TNF-α inhibitor nerve conduits was measured using an enzyme-linked immunosorbent assay over 14 days. We found that the amount of TNF-α inhibitors released decreased with time after the bridging of the sciatic nerve defects in rats. Moreover, 4 and 12 weeks after surgery, histological analyses and functional evaluations were carried out to assess the influence of the TENG on regeneration. Immunochemistry performed 4 weeks after grafting to assess early regeneration outcomes revealed that the TENG strikingly promoted axonal outgrowth. Twelve weeks after grafting, the TENG accelerated myelin sheath formation, as well as functional restoration. In general, the regenerative outcomes following TENG more closely paralleled findings observed with autologous grafting than the use of the CS matrix scaffold. Collectively, our data indicate that the CS-GP-TNF-α inhibitor nerve conduits comprised an elaborate system for sustained release of TNF-α inhibitors in vitro, while studies in vivo demonstrated that the TENG could accelerate regenerating axonal outgrowth and functional restoration. The introduction of CS-GP-TNF-α-inhibitor nerve conduits into a scaffold may contribute to an efficient and adaptive immune microenvironment that can be used to facilitate peripheral nerve repair.
Collapse
|
19
|
Li H, Hu Y, Huang J, Yang Y, Xing K, Luo Q. Attempt of peripheral nerve reconstruction during lung cancer surgery. Thorac Cancer 2018; 9:580-583. [PMID: 29498240 PMCID: PMC5928356 DOI: 10.1111/1759-7714.12619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/04/2018] [Accepted: 02/04/2018] [Indexed: 11/30/2022] Open
Abstract
Background Vagus nerve and recurrent laryngeal nerve (RLN) injury are not rare complications of lung cancer surgery and can cause lethal consequences. Until now, no optimal method other than paying greater attention during surgery has been available. Methods Four patients underwent lung surgery that involved RLN or vagus nerve injury. The left RLN or vagus nerve was cut off and then reconstructed immediately during surgery. Two patients underwent direct anastomosis, while the remaining two underwent phrenic nerve replacing tension‐relieving anastomosis. Results All patients were able to speak immediately after recovery. No or minimal glottal gap was observed during laryngoscopy conducted on the second day after surgery. Most patients achieved full recovery of voice quality. Conclusions Immediate reconstruction of RLN is technically feasible and can be carried out with satisfying short‐term and long‐term outcomes.
Collapse
Affiliation(s)
- Hanyue Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjie Hu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Huang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yunhai Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | - Qingquan Luo
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Righi M, Puleo GL, Tonazzini I, Giudetti G, Cecchini M, Micera S. Peptide-based coatings for flexible implantable neural interfaces. Sci Rep 2018; 8:502. [PMID: 29323135 PMCID: PMC5765121 DOI: 10.1038/s41598-017-17877-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
In the last decade, the use of flexible biosensors for neuroprosthetic and translational applications has widely increased. Among them, the polyimide (PI)-based thin-film electrodes got a large popularity. However, the usability of these devices is still hampered by a non-optimal tissue-device interface that usually compromises the long-term quality of neural signals. Advanced strategies able to improve the surface properties of these devices have been developed in the recent past. Unfortunately, most of them are not easy to be developed and combined with micro-fabrication processes, and require long-term efforts to be testable with human subjects. Here we show the results of the design and in vitro testing of an easy-to-implement and potentially interesting coating approach for thin-film electrodes. In particular, two biocompatible coatings were obtained via covalent conjugation of a laminin-derived peptide, CAS-IKVAV-S (IKV), with polyimide sheets that we previously functionalized with vinyl- and amino- groups (PI_v and PI_a respectively). Both the engineered coatings (PI_v+IKV and PI_a+IKV) showed morphological and chemical properties able to support neuronal adhesion, neurite sprouting, and peripheral glial cell viability while reducing the fibroblasts contamination of the substrate. In particular, PI_v+IKV showed promising results that encourage further in vivo investigation and pave the way for a new generation of peptide-coated thin-film electrodes.
Collapse
Affiliation(s)
- Martina Righi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera (PI), Italy.
| | - Gian Luigi Puleo
- Istituto Italiano di Tecnologia, Center of Micro-BioRobotics@SSSA, Viale Rinaldo Piaggio 34, 56025, Pontedera (PI), Italy
| | - Ilaria Tonazzini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR & Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Guido Giudetti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera (PI), Italy
| | - Marco Cecchini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR & Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera (PI), Italy. .,Bertarelli Foundation Chair in NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering (IBI)-School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
21
|
Porpiglia F, Bertolo R, Fiori C, Manfredi M, De Cillis S, Geuna S. Chitosan membranes applied on the prostatic neurovascular bundles after nerve-sparing robot-assisted radical prostatectomy: a phase II study. BJU Int 2017; 121:472-478. [PMID: 28710845 DOI: 10.1111/bju.13959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To evaluate the feasibility and the safety of applying chitosan membrane (ChiMe) on the neurovascular bundles (NVBs) after nerve-sparing robot-assisted radical prostatectomy (NS-RARP). The secondary aim of the study was to report preliminary data and in particular potency recovery data. PATIENTS AND METHODS This was a single-centre, single-arm prospective study, enrolling all patients with localised prostate cancer scheduled for RARP with five-item version of the International Index of Erectile Function scores of >17, from July 2015 to September 2016. All patients underwent NS-RARP with ChiMe applied on the NVBs. The demographics, perioperative, postoperative and complications data were evaluated. Potency recovery data were evaluated in particular and any sign/symptom of local allergy/intolerance to the ChiMe was recorded and evaluated. RESULTS In all, 140 patients underwent NS-RARP with ChiMe applied on the NVBs. Applying the ChiMe was easy in almost all the cases, and did not compromise the safety of the procedure. None of the patients reported signs of intolerance/allergy attributable to the ChiMe and potency recovery data were encouraging. CONCLUSION In our experience, ChiMe applied on the NVBs after NS-RARP was feasible and safe, without compromising the duration, difficulty or complication rate of the 'standard' procedure. No patients had signs of intolerance/allergy attributable to the ChiMe and potency recovery data were encouraging. A comparative cohort would have added value to the study. The present paper was performed before Conformité Européene (CE)-mark achievement.
Collapse
Affiliation(s)
- Francesco Porpiglia
- Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Riccardo Bertolo
- Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Cristian Fiori
- Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Matteo Manfredi
- Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Sabrina De Cillis
- Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
22
|
Tonazzini I, Moffa M, Pisignano D, Cecchini M. Neuregulin 1 functionalization of organic fibers for Schwann cell guidance. NANOTECHNOLOGY 2017; 28:155303. [PMID: 28303795 DOI: 10.1088/1361-6528/aa6316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The repair of peripheral nerve lesions is a clinical problem where the functional recovery is often far from being satisfactory, although peripheral nerves generally retain good potential for regeneration. Here, we develop a novel scaffold approach based on bioactive fibers of poly(ε-caprolactone) where nanotopographical guidance and neuregulin 1 (NRG1) cues are combined. We interface them with rat primary Schwann cells (SCs), the peripheral glial cells that drive initial regeneration of injured nerves, and found that the combination of NRG1 with parallel nano-fibrous topographies is effective in improving SC growth up to 72 h, alignment to fiber topography, and bipolar differentiation, opening original perspectives for nerve repair applications.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa I-56127, Italy. Fondazione Umberto Veronesi, Piazza Velasca 5, Milan I-20122, Italy
| | | | | | | |
Collapse
|
23
|
Martins DO, Dos Santos FM, Ciena AP, Watanabe IS, de Britto LRG, Lemos JBD, Chacur M. Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: Effects of photobiomodulation. Lasers Med Sci 2017; 32:833-840. [PMID: 28314941 DOI: 10.1007/s10103-017-2181-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Abstract
Inferior alveolar nerve (IAN) injuries may occur during various dental routine procedures, especially in the removal of impacted lower third molars, and nerve recovery in these cases is a great challenge in dentistry. Here, the IAN crush injury model was used to assess the efficacy of photobiomodulation (PBM) in the recovery of the IAN in rats following crushing injury (a partial lesion). Rats were divided into four experimental groups: without any procedure, IAN crush injury, and IAN crush injury with PBM and sham group with PBM. Treatment was started 2 days after surgery, above the site of injury, and was performed every other day, totaling 10 sessions. Rats were irradiated with GaAs Laser (Gallium Arsenide, Laserpulse, Ibramed Brazil) emitting a wavelength of 904 nm, an output power of 70 mWpk, beam spot size at target ∼0.1 cm2, a frequency of 9500 Hz, a pulse time 60 ns, and an energy density of 6 J/cm2. Nerve recovery was investigated by measuring the morphometric data of the IAN using TEM and by the expression of laminin, neurofilaments (NFs), and myelin protein zero (MPZ) using Western blot analysis. We found that IAN-injured rats which received PBM had a significant improvement of IAN morphometry when compared to IAN-injured rats without PBM. In parallel, all MPZ, laminin, and NFs exhibited a decrease after PBM. The results of this study indicate that the correlation between the peripheral nerve ultrastructure and the associated protein expression shows the beneficial effects of PBM.
Collapse
Affiliation(s)
- Daniel Oliveira Martins
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil.
| | - Fabio Martinez Dos Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
- University Nove de Julho, São Paulo, SP, Brazil
| | - Adriano Polican Ciena
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
- Institute of Biosciences, University Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, 13506-900, Brazil
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
| | - Luiz Roberto G de Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2524, São Paulo, SP, 05508-000, Brazil
| | - José Benedito Dias Lemos
- Department of Surgery, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, 05508-000, Brazil
| | - Marucia Chacur
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
24
|
Busuttil F, Rahim AA, Phillips JB. Combining Gene and Stem Cell Therapy for Peripheral Nerve Tissue Engineering. Stem Cells Dev 2017; 26:231-238. [PMID: 27960587 DOI: 10.1089/scd.2016.0188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite a substantially increased understanding of neuropathophysiology, insufficient functional recovery after peripheral nerve injury remains a significant clinical challenge. Nerve regeneration following injury is dependent on Schwann cells, the supporting cells in the peripheral nervous system. Following nerve injury, Schwann cells adopt a proregenerative phenotype, which supports and guides regenerating nerves. However, this phenotype may not persist long enough to ensure functional recovery. Tissue-engineered nerve repair devices containing therapeutic cells that maintain the appropriate phenotype may help enhance nerve regeneration. The combination of gene and cell therapy is an emerging experimental strategy that seeks to provide the optimal environment for axonal regeneration and reestablishment of functional circuits. This review aims to summarize current preclinical evidence with potential for future translation from bench to bedside.
Collapse
Affiliation(s)
- Francesca Busuttil
- 1 Department of Pharmacology, UCL School of Pharmacy, University College London , London, United Kingdom
| | - Ahad A Rahim
- 1 Department of Pharmacology, UCL School of Pharmacy, University College London , London, United Kingdom
| | - James B Phillips
- 2 Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London , London, United Kingdom
| |
Collapse
|
25
|
Ziago EKM, Fazan VPS, Iyomasa MM, Sousa LG, Yamauchi PY, da Silva EA, Borie E, Fuentes R, Dias FJ. Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats: a morphological, quantitative, and morphometric study. Lasers Med Sci 2017; 32:369-378. [PMID: 28063018 DOI: 10.1007/s10103-016-2126-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/06/2016] [Indexed: 01/17/2023]
Abstract
The objective of this study was to evaluate three energy densities of low-level laser therapy (LLLT, GaAlAs, 780 nm, 40 mW, 0.04 cm2) for the treatment of lesions to peripheral nerves using the sciatic nerve of rats injured via crushing model (15 kgf, 5.2 MPa). Thirty Wistar rats (♂, 200-250 g) were divided into five groups (n = 6): C-control, not injured, and irradiated; L0-injured nerve without irradiation; L4-injured nerve irradiated with LLLT 4 J/cm2 (0.16 J); L10-injured nerve irradiated with LLLT 10 J/cm2 (0.4 J); and L50-injured nerve irradiated with LLLT 50 J/cm2 (2 J). The animals were sacrificed 2 weeks after the injury via perfusion with glutaraldehyde (2.5%, 0.1 M sodium cacodylate buffer). The nerve tissue was embedded in historesin, cut (3 μm), mounted on slides, and stained (Sudan black and neutral red). The morphological and quantitative analysis (myelin and blood capillary densities) and morphometric parameters (maximum and minimum diameters of nerve fibers, axon diameter, G-ratio, myelin sheath thickness) were assessed using the ImageJ software. ANOVA (parametric) or Kruskal-Wallis (nonparametric) tests were used for the statistical analysis. Groups L0, L4, L10, and L50 exhibited diminished values of all the quantitative and morphometric parameters in comparison to the control group. The morphological, quantitative, and morphometric data revealed improvement after injury in groups L4, L10, and L50 (irradiated groups) compared to the injured-only group (L0); the best results, in general, were observed for the L10 group after 15 days of nerve injury.
Collapse
Affiliation(s)
| | | | | | - Luiz Gustavo Sousa
- School of Dentistry, University of São Paulo, USP, Ribeirão Preto, Brazil
| | | | | | - Eduardo Borie
- Department of Integral Dentistry, CICO - Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Ramón Fuentes
- Department of Integral Dentistry, CICO - Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Fernando José Dias
- School of Medicine, University of São Paulo, USP, Ribeirão Preto, Brazil. .,Department of Integral Dentistry, CICO - Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
26
|
Yu J, Gu X, Yi S. Ingenuity Pathway Analysis of Gene Expression Profiles in Distal Nerve Stump following Nerve Injury: Insights into Wallerian Degeneration. Front Cell Neurosci 2016; 10:274. [PMID: 27999531 PMCID: PMC5138191 DOI: 10.3389/fncel.2016.00274] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023] Open
Abstract
Nerve injury is a common and difficult clinical problem worldwide with a high disability rate. Different from the central nervous system, the peripheral nervous system is able to regenerate after injury. Wallerian degeneration in the distal nerve stump contributes to the construction of a permissible microenvironment for peripheral nerve regeneration. To gain new molecular insights into Wallerian degeneration, this study aimed to identify differentially expressed genes and elucidate significantly involved pathways and cellular functions in the distal nerve stump following nerve injury. Microarray analysis showed that a few genes were differentially expressed at 0.5 and 1 h post nerve injury and later on a relatively larger number of genes were up-regulated or down-regulated. Ingenuity pathway analysis indicated that inflammation and immune response, cytokine signaling, cellular growth and movement, as well as tissue development and function were significantly activated following sciatic nerve injury. Notably, a cellular function highly related to nerve regeneration, which is called Nervous System Development and Function, was continuously activated from 4 days until 4 weeks post injury. Our results may provide further understanding of Wallerian degeneration from a genetic perspective, thus aiding the development of potential therapies for peripheral nerve injury.
Collapse
Affiliation(s)
- Jun Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University Nantong, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University Nantong, China
| | - Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University Nantong, China
| |
Collapse
|
27
|
Sánchez M, Anitua E, Delgado D, Sanchez P, Prado R, Orive G, Padilla S. Platelet-rich plasma, a source of autologous growth factors and biomimetic scaffold for peripheral nerve regeneration. Expert Opin Biol Ther 2016; 17:197-212. [DOI: 10.1080/14712598.2017.1259409] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain
- Eduardo Anitua Foundation, Vitoria, Spain
| | - Diego Delgado
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Peio Sanchez
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | | | - Gorka Orive
- BTI Biotechnology Institute, Vitoria, Spain
- Eduardo Anitua Foundation, Vitoria, Spain
- Lab of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of The Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Sabino Padilla
- BTI Biotechnology Institute, Vitoria, Spain
- Eduardo Anitua Foundation, Vitoria, Spain
| |
Collapse
|
28
|
Fregnan F, Ciglieri E, Tos P, Crosio A, Ciardelli G, Ruini F, Tonda-Turo C, Geuna S, Raimondo S. Chitosan crosslinked flat scaffolds for peripheral nerve regeneration. ACTA ACUST UNITED AC 2016; 11:045010. [PMID: 27508969 DOI: 10.1088/1748-6041/11/4/045010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chitosan (CS) has been widely used in a variety of biomedical applications, including peripheral nerve repair, due to its excellent biocompatibility, biodegradability, readily availability and antibacterial activity. In this study, CS flat membranes, crosslinked with dibasic sodium phosphate (DSP) alone (CS/DSP) or in association with the γ-glycidoxypropyltrimethoxysilane (CS/GPTMS_DSP), were fabricated with a solvent casting technique. The constituent ratio of crosslinking agents and CS were previously selected to obtain a composite material having both adequate mechanical properties and high biocompatibility. In vitro cytotoxicity tests showed that both CS membranes allowed cell survival and proliferation. Moreover, CS/GPTMS_DSP membranes promoted cell adhesion, induced Schwann cell-like morphology and supported neurite outgrowth from dorsal root ganglia explants. Preliminary in vivo tests carried out on both types of nerve scaffolds (CS/DSP and CS/GPTMS_DSP membranes) demonstrated their potential for: (i) protecting, as a membrane, the site of nerve crush or repair by end-to-end surgery and avoiding post-operative nerve adhesion; (ii) bridging, as a conduit, the two nerve stumps after a severe peripheral nerve lesion with substance loss. A 1 cm gap on rat median nerve was repaired using CS/DSP and CS/GPTMS_DSP conduits to further investigate their ability to induce nerve regeneration in vivo. CS/GPTMS_DSP tubes resulted to be more fragile during suturing and, along a 12 week post-operative lapse of time, they detached from the distal nerve stump. On the contrary CS/DSP conduits promoted nerve fiber regeneration and functional recovery, leading to an outcome comparable to median nerve repaired by autograft.
Collapse
Affiliation(s)
- F Fregnan
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tissue engineering of nanosilver-embedded peripheral nerve scaffold to repair nerve defects under contamination conditions. Int J Artif Organs 2016; 38:508-16. [PMID: 26481291 DOI: 10.5301/ijao.5000439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION We employed a nanosilver-collagen scaffold and tested its effects on inhibiting bacteria and facilitating nerve regeneration. METHODS Based on our previous research, we prepared bionic scaffolds with different concentrations of nanosilver and examined their internal structures by scanning electron microscopy and energy dispersive spectroscopy. We implanted these scaffolds or autologous nerve grafts into rats to repair a 10-mm injury of the sciatic nerve. RESULTS The 2 mg/ml group showed a >10 mm bacterial inhibition zone in all 3 types of bacterial culture dishes. At day 60 postsurgery, the 2 mg/ml group also showed the highest amplitude of evoked potential (AMP) and nerve conduction velocity (NCV). The regenerating nerves in the 2 mg/ml group were denser and more mature, and with thicker and well-arrayed myelin sheath. CONCLUSIONS These results demonstrate that nanosilver scaffolds (2 mg/ml group) were effective in inhibiting bacteria both in vitro and in vivo, and reduced the contamination-caused immune responses, which in turn promoted nerve regeneration and functional recovery.
Collapse
|
30
|
Progress and perspectives of neural tissue engineering. Front Med 2015; 9:401-11. [DOI: 10.1007/s11684-015-0415-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/06/2015] [Indexed: 10/22/2022]
|
31
|
Tonazzini I, Jacchetti E, Meucci S, Beltram F, Cecchini M. Schwann Cell Contact Guidance versus Boundary -Interaction in Functional Wound Healing along Nano and Microstructured Membranes. Adv Healthc Mater 2015; 4:1849-60. [PMID: 26097140 DOI: 10.1002/adhm.201500268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/27/2015] [Indexed: 01/09/2023]
Abstract
Peripheral nerve transection is often encountered after trauma and can lead to long-term/permanent loss of sensor/motor functionality. Here, the effect of pure contact interaction of nano/microgrooved substrates on Schwann cells (SCs) is studied in view of their possible use for nerve-repair applications. Elastomeric gratings (GRs; i.e., alternating lines of ridges and grooves) are developed with different lateral periods (1-20 μm) and depths (0.3-2.5 μm), leading to two distinct cell-material interaction regimes: contact guidance (grating period < cell body diameter) and boundary guidance (grating period ≥ cell body diameter). Here, it is shown that boundary guidance leads to the best single-cell polarization, actin organization, and single-cell directional migration. Remarkably, contact guidance is instead more effective in driving collective SC migration and improves functional wound healing. It is also demonstrated that this behavior is linked to the properties of the SC monolayers on different GRs. SCs on large-period GRs are characterized by N-Cadherin downregulation and enhanced single-cell scattering into the wound with respect to SCs on small-period GRs, indicating a less compact monolayer characterized by looser cell-cell junctions in the boundary guidance regime. The present results provide information on the impact of specific sub-micrometer topographical elements on SC functional response, which can be exploited for nerve-regeneration applications.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
- Fondazione Umberto Veronesi; Piazza Velasca 5 Milano 20122 Italy
| | - Emanuela Jacchetti
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| | - Sandro Meucci
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| | - Fabio Beltram
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| |
Collapse
|
32
|
Dias FJ, Issa JPM, Coutinho-Netto J, Fazan VPS, Sousa LG, Iyomasa MM, Papa PC, Watanabe IS. Morphometric and high resolution scanning electron microscopy analysis of low-level laser therapy and latex protein (Hevea brasiliensis) administration following a crush injury of the sciatic nerve in rats. J Neurol Sci 2015; 349:129-37. [PMID: 25619570 DOI: 10.1016/j.jns.2014.12.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/03/2014] [Accepted: 12/29/2014] [Indexed: 12/24/2022]
Abstract
This study evaluated the effect of low-level laser therapy (LLLT; 15 J/cm(2)) and a latex protein (F1) on a crush injury of the sciatic (ischiadicus) nerve. Seventy-two rats (male, 250 g) were divided into 6 groups: CG, control; EG, exposed nerve; IG, injured nerve without treatment; LG, injured nerve with LLLT; HG, injured nerve with F1; and LHG, injured nerve with LLLT and F1. After 4 or 8 weeks, the animals were euthanized and samples of the sciatic nerve were collected for morphometric and high-resolution scanning electron microscopy (HRSEM) analysis. After 4 weeks, the morphometry revealed improvements in the treated animals, and the HG appeared to be the most similar to the CG; after 8 weeks, the injured groups showed improvements compared to the previous period, and the results of the treatment groups were more similar to one another. At HRSEM after 4 weeks, the treated groups were similar and showed improvement compared to the IG; after 8 weeks, the LHG and HG had the best results. In conclusion, the treatments resulted in improvement after the nerve injury, and this recovery was time-dependent. In addition, the use of the F1 resulted in the best morphometric and ultrastructural findings.
Collapse
Affiliation(s)
- Fernando J Dias
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - João Paulo M Issa
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto , Brazil
| | | | - Valéria P S Fazan
- Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gustavo Sousa
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto , Brazil
| | - Mamie M Iyomasa
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto , Brazil
| | - Paula C Papa
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ii-Sei Watanabe
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
33
|
Fregnan F, Muratori L, Simões AR, Giacobini-Robecchi MG, Raimondo S. Role of inflammatory cytokines in peripheral nerve injury. Neural Regen Res 2014; 7:2259-66. [PMID: 25538747 PMCID: PMC4268726 DOI: 10.3969/j.issn.1673-5374.2012.29.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 12/22/2022] Open
Abstract
Inflammatory events occurring in the distal part of an injured peripheral nerve have, nowadays, a great resonance. Investigating the timing of action of the several cytokines in the important stages of Wallerian degeneration helps to understand the regenerative process and design pharmacologic intervention that promotes and expedites recovery. The complex and synergistic action of inflammatory cytokines finally promotes axonal regeneration. Cytokines can be divided into pro- and anti-inflammatory cytokines that upregulate and downregulate, respectively, the production of inflammatory mediators. While pro-inflammatory cytokines are expressed in the first phase of Wallerian degeneration and promote the recruitment of macrophages, anti-inflammatory cytokines are expressed after this recruitment and downregulate the production of all cytokines, thus determining the end of the process. In this review, we describe the major inflammatory cytokines involved in Wallerian degeneration and the early phases of nerve regeneration. In particular, we focus on interleukin-1, interleukin-2, interleukin-6, tumor necrosis factor-β, interleukin-10 and transforming growth factor-β.
Collapse
Affiliation(s)
- Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Turin, Italy ; Neuroscience Institute of the "Cavalieri Ottolenghi" Foundation, Orbassano 10043, Turin, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Turin, Italy ; Neuroscience Institute of the "Cavalieri Ottolenghi" Foundation, Orbassano 10043, Turin, Italy
| | - Anabel Rodriguez Simões
- Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Turin, Italy
| | | | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Turin, Italy ; Neuroscience Institute of the "Cavalieri Ottolenghi" Foundation, Orbassano 10043, Turin, Italy
| |
Collapse
|
34
|
Demir R, Yayla M, Akpinar E, Cakir M, Calikoglu C, Ozel L, Ozdemir G, Mercantepe T. Protective effects of alpha-lipoic acid on experimental sciatic nerve crush injury in rats: assessed with functional, molecular and electromicroscopic analyses. Int J Neurosci 2014; 124:935-943. [PMID: 24617291 DOI: 10.3109/00207454.2014.902375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIM The present study aimed to demonstrate protective effects of alpha lipoic acid on experimental sciatic nerve crush injury model assessed with functional and electronmicroscopy analyses. METHODS In this study, groups were; Group 1; sham operated, Group 2; applied only sciatic nerve crush (Control), Group 3; Sciatic nerve crush + treated ALA 25 mg/kg (received orally) and Group 4; Sciatic nerve crush + treated ALA 50 mg/kg. Subsequently, sciatic nerves crush injury induced by forceps. At the second and fourth week, all animals were evaluated for sciatic functional index (SFI) and histomorphometric analyses with electronmicroscopy. RESULTS The SFI was significantly increased for both ALA-treated groups 30 days post-injury compared with control groups. The elecronmicroscopy results demonstrated that the axon diameter, the myelin diameter, the area of regenerating axon and miyelin were better in the treatment group than in the control group. Also ALA decreased IL-1β and Caspase 3 levels that increased in SNC group. CONCLUSIONS These results suggest that ALA neuroprotective agent for peripheral nerve injury (PNI) and promoted peripheral nerve regeneration via its anti-inflammatory and antiapoptotic effects.
Collapse
Affiliation(s)
- Recep Demir
- 1Department of Neurology, Faculty of Medicine, 2Department of Pharmacology, 3Department of Brain and Nerve Surgery, 5Department of Histology and Embryology, 4Department of Neurology, Palandoken Public Hospital, Yakutiye, Erzurum, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Celik M, Kose A, Kose D, Karakus E, Akpinar E, Calik M, Dostbil A, Calikoglu C, Aksoy M, Ozel L. The double-edged sword: effects of pregabalin on experimentally induced sciatic nerve transection and crush injury in rats. Int J Neurosci 2014; 125:845-54. [PMID: 25340254 DOI: 10.3109/00207454.2014.978976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM The aim of this study was to research the effects of pregabalin on experimentally induced peripheral nerve crush injuries in rats. MATERIAL AND METHOD Forty-two adult female Wistar albino rats were divided into seven groups: 1st group: healthy; 2nd group: axonotmesis control; 3rd group: anastomosis control; 4th group: axonotmesis+30 mg/kg of pregabalin; 5th group: axonotmesis+60 mg/kg of pregabalin; 6th group: anastomosis+30 mg/kg of pregabalin; 7th group: anastomosis+60 mg/kg of pregabalin. Evaluation of the sciatic functional index (SFI) was performed one day before and on days 7, 14, 21, and 28 following surgery. The right sciatic nerves of all animals were examined histopathologically and molecularly. RESULTS After 28 days post-injury, the histopathological regeneration in peripheral nerve injuries for pregabalin 30 mg/kg treated groups was significantly better than that of the control groups. Also the SFI increases and TGF-β gene expression up-regulation were significantly better in pregabalin 30 mg/kg treated groups. CONCLUSION The histopathological, functional and molecular data suggest that pregabalin 30 mg/kg treatment in axonotmesis and anostomosis groups improves nerve regeneration and increases SFI in peripheral nerve injuries by activating antiinflammatory cytokine TGF-β1.
Collapse
Affiliation(s)
- Mine Celik
- a Ataturk University, Faculty of Medicine, Department of Anesthesiology and Reanimation , Erzurum , Turkey
| | - Ahmet Kose
- b Department of Orthophedics and Traumatology, Horasan Public Hospital , Erzurum , Turkey
| | - Duygu Kose
- c Ataturk University, Faculty of Medicine, Department of Pharmacology , Erzurum , Turkey
| | - Emre Karakus
- d Ataturk University, Faculty of Veterinary, Department of Pharmacology and Toxicology , Erzurum , Turkey
| | - Erol Akpinar
- c Ataturk University, Faculty of Medicine, Department of Pharmacology , Erzurum , Turkey
| | - Muhammed Calik
- e Ataturk University, Faculty of Medicine, Department of Pathology , Erzurum , Turkey
| | - Aysenur Dostbil
- a Ataturk University, Faculty of Medicine, Department of Anesthesiology and Reanimation , Erzurum , Turkey
| | - Cagatay Calikoglu
- f Ataturk University, Faculty of Medicine, Department of Brain Surgery , Erzurum , Turkey
| | - Mehmet Aksoy
- a Ataturk University, Faculty of Medicine, Department of Anesthesiology and Reanimation , Erzurum , Turkey
| | - Lutfu Ozel
- g Ataturk University, Faculty of Medicine, Department of Neurology , Erzurum , Turkey
| |
Collapse
|
36
|
Hoyng SA, De Winter F, Gnavi S, de Boer R, Boon LI, Korvers LM, Tannemaat MR, Malessy MJ, Verhaagen J. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF. Exp Neurol 2014; 261:578-93. [DOI: 10.1016/j.expneurol.2014.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 01/21/2023]
|
37
|
Barreiros VCP, Dias FJ, Iyomasa MM, Coutinho-Netto J, de Sousa LG, Fazan VPS, Antunes RDS, Watanabe IS, Issa JPM. Morphological and morphometric analyses of crushed sciatic nerves after application of a purified protein from natural latex and hyaluronic acid hydrogel. Growth Factors 2014; 32:164-70. [PMID: 25257251 DOI: 10.3109/08977194.2014.952727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hyaluronic acid hydrogels (HAHs) have been used as a carrier of substances and factors in the repair of nervous tissue. Natural latex protein (Hevea brasiliensis, F1) has shown positive effects in treating various types of tissues, including peripheral nerves. This study evaluated the F1 associated with a HAH in a controlled crush injury (axonotmesis) of the sciatic nerve in Wistar rats. The samples were photomicrographed for morphometric and quantitative analyzes using ImageJ 1.47k software (NIH, Bethesda, MD). Morphological, quantitative (myelin area/nerve area ratio and capillary density) and morphometric (minimum nerve fiber diameter, G-Ratio) data revealed an improvement in the recovery of the sciatic nerve with the application of HAH and the combination of HAH and F1 after 4 and 8 weeks of nerve injury. The most efficacious results were observed with the combination of both substances, F1 and HAH, revealing the regenerative capacity of this new biomaterial, which was hardly tested on nerve tissue.
Collapse
|
38
|
Casañas J, de la Torre J, Soler F, García F, Rodellar C, Pumarola M, Climent J, Soler R, Orozco L. Peripheral nerve regeneration after experimental section in ovine radial and tibial nerves using synthetic nerve grafts, including expanded bone marrow mesenchymal cells: morphological and neurophysiological results. Injury 2014; 45 Suppl 4:S2-6. [PMID: 25384470 DOI: 10.1016/s0020-1383(14)70003-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The standard treatment of peripherical nerve injuries with substance gap is to introduce the nerve free extremes in a biodegradable tube which, as a biocamera, allows the continuity of the nerve, promote the neuroconduction and save the lesion from the surrounding fibrosis. However, this procedure has not any direct effect on the neuroregeneration nor to resolve high severe lesions. The mesenchymal stem cells (MSC) can derivate "in vitro" in different lineages, including Schwann cells. Different studies have shown MSC can promote the nerve regeneration in rodents, dogs and primates. Moving to the human clinical application requires the procedure standardization, including the optimal cell dose which we have to use. In the sheep model animal we performed a study of 1 cm. nerve section-ressection and repair with a Neurolac™ biocamera, in whose gap we applied between 30 to 50×10(6) MSC from cancellous bone, all of them selected and cultured with GMP procedures. The results were compared with controls (saline serum ± platelet-rich plasma). We used radial nerve (sensitive) and tibial nerve (motor) from 7 sheep. In the first step we performed the surgical lesion and bone marrow aspiration, and in 3 weeks we performed the surgical repair. 3 sheep were sacrificed in 3 months, and 4 sheep in 6 months. In all surgeries we performed a neurophysiological register. When we obtained the tissue samples, we performed an histological, immunohistiquimical and morphometrical study. The recovery percentage was defined comparing the axonal density from the proximal and distal lesion margins. The 3 months samples results were wrong. In 6 months samples results we observed a significative myelined nervous fibers and conduction increasing, in front of controls, both radial and tibial nerves. These results suggest the MSC application in biodegradable scaffold in nerve injuries promotes good results in terms of regeneration and functional recovery.
Collapse
Affiliation(s)
- Joaquim Casañas
- TRAUMAUNIT, Hospital Quirón-Teknon, Vilana 12, 08022 Barcelona, Spain
| | - Jaime de la Torre
- EGARSAT, Avda Roquetes 63-65, Sant Cugat del Vallès, 08174 Barcelona, Spain
| | - Francesc Soler
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, 08153 Barcelona, Spain
| | - Felix García
- EGARSAT, Avda Roquetes 63-65, Sant Cugat del Vallès, 08174 Barcelona, Spain
| | | | - Martí Pumarola
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, 08153 Barcelona, Spain
| | - Jana Climent
- Department of Neurosurgery, The Mount Sinai Medical Center, One Gustave L, Levy Place, Box 1136, Annenberg 8-46, New York, NY 10029, United States
| | - Robert Soler
- ITRT, Hospital Quirón-Teknon, Vilana 12, 08022 Barcelona, Spain.
| | - Lluís Orozco
- ITRT, Hospital Quirón-Teknon, Vilana 12, 08022 Barcelona, Spain
| |
Collapse
|
39
|
Hazer DB, Bal E, Nurlu G, Benli K, Balci S, Öztürk F, Hazer B. In vivo application of poly-3-hydroxyoctanoate as peripheral nerve graft. J Zhejiang Univ Sci B 2014; 14:993-1003. [PMID: 24190445 DOI: 10.1631/jzus.b1300016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study aims to investigate the degree of biocompatibility and neuroregeneration of a polymer tube, poly-3-hydroxyoctanoate (PHO) in nerve gap repair. METHODS Forty Wistar Albino male rats were randomized into two groups: autologous nerve gap repair group and PHO tube repair group. In each group, a 10-mm right sciatic nerve defect was created and reconstructed accordingly. Neuroregeneration was studied by sciatic function index (SFI), electromyography, and immunohistochemical studies on Days 7, 21, 45 and 60 of implantation. Biocompatibility was analyzed by the capsule formation around the conduit. Biodegradation was analyzed by the molecular weight loss in vivo. RESULTS Electrophysiological and histomorphometric assessments demonstrated neuroregeneration in both groups over time. In the experimental group, a straight alignment of the Schwann cells parallel to the axons was detected. However, autologous nerve graft seems to have a superior neuroregeneration compared to PHO grafts. Minor biodegradation was observed in PHO conduit at the end of 60 d. CONCLUSIONS Although neuroregeneration is detected in PHO grafts with minor degradation in 60 d, autologous nerve graft is found to be superior in axonal regeneration compared to PHO nerve tube grafts. PHO conduits were found to create minor inflammatory reaction in vivo, resulting in good soft tissue response.
Collapse
Affiliation(s)
- D Burcu Hazer
- Department of Neurosurgery, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; Atatürk Research and Medical Center, Neurosurgery Clinic, Ministry of Health of the Republic of Turkey, Ankara 06110, Turkey; Department of Neurology, Faculty of Medicine, School of Medicine, Hacettepe University, Ankara 06100, Turkey; Department of Neurosurgery, Faculty of Medicine, School of Medicine, Hacettepe University, Ankara 06100, Turkey; Atatürk Research and Medical Center, Department of Pathology, Yıldırım Beyazıt University, Ankara 06110, Turkey; Department of Histology and Embryology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; Department of Chemistry, Bülent Ecevit University, Zonguldak 67100, Turkey
| | | | | | | | | | | | | |
Collapse
|
40
|
Ramburrun P, Kumar P, Choonara YE, Bijukumar D, du Toit LC, Pillay V. A review of bioactive release from nerve conduits as a neurotherapeutic strategy for neuronal growth in peripheral nerve injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:132350. [PMID: 25143934 PMCID: PMC4131113 DOI: 10.1155/2014/132350] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/04/2014] [Indexed: 02/07/2023]
Abstract
Peripheral nerve regeneration strategies employ the use of polymeric engineered nerve conduits encompassed with components of a delivery system. This allows for the controlled and sustained release of neurotrophic growth factors for the enhancement of the innate regenerative capacity of the injured nerves. This review article focuses on the delivery of neurotrophic factors (NTFs) and the importance of the parameters that control release kinetics in the delivery of optimal quantities of NTFs for improved therapeutic effect and prevention of dose dumping. Studies utilizing various controlled-release strategies, in attempt to obtain ideal release kinetics, have been reviewed in this paper. Release strategies discussed include affinity-based models, crosslinking techniques, and layer-by-layer technologies. Currently available synthetic hollow nerve conduits, an alternative to the nerve autografts, have proven to be successful in the bridging and regeneration of primarily the short transected nerve gaps in several patient cases. However, current research emphasizes on the development of more advanced nerve conduits able to simulate the effectiveness of the autograft which includes, in particular, the ability to deliver growth factors.
Collapse
Affiliation(s)
- Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Divya Bijukumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
41
|
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35:6143-56. [PMID: 24818883 DOI: 10.1016/j.biomaterials.2014.04.064] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022]
Abstract
Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
42
|
Geuna S, Tos P, Titolo P, Ciclamini D, Beningo T, Battiston B. Update on nerve repair by biological tubulization. J Brachial Plex Peripher Nerve Inj 2014; 9:3. [PMID: 24606921 PMCID: PMC3953745 DOI: 10.1186/1749-7221-9-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 03/02/2014] [Indexed: 12/18/2022] Open
Abstract
Many surgical techniques are available for bridging peripheral nerve defects. Autologous nerve grafts are the current gold standard for most clinical conditions. In selected cases, alternative types of conduits can be used. Although most efforts are today directed towards the development of artificial synthetic nerve guides, the use of non-nervous autologous tissue-based conduits (biological tubulization) can still be considered a valuable alternative to nerve autografts. In this paper we will overview the advancements in biological tubulization of nerve defects, with either mono-component or multiple-component autotransplants, with a special focus on the use of a vein segment filled with skeletal muscle fibers, a technique that has been widely investigated in our laboratory and that has already been successfully introduced in the clinical practice.
Collapse
Affiliation(s)
- Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin 10043, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin 10043, Italy
| | - Pierluigi Tos
- Department of Traumatology, Microsurgery Unit, CTO Hospital, Turin, Italy
| | - Paolo Titolo
- UOC Traumatology–Reconstructive Microsurgery, Department of Orthopaedics and Traumatology, CTO Hospital, Torino, Italy
| | - Davide Ciclamini
- Department of Traumatology, Microsurgery Unit, CTO Hospital, Turin, Italy
| | - Teresa Beningo
- Department of Traumatology, Microsurgery Unit, CTO Hospital, Turin, Italy
| | - Bruno Battiston
- Department of Traumatology, Microsurgery Unit, CTO Hospital, Turin, Italy
- UOC Traumatology–Reconstructive Microsurgery, Department of Orthopaedics and Traumatology, CTO Hospital, Torino, Italy
| |
Collapse
|
43
|
Anjayani S, Wirohadidjojo YW, Adam AM, Suwandi D, Seweng A, Amiruddin MD. Sensory improvement of leprosy peripheral neuropathy in patients treated with perineural injection of platelet-rich plasma. Int J Dermatol 2013; 53:109-13. [DOI: 10.1111/ijd.12162] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sukma Anjayani
- Department of Dermatology and Venereology; Dr Wahidin Sudirohusodo Hospital/Faculty of Medicine; Hasanuddin University; Makassar Indonesia
| | - Yohanes Widodo Wirohadidjojo
- Department of Dermatology and Venereology; Sardjito Hospital/Faculty of Medicine; Gadjah Mada University; Yogyakarta Indonesia
| | - Andi Muhammad Adam
- Department of Dermatology and Venereology; Dr Wahidin Sudirohusodo Hospital/Faculty of Medicine; Hasanuddin University; Makassar Indonesia
| | - Danny Suwandi
- Department of Pharmacology; Faculty of Medicine; Hasanuddin University; Makassar Indonesia
| | - Arifin Seweng
- Faculty of Public Health; Hasanuddin University; Makassar Indonesia
| | - Muh. Dali Amiruddin
- Department of Dermatology and Venereology; Dr Wahidin Sudirohusodo Hospital/Faculty of Medicine; Hasanuddin University; Makassar Indonesia
| |
Collapse
|
44
|
Wei GJ, Yao M, Wang YS, Zhou CW, Wan DY, Lei PZ, Wen J, Lei HW, Dong DM. Promotion of peripheral nerve regeneration of a peptide compound hydrogel scaffold. Int J Nanomedicine 2013; 8:3217-25. [PMID: 24009419 PMCID: PMC3758218 DOI: 10.2147/ijn.s43681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Peripheral nerve injury is a common trauma, but presents a significant challenge to the clinic. Silk-based materials have recently become an important biomaterial for tissue engineering applications due to silk's biocompatibility and impressive mechanical and degradative properties. In the present study, a silk fibroin peptide (SF16) was designed and used as a component of the hydrogel scaffold for the repair of peripheral nerve injury. METHODS The SF16 peptide's structure was characterized using spectrophotometry and atomic force microscopy, and the SF16 hydrogel was analyzed using scanning electron microscopy. The effects of the SF16 hydrogel on the viability and growth of live cells was first assessed in vitro, on PC12 cells. The in vivo test model involved the repair of a nerve gap with tubular nerve guides, through which it was possible to identify if the SF16 hydrogel would have the potential to enhance nerve regeneration. In this model physiological saline was set as the negative control, and collagen as the positive control. Walking track analysis and electrophysiological methods were used to evaluate the functional recovery of the nerve at 4 and 8 weeks after surgery. RESULTS Analysis of the SF16 peptide's characteristics indicated that it consisted of a well-defined secondary structure and exhibited self-assembly. Results of scanning electron microscopy showed that the peptide based hydrogel may represent a porous scaffold that is viable for repair of peripheral nerve injury. Analysis of cell culture also supported that the hydrogel was an effective matrix to maintain the viability, morphology and proliferation of PC12 cells. Electrophysiology demonstrated that the use of the hydrogel scaffold (SF16 or collagen) resulted in a significant improvement in amplitude recovery in the in vivo model compared to physiological saline. Moreover, nerve cells in the SF16 hydrogel group displayed greater axon density, larger average axon diameter and thicker myelin compared to those of the group that received physiological saline. CONCLUSION The SF16 hydrogel scaffold may promote excellent axonal regeneration and functional recovery after peripheral nerve injury, and the SF16 peptide may be a candidate for nerve tissue engineering applications.
Collapse
Affiliation(s)
- Guo-Jun Wei
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Application of a low-level laser therapy and the purified protein from natural latex (Hevea brasiliensis) in the controlled crush injury of the sciatic nerve of rats: a morphological, quantitative, and ultrastructural study. BIOMED RESEARCH INTERNATIONAL 2013; 2013:597863. [PMID: 23936823 PMCID: PMC3713596 DOI: 10.1155/2013/597863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
This study analyzed the effects of a low-level laser therapy (LLLT, 15 J/cm2, 780 nm wavelength) and the natural latex protein (P1, 0.1%) in sciatic nerve after crush injury (15 Kgf, axonotmesis) in rats. Sixty rats (male, 250 g) were allocated into the 6 groups (n = 10): CG—control group; EG—nerve exposed; IG—injured nerve without treatment; LG—crushed nerve treated with LLLT; PG—injured nerve treated with P1; and LPG—injured nerve treated with LLLT and P1. After 4 or 8 weeks, the nerve samples were processed for morphological, histological quantification and ultrastructural analysis. After 4 weeks, the myelin density and morphological characteristics improved in groups LG, PG, and LPG compared to IG. After 8 weeks, PG, and LPG were similar to CG and the capillary density was higher in the LG, PG, and LPG. In the ultrastructural analysis the PG and LPG had characteristics that were similar to the CG. The application of LLLT and/or P1 improved the recovery from the nerve crush injury, and in the long term, the P1 protein was the better treatment used, since only the application of LLLT has not reached the same results, and these treatments applied together did not potentiate the recovery.
Collapse
|
46
|
Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B. Tissue Engineering and Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:35-57. [DOI: 10.1016/b978-0-12-410499-0.00002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Papalia I, Raimondo S, Ronchi G, Magaudda L, Giacobini-Robecchi MG, Geuna S. Repairing nerve gaps by vein conduits filled with lipoaspirate-derived entire adipose tissue hinders nerve regeneration. Ann Anat 2012; 195:225-30. [PMID: 23287534 DOI: 10.1016/j.aanat.2012.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 01/20/2023]
Abstract
In spite of great recent advancements, the definition of the optimal strategy for bridging a nerve defect, especially across long gaps, still remains an open issue since the amount of autologous nerve graft material is limited while the outcome after alternative tubulization techniques is often unsatisfactory. The aim of this study was to investigate a new tubulization technique based on the employment of vein conduits filled with whole subcutaneous adipose tissue obtained by lipoaspiration. In adult rats, a 1cm-long defect of the left median nerve was repaired by adipose tissue-vein-combined conduits and compared with fresh skeletal muscle tissue-vein-combined conduits and autologous nerve grafts made by the excised nerve segment rotated by 180°. Throughout the postoperative period, functional recovery was assessed using the grasping test. Regenerated nerve samples were withdrawn at postoperative month-6 and processed for light and electron microscopy and stereology of regenerated nerve fibers. Results showed that functional recovery was significantly slower in the adipose tissue-enriched group in comparison to both control groups. Light and electron microscopy showed that a large amount of adipose tissue was still present inside the vein conduits at postoperative month-6. Stereology showed that all quantitative morphological predictors analyzed performed significantly worse in the adipose tissue-enriched group in comparison to the two control groups. On the basis of this experimental study in the rat, the use of whole adipose tissue for tissue engineering of peripheral nerves should be discouraged. Pre-treatment of adipose tissue aimed at isolating stromal vascular fraction and/or adipose derived stem/precursor cells should be considered a fundamental requisite for nerve repair.
Collapse
Affiliation(s)
- Igor Papalia
- Department of Biomorphology and Biotechnologies, University of Messina, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Uto K, Muroya T, Okamoto M, Tanaka H, Murase T, Ebara M, Aoyagi T. Design of super-elastic biodegradable scaffolds with longitudinally oriented microchannels and optimization of the channel size for Schwann cell migration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064207. [PMID: 27877534 PMCID: PMC5099767 DOI: 10.1088/1468-6996/13/6/064207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/03/2012] [Indexed: 06/04/2023]
Abstract
We newly designed super-elastic biodegradable scaffolds with longitudinally oriented microchannels for repair and regeneration of peripheral nerve defects. Four-armed poly(ε-caprolactone-co-D,L-lactide)s (P(CL-co-DLLA)s) were synthesized by ring-opening copolymerization of CL and DLLA from terminal hydroxyl groups of pentaerythritol, and acryloyl chloride was then reacted with the ends of the chains. The end-functionalized P(CL-co-DLLA) was crosslinked in a cylindrical mold in the presence of longitudinally oriented silica fibers as the templates, which were later dissolved by hydrofluoric acid. The elastic moduli of the crosslinked P(CL-co-DLLA)s were controlled between 10-1 and 102 MPa at 37 °C, depending on the composition. The scaffolds could be elongated to 700% of their original size without fracture or damage ('super-elasticity'). Scanning electron microscopy images revealed that well-defined and highly aligned multiple channels consistent with the mold design were produced in the scaffolds. Owing to their elastic nature, the microchannels in the scaffolds did not collapse when they were bent to 90°. To evaluate the effect of the channel diameter on Schwann cell migration, microchannels were also fabricated in transparent poly(dimethylsiloxane), allowing observation of cell migration. The migration speed increased with channel size, but the Young's modulus of the scaffold decreased as the channel diameter increased. These findings may serve as the basis for designing tissue-engineering scaffolds for nerve regeneration and investigating the effects of the geometrical and dimensional properties on axonal outgrowth.
Collapse
Affiliation(s)
- Koichiro Uto
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takanari Muroya
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Michio Okamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Mitsuhiro Ebara
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takao Aoyagi
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Materials Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
49
|
Tos P, Battiston B, Ciclamini D, Geuna S, Artiaco S. Primary repair of crush nerve injuries by means of biological tubulization with muscle-vein-combined grafts. Microsurgery 2012; 32:358-63. [DOI: 10.1002/micr.21957] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 01/14/2023]
|
50
|
Audisio C, Mantovani C, Raimondo S, Geuna S, Perroteau I, Terenghi G. Neuregulin1 administration increases axonal elongation in dissociated primary sensory neuron cultures. Exp Cell Res 2012; 318:570-7. [PMID: 22269328 DOI: 10.1016/j.yexcr.2012.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/18/2011] [Accepted: 01/07/2012] [Indexed: 12/31/2022]
Abstract
Neuregulin1 is a family of growth and differentiation factors involved in various functions of both peripheral and central nervous system including the regenerative processes that underlie regeneration of damaged peripheral nerves. In the present study we tested in vitro the effect of Neuregulin1 administration on dissociated rat dorsal root ganglion (DRG). Activity of neuregulin1 was compared to the activity of nerve growth factor in the same in vitro experimental model. Results showed that neurite outgrowth is enhanced by the addition of both neuregulin1 and nerve growth factor to the culture medium. While neuregulin1 was responsible for the growth of longer neurites, DRG neurons incubated with nerve growth factor showed shorter and more branched axons. Using enzyme-linked immunosorbent assay we also showed that the release of nerve growth factor, but not of brain derived neurotrophic factor is improved in DRG neuron treated with neuregulin1. On the other hand, the assay with growth factor blocking antibody, showed that effects exerted by neuregulin1 on neurite outgrowth is only partially due to the release of nerve growth factor. Taken together the results of this study provide a better understanding on the role of neuregulin1 in sensory neurons.
Collapse
Affiliation(s)
- Chiara Audisio
- Department of Animal and Human Biology, University of Turin, via Accademia Albertina 13, 10123 Torino, Italy
| | | | | | | | | | | |
Collapse
|