1
|
Liu Y, Nie B, Wu B, Wang S, Ma Q, Han T, Wang F, Meng H, Xie H, Mu X. Brain Network Characterization of Preterm Infants With Bronchopulmonary Dysplasia. Pediatr Neurol 2024; 156:59-65. [PMID: 38733855 DOI: 10.1016/j.pediatrneurol.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/17/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) affects the microstructure of white matter in preterm infants, but its influence on the changes of the brain structural network has not been elaborated. This study aims to investigate the connectivity characteristics of the brain structural network of BPD by using diffusion tensor imaging. METHODS Thirty-three infants with BPD and 26 infants without BPD were enrolled in this study. Brain structural networks were constructed utilizing automated anatomic labeling mapping by tracing the fibers between each pair of regions in individual space. We calculated network metrics such as global efficiency, local efficiency, clustering coefficients, characteristic path length, and small-worldness. Then we compared the network metrics of these infants with those of 57 healthy term infants of comparable postmenstrual age at magnetic resonance imaging scan. Finally, network-based statistics was used to analyze the differences in brain network connectivity between the groups with and without BPD. RESULTS Preterm infants with BPD had higher local efficiency and clustering coefficient, lower global efficiency, and longer characteristic path length. Also, preterm infants with BPD had decreased strength of limbic connections mainly in four brain regions: the left lingual gyrus, the left calcarine fissure and surrounding cortex, the right parahippocampal gyrus, and the left precuneus. CONCLUSIONS Our findings suggest that preterm infants with BPD have lower network integration and higher segregation at term-equivalent age, which may reflect a compensatory mechanism. In addition, BPD affects brain regions involved in visual as well as cognitive functions; these findings provide a new approach to diagnose potential brain damage in preterm infants with BPD.
Collapse
Affiliation(s)
- Ying Liu
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong, China; Department of Radiology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Bing Wu
- Department of Radiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuai Wang
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong, China; Department of Radiotherapy, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China; Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Weifang, Shandong, China
| | - Qiaozhi Ma
- Department of Radiology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Han
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Wang
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Han Meng
- Postgraduate Training Base of the Third Medical Center of Chinese PLA General Hospital, Jinzhou Medical University, Beijing, China
| | - Hao Xie
- Department of Radiology, The Jintang First People's Hospital, Chengdu, Sichuan, China
| | - Xuetao Mu
- Department of Radiology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Hu X, Wang S, Zhou H, Li N, Zhong C, Luo W, Liu S, Fu F, Meng Y, Ding Z, Cheng B. Altered Functional Connectivity Strength in Distinct Brain Networks of Children With Early-Onset Schizophrenia. J Magn Reson Imaging 2023; 58:1617-1623. [PMID: 36932678 DOI: 10.1002/jmri.28682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Schizophrenia is regarded as a brain network or connectome disorder that is associated with neurodevelopment. Children with early-onset schizophrenia (EOS) provide an opportunity to evaluate the neuropathology of schizophrenia at a very early stage without potential confounding factors. But dysfunction in brain networks of schizophrenia is inconsistent. PURPOSE To identify abnormal functional connectivity (FC) in EOS patients and relationships with clinical symptoms, we aimed to reveal neuroimaging phenotypes of EOS. STUDY TYPE Prospective, cross-sectional. POPULATION Twenty-six female/22 male patients (age:14.3 ± 3.45 years) with first-episode EOS, 27 female/22 male age- and gender-matched healthy controls (HC) (age:14.1 ± 4.32). FIELD STRENGTH/SEQUENCE 3-T, resting-state (rs) gradient-echo echo-planar imaging and three-dimensional magnetization-prepared rapid gradient-echo imaging. ASSESSMENT Intelligence quotient (IQ) was measured by the Wechsler Intelligence Scale-Fourth edition for Children (WISC-IV). The clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). FC strength (FCS) from rs functional MRI (rsfMRI) was used to investigate functional integrity of global brain regions. In addition, associations between regionally altered FCS and clinical symptoms in EOS patients were examined. STATISTICAL TESTS Two-sample t-test controlling for sample size, diagnostic method, brain volume algorithm, and age of the subjects, Bonferroni correction, Pearson's correlation analysis. A P-value <0.05 with a minimum cluster size of 50 voxels was considered statistically significant. RESULTS Compared with HC, EOS patients had significantly lower total IQ scores (IQ:91.5 ± 16.1), increased FCS in the bilateral precuneus, left dorsolateral prefrontal cortex, left thalamus, and left parahippocampus (paraHIP), and decreased FCS in the right cerebellum posterior lobe and right superior temporal gyrus. The PANSS total score of EOS patients (PANSS total score:74.30 ± 7.23) was found to be positively correlated to FCS in the left paraHIP (r = 0.45). DATA CONCLUSION Our study revealed that disrupted FC of brain hubs illustrate multiple abnormalities in brain networks in EOS patients. EVIDENCE LEVEL 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Zhou
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Na Li
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Can Zhong
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Weiling Luo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sijia Liu
- School of Sociality and Psychology, Southwest Minzu University, Chengdu, China
| | - Fanghui Fu
- School of Sociality and Psychology, Southwest Minzu University, Chengdu, China
| | - Yajing Meng
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Ding
- Department of Medical Imaging, Qujing Maternal and Child Health Care Hospital, Qujing, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Picó-Pérez M, Magalhães R, Esteves M, Vieira R, Castanho TC, Amorim L, Sousa M, Coelho A, Moreira PS, Cunha RA, Sousa N. Coffee consumption decreases the connectivity of the posterior Default Mode Network (DMN) at rest. Front Behav Neurosci 2023; 17:1176382. [PMID: 37448789 PMCID: PMC10336217 DOI: 10.3389/fnbeh.2023.1176382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 07/15/2023] Open
Abstract
Habitual coffee consumers justify their life choices by arguing that they become more alert and increase motor and cognitive performance and efficiency; however, these subjective impressions still do not have a neurobiological correlation. Using functional connectivity approaches to study resting-state fMRI data in a group of habitual coffee drinkers, we herein show that coffee consumption decreased connectivity of the posterior default mode network (DMN) and between the somatosensory/motor networks and the prefrontal cortex, while the connectivity in nodes of the higher visual and the right executive control network (RECN) is increased after drinking coffee; data also show that caffeine intake only replicated the impact of coffee on the posterior DMN, thus disentangling the neurochemical effects of caffeine from the experience of having a coffee.
Collapse
Affiliation(s)
- Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center – Braga, Braga, Portugal
- Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Rita Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center – Braga, Braga, Portugal
| | - Teresa C. Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center – Braga, Braga, Portugal
- P5 Medical Center, Braga, Portugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center – Braga, Braga, Portugal
- P5 Medical Center, Braga, Portugal
| | - Mafalda Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center – Braga, Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Pedro S. Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center – Braga, Braga, Portugal
- P5 Medical Center, Braga, Portugal
| |
Collapse
|
4
|
Kang B, Zhao C, Ma J, Wang H, Gu X, Xu H, Zhong S, Gao C, Xu X, A X, Xie J, Du M, Shen J, Xiao L. Electroacupuncture alleviates pain after total knee arthroplasty through regulating neuroplasticity: A resting-state functional magnetic resonance imaging study. Brain Behav 2023; 13:e2913. [PMID: 36749304 PMCID: PMC10013951 DOI: 10.1002/brb3.2913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION We aimed to evaluate the efficacy of electroacupuncture in relieving acute pain after total knee arthroplasty (TKA) and related mechanism. METHODS In this randomized, single-blind, and sham-acupuncture controlled study. Forty patients with postoperative acute pain were recruited and randomly divided electroacupuncture group (n = 20) and sham-acupuncture group (n = 20) from November 2020 to October 2021. All patients received electroacupuncture or sham-acupuncture for 5 days after TKA. Their brain regions were scanned with resting-state functional magnetic resonance imaging before and after intervention. Pain was scaled. Another 40 matched healthy controls underwent scanning once. The amplitude of low-frequency fluctuation (ALFF) values was compared. Pearson's correlation analysis was utilized to explore the correlation of ALFF with clinical variables in patients after intervention. RESULTS Compared with the HCs, patients with acute pain following TKA had significantly decreased ALFF value in right middle frontal gyrus, right supplementary motor area, bilateral precuneus, right calcarine fissure and surrounding cortex, and left triangular part of inferior frontal gyrus (false discovery rate corrected p < .05). Patients had higher ALFF value in bilateral precuneus, right cuneus, right angular gyrus, bilateral middle occipital gyrus, and left middle temporal gyrus after electroacupuncture (AlphaSim corrected p < .01). Correlation analysis revealed that the change (postoperative day 7 to postoperative day 3) of ALFF in bilateral precuneus were negatively correlated with the change of NRS scores (r = -0.706; p = .002; 95% CI = -0.890 to -0.323) in EA group. CONCLUSIONS The functional activities of related brain regions decreased in patients with acute pain after TKA. The enhancement of the functional activity of precuneus may be the neurobiological mechanism of electroacupuncture in treating pain following TKA.
Collapse
Affiliation(s)
- Bingxin Kang
- Department of Rehabilitation centersThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouChina
| | - Chi Zhao
- Acupuncture Tuina InstituteHenan University of Chinese MedicineZhengzhouChina
| | - Jie Ma
- Center of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haiqi Wang
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Xiaoli Gu
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Hui Xu
- Acupuncture Tuina InstituteHenan University of Chinese MedicineZhengzhouChina
| | - Sheng Zhong
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Chenxin Gao
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Xirui Xu
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Xinyu A
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Jun Xie
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Mengmeng Du
- Department of Rehabilitation centersThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouChina
- Depart of Peripheral vascularThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouChina
| | - Jun Shen
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
- Arthritis Institute of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lianbo Xiao
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
- Arthritis Institute of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
5
|
Chen S, Li R, Wang P, Li J. Separation of memory span and learning rate: Evidence from behavior and spontaneous brain activity in older adults. Psych J 2022; 11:823-836. [PMID: 35922140 DOI: 10.1002/pchj.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022]
Abstract
It is unclear how the ability to initially acquire information in a first learning trial relates to learning rate in subsequent repeated trials. The separation of memory span and learning rate is an important psychological dilemma that remains unaddressed. Given the potential effects of aging on memory and learning, this study investigated the separation of memory span and learning rate from behavior and spontaneous brain activity in older adults. We enrolled a total of 758 participants, including 707 healthy older adults and 51 mild cognitive impairment (MCI) patients. Sixty-five participants out of 707 completed resting-state functional magnetic resonance imaging (fMRI) scanning. Behaviorally, memory span and learning rate were not correlated with each other in the paired-associative learning test (PALT) but were negatively correlated in the auditory verbal learning test (AVLT). This indicated that the relationship between memory span and learning rate for item memory might be differentially affected by aging. Interaction analysis confirmed that these two capacities were differentially affected by test type (associative memory vs. item memory). Additionally, at three progressive brain activity indexes (ALFF, ReHo, and DC), the right brain regions (right inferior temporal gyrus and right middle frontal gyrus) were more negatively correlated with memory span, whereas, the left precuneus was more positively correlated with learning rate. Regarding pathological aging, none of the correlations between memory span and learning rate were significant in either PALT or AVLT in MCI. This study provides novel evidence for the dissociation of memory span and learning rate at behavioral and brain activity levels, which may have useful applications in detecting cognitive deficits or conducting cognitive interventions.
Collapse
Affiliation(s)
- Shuyuan Chen
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Pengyun Wang
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang Y, Wang Z, Du J, Liu J, Xu T, Wang X, Sun M, Wen Y, Li D, Liao H, Zhao Y, Zhao L. Regulatory Effects of Acupuncture on Emotional Disorders in Patients With Menstrual Migraine Without Aura: A Resting-State fMRI Study. Front Neurosci 2021; 15:726505. [PMID: 34671239 PMCID: PMC8521095 DOI: 10.3389/fnins.2021.726505] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Menstrual migraine without aura (MMoA) refers to a specific type of migraine that is associated with the female ovarian cycle. It is particularly serious and has brought huge life pressure and mental burden to female patients. Acupuncture has been commonly used to prevent migraines and relieve concomitant emotional disorders; however, the physiological mechanism underlying this intervention remains unclear. This study aimed to use resting-state functional magnetic resonance imaging (rsfMRI) to investigate whether acupuncture can modulate brain function and if the potential influence on brain activity correlates with improving emotional symptoms in MMoA patients. Methods: Overall, 44 patients were randomly divided into a true acupuncture (TA) group and the sham acupuncture (SA) group. Patients underwent rsfMRI before and after 3-month treatment, the amplitude of low-frequency fuctuations (ALFF) and regional homogeneity (ReHo) in rsfMRI were calculated. Zung self-rating anxiety scale (SAS), Zung self-rating depression scale (SDS), frequency of migraine attacks, visual analog scale, and intensity of the migraine were used for evaluate the clinical effect. The clinical changes of variables were also used to further assess the correlation with brain activity in MMoA patients. Results: After acupuncture treatment, the emotional symptoms of both groups of patients improved, and the clinical symptoms of migraine were alleviated. The major finding of our study was that patients with MMoA showed lower ALFF value in the left anterior cingulate and the value was positively correlated with the decreases in the SAS and SDS scores. In the SA group, common brain regions responded both in ALFF and regional homogeneity values mainly in the insula, and no significant correlations were observed between brain regions and clinical variables. Conclusions: These results indicated that both two acupuncture treatments were helpful in treating migraine and could improve emotion symptoms. TA had a relatively better effect in reducing the frequency of migraine attack than SA. The two therapies have different modulation effects as TA regulates emotional disorders by modulating the frontal-limbic regions, and SA may modulate pain perception through the placebo effect on insula and by indirectly regulating emotional disorders. These findings provided evidence that acupuncture is a complementary and alternative therapy to relieve clinical symptoms in female patients with migraines and could help enhance clinical diagnosis and treatment. Clinical Trial Registration: [http://www.chictr.org.cn/index.aspx], identifier [ChiCTR-IOR-15006648. Registered 23 June 2015].
Collapse
Affiliation(s)
- Yutong Zhang
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwen Wang
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Clinical Research Center for Acupuncture and Moxibustion in Sichuan province, Chengdu, China
| | - Jiarong Du
- Sichuan Province Building Hospital, Chengdu, China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Tao Xu
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wang
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingsheng Sun
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehua Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaqiang Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zhao
- Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu, China
| | - Ling Zhao
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Clinical Research Center for Acupuncture and Moxibustion in Sichuan province, Chengdu, China
| |
Collapse
|
7
|
Tanglay O, Young IM, Dadario NB, Briggs RG, Fonseka RD, Dhanaraj V, Hormovas J, Lin YH, Sughrue ME. Anatomy and white-matter connections of the precuneus. Brain Imaging Behav 2021; 16:574-586. [PMID: 34448064 DOI: 10.1007/s11682-021-00529-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Purpose Advances in neuroimaging have provided an understanding of the precuneus'(PCu) involvement in functions such as visuospatial processing and cognition. While the PCu has been previously determined to be apart of a higher-order default mode network (DMN), recent studies suggest the presence of possible dissociations from this model in order to explain the diverse functions the PCu facilitates, such as in episodic memory. An improved structural model of the white-matter anatomy of the PCu can demonstrate its unique cerebral connections with adjacent regions which can provide additional clarity on its role in integrating information across higher-order cerebral networks like the DMN. Furthermore, this information can provide clinically actionable anatomic information that can support clinical decision making to improve neurologic outcomes such as during cerebral surgery. Here, we sought to derive the relationship between the precuneus and underlying major white-mater bundles by characterizing its macroscopic connectivity. Methods Structural tractography was performed on twenty healthy adult controls from the Human Connectome Project (HCP) utilizing previously demonstrated methodology. All precuneus connections were mapped in both cerebral hemispheres and inter-hemispheric differences in resultant tract volumes were compared with an unpaired, corrected Mann-Whitney U test and a laterality index (LI) was completed. Ten postmortem dissections were then performed to serve as ground truth by using a modified Klingler technique with careful preservation of relevant white matter bundles. Results The precuneus is a heterogenous cortical region with five major types of connections that were present bilaterally. (1) Short association fibers connect the gyri of the precuneus and connect the precuneus to the superior parietal lobule and the occipital cortex. (2) Four distinct parts of the cingulum bundle connect the precuneus to the frontal lobe and the temporal lobe. (3) The middle longitudinal fasciculus from the precuneus connects to the superior temporal gyrus and the dorsolateral temporal pole. (4) Parietopontine fibers travel as part of the corticopontine fibers to connect the precuneus to pontine regions. (5) An extensive commissural bundle connects the precuneus bilaterally. Conclusion We present a summary of the anatomic connections of the precuneus as part of an effort to understand the function of the precuneus and highlight key white-matter pathways to inform surgical decision-making. Our findings support recent models suggesting unique fiber connections integrating at the precuneus which may suggest finer subsystems of the DMN or unique networks, but further study is necessary to refine our model in greater quantitative detail.
Collapse
Affiliation(s)
- Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | | | - Nicholas B Dadario
- Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
8
|
A metric survey on the sagittal and coronal morphology of the precuneus in adult humans. Brain Struct Funct 2020; 225:2747-2755. [DOI: 10.1007/s00429-020-02152-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
|
9
|
Zhou S, Xiong P, Ren H, Tan W, Yan Y, Gao Y. Aberrant dorsal attention network homogeneity in patients with right temporal lobe epilepsy. Epilepsy Behav 2020; 111:107278. [PMID: 32693375 DOI: 10.1016/j.yebeh.2020.107278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
The dorsal attention network (DAN) is involved in the process that causes wide-ranging cognitive damage resulted in right temporal lobe epilepsy (rTLE). Nevertheless, few studies have evaluated the relationship between DAN and rTLE. There has been little research on alterations in the network homogeneity (NH) of the DAN in rTLE. The aim of the present study was to investigate NH changes in DAN in patients with rTLE. We included 85 patients with rTLE and 69 healthy controls in this study, and resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired. The NH method was used for data analysis. All subjects took the attention network test (ANT). Network homogeneity in the right superior parietal lobule (SPL) and right precuneus (PCU) was significantly higher in patients with rTLE than in healthy controls. The reaction time (RT) was significantly longer in patients with rTLE than in controls. Notably, we observed no significant relationship between the clinical variables and the abnormal NH. These results indicated that abnormal alterations in DAN existed in patients with rTLE and highlighted the crucial role of DAN in the pathophysiology of cognitive damage in rTLE. Our findings suggested that the executive function (EF) significantly weakened in patients with rTLE.
Collapse
Affiliation(s)
- Sangyu Zhou
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, China; Department of Psychiatry, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430000, China
| | - Pingan Xiong
- Department of Taihe Hospital Reproductive Medicine Center Affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430000, China
| | - Wei Tan
- Hospital of Wuhan University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yanguo Yan
- Department of Psychiatry, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yujun Gao
- Department of Psychiatry, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430000, China.
| |
Collapse
|
10
|
Pereira-Pedro AS, Bruner E, Gunz P, Neubauer S. A morphometric comparison of the parietal lobe in modern humans and Neanderthals. J Hum Evol 2020; 142:102770. [DOI: 10.1016/j.jhevol.2020.102770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
11
|
Gamberini M, Passarelli L, Impieri D, Worthy KH, Burman KJ, Fattori P, Galletti C, Rosa MGP, Bakola S. Thalamic afferents emphasize the different functions of macaque precuneate areas. Brain Struct Funct 2020; 225:853-870. [PMID: 32078035 DOI: 10.1007/s00429-020-02045-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
We studied the thalamic afferents to cortical areas in the precuneus using injections of retrograde fluorescent neuronal tracers in four male macaques (Macaca fascicularis). Six injections were within the limits of cytoarchitectural area PGm, one in area 31 and one in area PEci. Precuneate areas shared strong input from the posterior thalamus (lateral posterior nucleus and pulvinar complex) and moderate input from the medial, lateral, and intralaminar thalamic regions. Area PGm received strong connections from the subdivisions of the pulvinar linked to association and visual function (the medial and lateral nuclei), whereas areas 31 and PEci received afferents from the oral division of the pulvinar. All three cytoarchitectural areas also received input from subdivisions of the lateral thalamus linked to motor function (ventral lateral and ventral anterior nuclei), with area PEci receiving additional input from a subdivision linked to somatosensory function (ventral posterior lateral nucleus). Finally, only PGm received substantial limbic association afferents, mainly via the lateral dorsal nucleus. These results indicate that area PGm integrates information from visual association, motor and limbic regions of the thalamus, in line with a hypothesized role in spatial cognition, including navigation. By comparison, dorsal precuneate areas (31 and PEci) are more involved in sensorimotor functions, being akin to adjacent areas of the dorsal parietal cortex.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Katrina H Worthy
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Kathleen J Burman
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Marcello G P Rosa
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Sophia Bakola
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia.
| |
Collapse
|
12
|
Snyder W, Patti M, Troiani V. An evaluation of automated tracing for orbitofrontal cortex sulcogyral pattern typing. J Neurosci Methods 2019; 326:108386. [PMID: 31377175 DOI: 10.1016/j.jneumeth.2019.108386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Characterization of stereotyped orbitofrontal cortex (OFC) sulcogyral patterns formed by the medial and lateral orbitofrontal sulci (MOS and LOS) can be used to characterize individual variability; however, in practice, issues exist for reliability and reproducibility of anatomical classifications, as current methods rely on manual tracing. NEW METHOD We assessed whether an automated tracing procedure would be useful for characterizing OFC sulcogyral patterns. 100 subjects from a published collection of manual OFC tracings and characterizations of patients with bipolar disorder, schizophrenia, and typical controls were used to evaluate an automated tracing procedure implemented using the BrainVISA Morphologist Pipeline. RESULTS Automated tracings of caudal and rostral segments of the medial (MOSc/MOSr) and lateral (LOSc/LOSr) orbitofrontal sulci, as well as the intermediate (IOS) and transverse orbitofrontal sulci (TOS) were found to accurately identify OFC sulci, accurately portray sulci continuity, and reliably inform manual sulcogyral pattern characterization. COMPARISON WITH EXISTING METHOD Automated tracings produced visibly similar tracings of OFC sulci and removed subjective influence from locating sulci. The semi-automated pipeline of automated tracing and manual sulcogyral pattern characterization can eliminate the need for direct input during the most time-consuming process of the manual pipeline. CONCLUSIONS The results suggest that automated OFC sulci tracing methods using BrainVISA Morphologist are feasible and useful in a semi-automated pipeline to characterize OFC sulcogyral patterns. Automated OFC sulci tracing methods will improve reliability and reproducibility of sulcogyral characterizations and can allow for characterizations of sulcal patterns types in larger sample sizes, previously unattainable using traditional manual tracing procedures.
Collapse
Affiliation(s)
- William Snyder
- Geisinger-Bucknell Autism & Developmental Medicine Institute, Lewisburg, PA United States
| | - Marisa Patti
- Geisinger-Bucknell Autism & Developmental Medicine Institute, Lewisburg, PA United States
| | - Vanessa Troiani
- Geisinger-Bucknell Autism & Developmental Medicine Institute, Lewisburg, PA United States.
| |
Collapse
|
13
|
Duan D, Xia S, Rekik I, Meng Y, Wu Z, Wang L, Lin W, Gilmore JH, Shen D, Li G. Exploring folding patterns of infant cerebral cortex based on multi-view curvature features: Methods and applications. Neuroimage 2019; 185:575-592. [PMID: 30130646 PMCID: PMC6289765 DOI: 10.1016/j.neuroimage.2018.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022] Open
Abstract
The highly convoluted cortical folding of the human brain is intriguingly complex and variable across individuals. Exploring the underlying representative patterns of cortical folding is of great importance for many neuroimaging studies. At term birth, all major cortical folds are established and are minimally affected by the complicated postnatal environments; hence, neonates are the ideal candidates for exploring early postnatal cortical folding patterns, which yet remain largely unexplored. In this paper, we propose a novel method for exploring the representative regional folding patterns of infant brains. Specifically, first, multi-view curvature features are constructed to comprehensively characterize the complex characteristics of cortical folding. Second, for each view of curvature features, a similarity matrix is computed to measure the similarity of cortical folding in a specific region between any pair of subjects. Next, a similarity network fusion method is adopted to nonlinearly and adaptively fuse all the similarity matrices into a single one for retaining both shared and complementary similarity information of the multiple characteristics of cortical folding. Finally, based on the fused similarity matrix and a hierarchical affinity propagation clustering approach, all subjects are automatically grouped into several clusters to obtain the representative folding patterns. To show the applications, we have applied the proposed method to a large-scale dataset with 595 normal neonates and discovered representative folding patterns in several cortical regions, i.e., the superior temporal gyrus (STG), inferior frontal gyrus (IFG), precuneus, and cingulate cortex. Meanwhile, we have revealed sex difference in STG, IFG, and cingulate cortex, as well as hemispheric asymmetries in STG and cingulate cortex in terms of cortical folding patterns. Moreover, we have also validated the proposed method on a public adult dataset, i.e., the Human Connectome Project (HCP), and revealed that certain major cortical folding patterns of adults are largely established at term birth.
Collapse
Affiliation(s)
- Dingna Duan
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China
| | - Islem Rekik
- BASIRA Lab, CVIP, Computing, School of Science and Engineering, University of Dundee, UK
| | - Yu Meng
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
14
|
Josipovic Z. Nondual awareness: Consciousness-as-such as non-representational reflexivity. PROGRESS IN BRAIN RESEARCH 2019; 244:273-298. [PMID: 30732841 DOI: 10.1016/bs.pbr.2018.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
I introduce arguments toward a non-representational reflexivity theory of consciousness-as-such to address one of the key issues in the science of consciousness today: lack of understanding of the nature of consciousness itself. An expanded map of consciousness is outlined, which includes, in addition to the well-known contents of awareness and levels of arousal, the indeterminate substrate and consciousness-as-such or nondual awareness. The central idea presented is that consciousness-as-such is a non-conceptual nondual awareness, whose essential property is non-representational reflexivity. This property makes consciousness-as-such phenomenologically, cognitively and neurobiologically a unique kind, different from and irreducible to any contents, functions and states, including the indeterminate substrate. Our previous hypothesis on the precuneus network for nondual awareness is further discussed in relation to non-representational reflexivity, and in the light of other hypotheses on the neural correlates of consciousness-as-such.
Collapse
Affiliation(s)
- Zoran Josipovic
- Psychology Department, Graduate School of Arts and Sciences, New York University, New York, NY, United States; NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States; Nonduality Institute, Woodstock, NY, United States.
| |
Collapse
|
15
|
Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MÁ, Martín-Guerra E. Visuospatial Integration and Hand-Tool Interaction in Cognitive Archaeology. Curr Top Behav Neurosci 2019; 41:13-36. [PMID: 30547431 DOI: 10.1007/7854_2018_71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Testing cognitive hypotheses in extinct species can be challenging, but it can be done through the integration of independent sources of information (e.g., anatomy, archaeology, neurobiology, psychology), and validated with quantitative and experimental approaches. The parietal cortex has undergone changes and specializations in humans, probably in regions involved in visuospatial integration. Visual imagery and hand-eye coordination are crucial for a species with a remarkable technological and symbolic capacity. Hand-tool relationships are not only a matter of spatial planning but involve deeper cognitive levels that concern body cognition, self-awareness, and the ability to integrate tools into body schemes, extending the body's functional and structural range. Therefore, a co-evolution between body and technology is to be expected not only in terms of anatomical correspondence but also in terms of cognitive integration. In prehistory, lithic tools are crucial in the interpretation of the cognitive abilities of extinct human species. The shape of tools and the grasping patterns associated with the corresponding haptic experience can supply some basic quantitative approaches to evaluate changes in the archaeological record. At the physiological level, electrodermal activity can be used as proxy to investigate the cognitive response during haptic experiences, revealing differences between tools and between subjects. These approaches can be also useful to evaluate whether and to what extent our complex cognitive resources are based on the capacity to export and delegate functions to external technological components.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.
| | - Annapaola Fedato
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - María Silva-Gago
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | | | | |
Collapse
|
16
|
Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MÁ, Martín-Guerra E. Cognitive archeology, body cognition, and hand–tool interaction. PROGRESS IN BRAIN RESEARCH 2018; 238:325-345. [DOI: 10.1016/bs.pbr.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Pereira-Pedro AS, Rilling JK, Chen X, Preuss TM, Bruner E. Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:255-263. [PMID: 29065406 PMCID: PMC5687995 DOI: 10.1159/000481085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022]
Abstract
The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage.
Collapse
Affiliation(s)
- Ana Sofia Pereira-Pedro
- Grupo de Paleoneurología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos (Spain)
| | - James K. Rilling
- Department of Anthropology, Emory University, Atlanta (USA)
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (USA)
- Center for Translational Social Neuroscience, Atlanta (USA)
- Center for Behavioral Neuroscience, Emory University, Atlanta (USA)
- Yerkes National Primate Research Center, Emory University, Atlanta, (USA)
| | - Xu Chen
- Department of Anthropology, Emory University, Atlanta (USA)
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (USA)
| | - Todd M. Preuss
- Center for Translational Social Neuroscience, Atlanta (USA)
- Center for Behavioral Neuroscience, Emory University, Atlanta (USA)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta (USA)
| | - Emiliano Bruner
- Grupo de Paleoneurología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos (Spain)
| |
Collapse
|
18
|
Bruner E. Language, Paleoneurology, and the Fronto-Parietal System. Front Hum Neurosci 2017; 11:349. [PMID: 28713257 PMCID: PMC5491953 DOI: 10.3389/fnhum.2017.00349] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/20/2017] [Indexed: 01/30/2023] Open
Affiliation(s)
- Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución HumanaBurgos, Spain
| |
Collapse
|
19
|
Precuneus proportions and cortical folding: A morphometric evaluation on a racially diverse human sample. Ann Anat 2017; 211:120-128. [PMID: 28279731 DOI: 10.1016/j.aanat.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
Recent analyses have suggested that the size and proportions of the precuneus are remarkably variable among adult humans, representing a major source of geometrical difference in midsagittal brain morphology. The same area also represents the main midsagittal brain difference between humans and chimpanzees, being more expanded in our species. Enlargement of the upper parietal surface is a specific feature of Homo sapiens, when compared with other fossil hominids, suggesting the involvement of these cortical areas in recent modern human evolution. Here, we provide a survey on midsagittal brain morphology by investigating whether precuneus size represents the largest component of variance within a larger and racially diverse sample of 265 adult humans. Additionally, we investigate the relationship between precuneus shape variation and folding patterns. Precuneus proportions are confirmed to be a major source of human brain variation even when racial variability is considered. Larger precuneus size is associated with additional precuneal gyri, generally in its anterior district. Spatial variation is most pronounced in the dorsal areas, with no apparent differences between hemispheres, between sexes, or among different racial groups. These dorsal areas integrate somatic and visual information together with the lateral elements of the parietal cortex, representing a crucial node for self-centered mental imagery. The histological basis and functional significance of this intra-specific variation in the upper precuneus remains to be evaluated.
Collapse
|
20
|
Liao H, Pang Y, Liu P, Liu H, Duan G, Liu Y, Tang L, Tao J, Wen D, Li S, Liang L, Deng D. Abnormal Spontaneous Brain Activity in Women with Premenstrual Syndrome Revealed by Regional Homogeneity. Front Hum Neurosci 2017; 11:62. [PMID: 28243196 PMCID: PMC5303726 DOI: 10.3389/fnhum.2017.00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/30/2017] [Indexed: 01/14/2023] Open
Abstract
Background: Previous studies have revealed that the etiologies of premenstrual syndrome (PMS) refer to menstrual cycle related brain changes. However, its intrinsic neural mechanism is still unclear. The aim of the present study was to assess abnormal spontaneous brain activity and to explicate the intricate neural mechanism of PMS using resting state functional magnetic resonance imaging (RS-fMRI). Materials and Methods: The data of 20 PMS patients (PMS group) and 21 healthy controls (HC group) were analyzed by regional homogeneity (ReHo) method during the late luteal phase of menstrual cycle. In addition, all the participants were asked to complete a daily record of severity of problems (DRSP) questionnaire. Results: Compared with HC group, the results showed that PMS group had increased ReHo mainly in the bilateral precuneus, left inferior temporal cortex (ITC), right inferior frontal cortex (IFC) and left middle frontal cortex (MFC) and decreased ReHo in the right anterior cingulate cortex (ACC) at the luteal phase. Moreover, the PMS group had higher DRSP scores, and the DRSP scores positively correlated with ReHo in left MFC and negatively correlated with ReHo in the right ACC. Conclusion: Our results suggest that abnormal spontaneous brain activity is found in PMS patients and the severity of symptom is specifically related to the left MFC and right ACC. The present findings may be beneficial to explicate the intricate neural mechanism of PMS.
Collapse
Affiliation(s)
- Hai Liao
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Yong Pang
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University Xi'an, China
| | - Huimei Liu
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Gaoxiong Duan
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Yanfei Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University Xi'an, China
| | - Lijun Tang
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Jien Tao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Danhong Wen
- Department of Teaching, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Shasha Li
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Lingyan Liang
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Demao Deng
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| |
Collapse
|