1
|
Alhumaidan AA, Alam BF, Alsuwaiyan A, Aljoghaiman EA, Helmi M, Ali S. Scientific Research Trend on Guided Tissue Regeneration: A Bibliometric Analysis. Eur J Dent 2025; 19:409-419. [PMID: 39572191 PMCID: PMC12020599 DOI: 10.1055/s-0044-1791529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
OBJECTIVES Guided tissue regeneration (GTR) is a widely used technique in contemporary dentistry which helps achieve regeneration of periodontal tissues. This study aims to identify leading countries, authors, institutes, journals, scientific publications, and mostly used keyword regarding role of GTR in treatment for periodontal disease using the Scopus database. MATERIALS AND METHODS A well-curated search through Scopus database for significant literature related to GTR published between 1987 and 2023 was performed. Bibliographical data which comprised of abstracts, title, keywords, references, citations, and other relevant information were composed. The data was analyzed using MS Excel and VOSviewer. RESULTS Scientific literature on GTR was manually scrutinized, and 308 paper were analyzed using the Scopus database. The first paper on GTR was published in 1987. Journal of Periodontology was identified as the leading journal, while the United States and Italy were the top contributing countries. University of Sienna was the most productive organization. Roberto Pontoriero was identified as the highly cited author. A highly cited scientific paper was published by Pintippa Bunyaratavej in 2001. CONCLUSION The present bibliometric study gives useful information related to the total number of scientific articles published from 1987 to 2023. A rising trend of scientific publication was identified which continued followed by a notable decline after 2004. The analysis also recognized the United States and University of Sienna, from Italy as most active country and organizations, while the Journal of Periodontology as the leading journal. CLINICAL RELEVANCE This study may assist in continuing education and evidence-based practice for clinicians and new researchers by providing knowledge and aiding literature searches in the domain of GTR used in treatment for periodontal conditions.
Collapse
Affiliation(s)
- Abdulkareem Abdullah Alhumaidan
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Beenish Fatima Alam
- Department of Oral Biology, Bahria University Dental College, Karachi, Pakistan
| | - Asim Alsuwaiyan
- Periodontics Unit, Dental Department, King Fahd Military Medical Complex, Dhahran, Saudi Arabia
| | - Eman Ahmed Aljoghaiman
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Helmi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Migliorini F, Maffulli N, Pipino G, Jeyaraman M, Ramasubramanian S, Jeyaraman N. Intra-articular injections of hyaluronic acid versus plasma rich in growth factors (PRGF) for knee osteoarthritis: a meta-analysis of randomised controlled trials : A meta-analysis. ORTHOPADIE (HEIDELBERG, GERMANY) 2025; 54:218-226. [PMID: 39964439 DOI: 10.1007/s00132-025-04615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION The present meta-analysis compared intra-articular injections of hyaluronic acid (HA) versus plasma rich in growth factors (PRGF) in patients with knee osteoarthritis (OA). The outcome of interest was the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). METHODS This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses: the 2020 PRISMA statement. All the head-to-head randomised controlled trials (RCT) comparing intra-articular HA injections versus PRGF were accessed and included in the present study. Only studies that clearly stated that injections were performed in patients with knee OA, irrespective of the severity of OA, were considered. Data concerning the WOMAC index were retrieved at baseline and last follow-up. The endpoint of interest was to investigate whether intra-articular HA injections are associated with WOMAC score improvement compared to PRGF injections at 4-6 months follow-up. RESULTS Data from 432 patients were collected and 76.3% (330 of 432) of the patients were women. The mean age of the patients was 58.2 ± 1.5 years and the mean body mass index (BMI) was 28.0 ± 0.5 kg/m2. At baseline, comparability in mean age, BMI, male:female ratio, WOMAC and related subscales were documented. The PRGF group evidenced lower values of the function subscale of the WOMAC index (P = 0.03). No difference was found in the overall WOMAC index (P = 0.05) and its stiffness (P = 0.4) and pain (P = 0.07) subscales. CONCLUSION The current level I evidence suggests that the use of PRGF might be associated with more favorable clinical outcomes than using HA.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165, Rome, Italy.
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185, Roma, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, ST4 7QB, Stoke on Trent, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, E1 4DG, London, UK
| | - Gennaro Pipino
- Department of Orthopaedic and Trauma Surgery, Villa Erbosa Hospital, San Raffaele University, Bologna, Italy
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, 600077, Chennai, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, 600002, Chennai, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, 600077, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Calciolari E, Dourou M, Akcali A, Donos N. Differences between first- and second-generation autologous platelet concentrates. Periodontol 2000 2025; 97:52-73. [PMID: 38487938 PMCID: PMC11808449 DOI: 10.1111/prd.12550] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 12/30/2023] [Indexed: 02/11/2025]
Abstract
Autologous platelet concentrates (APCs) applied alone or combined with other biomaterials are popular bioactive factors employed in regenerative medicine. The main biological rationale of using such products is to concentrate blood-derived growth factors and cells into the wound microenvironment to enhance the body's natural healing capacity. First-generation APC is represented by platelet-rich plasma (PRP). While different protocols have been documented for PRP preparation, they overall consist of two cycles of centrifugation and have important limitations related to the use of an anticoagulant first and an activator afterward, which may interfere with the natural healing process and the release of bioactive molecules. The second generation of platelet concentrates is represented by leukocyte and platelet-rich fibrin (L-PRF). L-PRF protocols involve a single centrifugation cycle and do not require the use of anticoagulants and activators, which makes the preparation more straight forward, less expensive, and eliminates potential risks associated with the use of activators. However, since no anticoagulant is employed, blood undergoes rapid clotting within the blood collection tube; hence, a timely management of L-PRF is crucial. This review provides an overview on the most documented protocols for APC preparations and critically discusses the main differences between first- and second-generation APCs in terms of cell content, protein release, and the formation of a 3D fibrin network. It appears evident that the inconsistency in reporting protocol parameters by most studies has contributed to conflicting conclusions regarding the efficacy of different APC formulations and has significantly limited the ability to interpret the results of individual clinical studies. In the future, the use of a standardized classification system, together with a detailed reporting on APC protocol parameters is warranted to make study outcomes comparable. This will also allow to clarify important aspects on the mechanism of action of APCs (like the role of leukocytes and centrifugation parameters) and to optimize the use of APCs in regenerative medicine.
Collapse
Affiliation(s)
- Elena Calciolari
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and DentistryQueen Mary University of LondonLondonUK
- Dental School, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Marina Dourou
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Aliye Akcali
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of Periodontology, Faculty of DentistryDokuz Eylul UniversityIzmirTurkey
| | - Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
4
|
Moradian SA, Movahedin M. In vitro sperm generation from immature mouse testicular tissue using plasma rich in growth factors. Stem Cell Res Ther 2025; 16:17. [PMID: 39849580 PMCID: PMC11755862 DOI: 10.1186/s13287-025-04136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Culture medium enriched with Knockout serum replacement (KSR) can produce in vitro mouse sperm, but it is inefficient, strain-specific and contains bovine products, which limits its use in the human clinic. The study aimed to optimize the culture medium for testicular tissue by using plasma rich in growth factors (PRGF) as a serum supplement, addressing the limitations of KSR. METHODS Immature testicular tissues from NMRI mice were cultured for 14 days to identify the optimal PRGF concentration using histological analysis and tubular integrity scoring. Subsequently, tissues were cultured for 42 days with the optimal PRGF concentration and compared to a control group with 10% KSR, followed by evaluation through histological, tubular integrity, and immunofluorescence assays. RESULTS After 14 days, 5% PRGF media significantly preserved tubule integrity better than 10% and 20% PRGF, performing similarly to 10% KSR. However, after 42 days, the integrity scoring revealed significantly a higher percentage of well-preserved tubules in 5% PRGF compared to 10% KSR. Additionally, only PRGF supported spermatogenesis to the production of flagellated sperm. Real-time PCR analysis revealed that transcript levels of Plzf, Tekt1, and Tnp1 were significantly elevated in 5% PRGF compared to 10% KSR. Immunofluorescence and quantitative analysis confirmed enhanced spermatogenesis progression in 5% PRGF media, with significantly increased numbers of PLZF + spermatogonia, SYCP3 + spermatocytes, ACRBP + spermatids, and Ki67 + proliferating cells per tubule compared to 10% KSR. Moreover, 5% PRGF showed a significantly lower mean fluorescence intensity of the pro-apoptotic marker Bax, with no significant difference in the anti-apoptotic marker Bcl-2 compared to KSR. CONCLUSIONS The findings suggest that 5%PRGF is a viable alternative to KSR in mouse testicular tissue cultures, promoting structural integrity and spermatogenesis up to the production of flagellated sperm. The results highlight PRGF's potential to improve culture media for in vitro sperm production, suggesting promising avenues for future human research.
Collapse
Affiliation(s)
- Seyyed Amir Moradian
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Faculty of Medical Sciences, Department of Anatomical Sciences, Jalal-Ale-Ahmad Highway, Tarbiat Modares University, P.O.Box: 14115-331, Tehran, Iran.
| |
Collapse
|
5
|
Fullaondo A, Zalduendo M, Osinalde N, Alkhraisat MH, Anitua E, Zubiaga AM. Impact of increasingly complex cell culture conditions on the proteome of human periodontal ligament stem cells. Regen Med 2025; 20:21-34. [PMID: 39754557 PMCID: PMC11881847 DOI: 10.1080/17460751.2024.2445931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025] Open
Abstract
AIMS Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology. MATERIALS AND METHODS hPDLSC-derived constructs were created with varying biological complexity. The simplest constructs were monolayer sheets of hPDLSCs cultured with fetal bovine serum (FBS) or Plasma Rich in Growth Factors supernatant (PRGFsn). The most complex constructs were triple-layered cell structures cultured with PRGFsn, with or without PRGF fibrin membrane (mPRGF). Ultrastructure and proteomic analyses were performed on these constructs. RESULTS PRGF supernatant improved protein expression related to extracellular matrix, adhesion, proliferation, and migration in hPDLSCs. PRGF fibrin scaffold upregulates proteins for cell activation, respiration, and electron transport. hPDLSCs on fibrin membrane show robust osteogenic potential through differential protein expression (ossification, tissue remodeling, morphogenesis, or cell migration) and overall homeostasis relative to less complex structures. CONCLUSION Our data reveal the far-reaching potential of 3-dimensional constructs in combination with PRGF technology in periodontal regenerative applications.
Collapse
Affiliation(s)
- Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
- UIRMI (UPV/EHU-Fundación Eduardo Anitua), University Institute for Regenerative Medicine & Oral Implantology, Vitoria, Spain
| | - Mar Zalduendo
- UIRMI (UPV/EHU-Fundación Eduardo Anitua), University Institute for Regenerative Medicine & Oral Implantology, Vitoria, Spain
- Regenerative Medicine Department, BTI Biotechnology Institute, Vitoria, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Mohammad H. Alkhraisat
- UIRMI (UPV/EHU-Fundación Eduardo Anitua), University Institute for Regenerative Medicine & Oral Implantology, Vitoria, Spain
- Regenerative Medicine Department, BTI Biotechnology Institute, Vitoria, Spain
- Oral and Maxillofacial Surgery, Oral Medicine and Periodontics Department, Faculty of Dentistry, University of Jordan, Amman, Jordan
| | - Eduardo Anitua
- UIRMI (UPV/EHU-Fundación Eduardo Anitua), University Institute for Regenerative Medicine & Oral Implantology, Vitoria, Spain
- Regenerative Medicine Department, BTI Biotechnology Institute, Vitoria, Spain
| | - Ana M. Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
- UIRMI (UPV/EHU-Fundación Eduardo Anitua), University Institute for Regenerative Medicine & Oral Implantology, Vitoria, Spain
| |
Collapse
|
6
|
Takiguchi M, Fujita K, Yoshida K. Clinical Report of the Immediate Placement Implants in Patients Aged 80 and Over: Five Cases and a Short Review. J ORAL IMPLANTOL 2024; 50:578-583. [PMID: 39231395 DOI: 10.1563/aaid-joi-d-24-00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
With the population aging, the proportion of elderly individuals is expected to increase, and the proportion of individuals over 80 is also likely to increase. Given that the population is aging and life expectancy is increasing, elderly patients who have lost their teeth will also increase. Impaired masticatory function caused by tooth loss is a risk factor for cognitive decline and frailty, and neglecting to treat tooth loss is a critical issue. In this report, 5 patients over 80 requested dental implants for new missing teeth and underwent immediate implant placement. All patients were treated by the same surgeon using the same technique, materials, and dental implants. Five elements were measured for the peri-implant bone from the cone-beam computed tomography images. All patients were followed for 3 or more years and exhibited good progress without any abnormal findings in their oral cavities or notable radiographic abnormalities such as bone absorption or peri-implantitis. Compared with conventional treatment with delayed placement, combining immediate implant placement and regenerative medicine for fixed superstructures may be the better option for missing tooth replacement if the conditions are suitable. Thus, this treatment modality may improve the quality of life in elderly patients, especially super elderly patients.
Collapse
|
7
|
Pourjabbar B, Shams F, Heidari Keshel S, Biazar E. Proliferation and differentiation of Wharton's jelly-derived mesenchymal stem cells on prgf-treated hydrogel scaffold. Regen Med 2024; 19:549-560. [PMID: 39558722 PMCID: PMC11633401 DOI: 10.1080/17460751.2024.2427513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND To address the limitations of Cultivated Limbal Epithelial Transplantation (CLET) and the use of amniotic membrane (AM) in treating Limbal Stem Cell Deficiency (LSCD), we aimed to develop a Collagen/Silk Fibroin (Co/SF) scaffold enriched with Platelet-Rich Growth Factor (PRGF) to support the proliferation, maintenance, and differentiation of Wharton's jelly-derived mesenchymal stem cells (WJMSCs) into corneal epithelial cells (CECs). METHOD Scaffolds loaded with PRGF were evaluated through release studies, cytotoxicity assays, and cell differentiation. The proliferation and differentiation of WJMSCs and Limbal Epithelial Stem Cells (LESCs) were investigated using MTT assays, real-time PCR and immunostaining. RESULTS The PRGF-loaded Co/SF scaffold significantly promoted the proliferation of both WJMSCs and LESCs in a concentration-dependent manner. Real-time PCR and immune staining revealed a significant increase in the expression of P63, ABCG2, and cytokeratin 3/12 markers in WJMSCs, a significant decrease in the expression of P63 and ABCG2, and a significant increase in the expression of cytokeratin 3/12 markers indicating successful differentiation into CECs. CONCLUSION The WJMSC cultured on PRGF-enriched Co/SF scaffold demonstrates potential as a viable alternative to conventional CLET, offering a promising strategy for corneal tissue regeneration.
Collapse
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
8
|
Adamska P, Kaczoruk-Wieremczuk M, Pylińska-Dąbrowska D, Stasiak M, Bartmański M, Zedler A, Studniarek M. Treatment of Oroantral Communication and Fistulas with the Use of Blood-Derived Platelet-Rich Preparations Rich in Growth Factors: A Systematic Review. Int J Mol Sci 2024; 25:11507. [PMID: 39519060 PMCID: PMC11546229 DOI: 10.3390/ijms252111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The formation of an oroantral communication (OAC) or fistula (OAF) is a rare complication resulting from the presence of processes in the lateral parts of the maxilla or for iatrogenic reasons. The most common causes of OAC or OAF are tooth extraction with periapical lesions. The aims of this systematic review were to assess the use of platelet-derived preparations rich in growth factors in the treatment of OAC or OAF, to determine the success of treating the communication or fistula, as well as impact on postoperative complications and the course of healing. The study was performed following PRISMA guidelines (PROSPERO: CRD42024570758). The inclusion criteria were as follows: at least ten patients, the presence of oroantral communication or oroantral fistula, treatment with platelet-derived preparations rich in growth factors, and information regarding the response to treatment. In order to find relevant studies, international databases, including PubMed, Google Scholar, Web of Science Core Collection, MDPI, Wiley, and Cochrane Library were searched. The last search was performed on 31 August 2024. Seven articles were included in the systematic review. In total, platelet-derived preparations rich in growth factors were used in 164 patients. Only studies in which OAC was treated and with platelet-rich fibrin (PRF) met the inclusion criteria. Only PRF was used as the sole treatment method in three studies. When OAC is greater than 5 mm, platelet-derived preparations rich in growth factors should be considered adjuncts to treatment, not the sole treatment method. The success rate of OAC treatment was 90-100%. The use of blood products to close OAC may be an effective therapeutic alternative. Proper patient qualification and the use of an appropriate protocol are crucial. There is a need for future well-designed case-control or cohort studies as well as randomized controlled trials to provide the required level of evidence.
Collapse
Affiliation(s)
- Paulina Adamska
- Division of Oral Surgery, Faculty of Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-210 Gdańsk, Poland
| | - Magdalena Kaczoruk-Wieremczuk
- Individual Specialist Oral Surgery Practice Magdalena Kaczoruk-Wieremczuk, 41/31 Władysława Wysockiego Street, 17-100 Bielsk Podlaski, Poland
| | - Dorota Pylińska-Dąbrowska
- Department of Dental Prosthetics, Faculty of Medicine, Medical University of Gdańsk, 18 Orzeszkowej Street, 80-204 Gdańsk, Poland
| | - Marcin Stasiak
- Division of Orthodontics, Faculty of Medicine, Medical University of Gdańsk, Aleja Zwycięstwa 42c, 80-210 Gdańsk, Poland
| | - Michał Bartmański
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Adam Zedler
- Division of Oral Surgery, Faculty of Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-210 Gdańsk, Poland
| | - Michał Studniarek
- Department of Radiology, Faculty of Medicine, Medical University of Gdańsk, 17 Smoluchowskiego Street, 80-210 Gdańsk, Poland
| |
Collapse
|
9
|
Cui Y, Mai Y, Liu X, Mu H. Clinical benefits of autologous platelet concentrate in periodontal intrabony defects: A network meta-analysis of randomized controlled trials. Eur J Oral Sci 2024; 132:e12978. [PMID: 38459610 DOI: 10.1111/eos.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/20/2024] [Indexed: 03/10/2024]
Abstract
This study aimed to compare clinical benefits of autologous platelet concentrate with other periodontal regenerative approaches in intrabony defects. An electronic and hand search of studies up to December 2022 was conducted. Randomized controlled trials with at least 6 months of follow-up were identified to compare autologous platelet concentrates with enamel matrix derivative, bone graft, guided tissue regeneration, and open-flap debridement. All approaches involved papilla preservation flap surgery. The outcomes included probing depth reduction, clinical attachment level gain, linear bone fill, and safety. A network meta-analysis and meta-regression were performed. Fifty-seven studies were included in five network meta-analyses. Autologous platelets concentrate and its adjunct treatments achieved significantly greater clinical and radiographic parameters than did open-flap debridement, and had comparable or better performance than other regenerative treatments. Platelet-rich fibrin showed superiority over platelet-rich plasma in probing depth reduction at 6-month follow-up. Minimal pain and improved wound healing were observed in the treatments with autologous platelet concentrate. Meta-regression showed that deeper baseline intrabony defects resulted in larger probing depth reductions, while smoking impaired the effectiveness of regenerative surgeries. Minimal invasive flap designs led to less effect of regenerative materials. Autologous platelet concentrate is a promising biomaterial in periodontal regeneration due to its convenience, safety, and biocompatibility characteristics.
Collapse
Affiliation(s)
- Yue Cui
- Department of Stomatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yuhe Mai
- Department of Stomatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Xuewei Liu
- Department of Stomatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Hong Mu
- Department of Stomatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
10
|
Montalbán-Vadillo O, Pérez-Pevida E, Viteri-Agustín I, Chávarri-Prado D, Estrada-Martínez A, Diéguez-Pereira M, Sánchez-Lasheras F, Brizuela-Velasco A. Effect of Applying 1% Metformin on Guided Bone Regeneration Processes with Bovine-Derived Xenografts. J Clin Med 2024; 13:2973. [PMID: 38792514 PMCID: PMC11122524 DOI: 10.3390/jcm13102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Although xenografts have shown successful results in GBR procedures due to their osteoconductive properties, many authors have opted to add co-adjuvant drugs to favor osteogenesis and differentiate cells into an osteoblastic lineage. Metformin has been shown to have bone-protective properties, regulating osteoclast differentiation, as well as the ability to promote osteoblast mineralization and differentiation. The present study aimed to evaluate the effect of the local application of a 1% metformin solution on bone neoformation in the treatment of an experimental bone defect in a guided bone regeneration animal model with a particulated bovine hydroxyapatite xenograft with hyaluronate. Methods: With this purpose in mind, two critical defects with 8 mm diameter and 0.5 mm depth were created in eight male New Zealand rabbit calvarias. Titanium cylinders were fixed in each defect and filled with particulate hydroxyapatite of bovine origin and sodium hyaluronate, with sterile injectable saline added to the control group and sterile 1% metformin solution added to the test group. At 6 weeks, the animals were euthanized, and samples were obtained and prepared for histomorphometric analysis. Results: A higher percentage of new bone formation was observed in the metformin samples than in the control samples, both in the region closest to the animal's calvaria and in the most distal region analyzed. A higher average bone-biomaterial contact percentage was observed in the samples, with metformin in both the proximal and distal regions. There was no statistically significant difference in the mean value in either region in both parameters. Conclusion: The local application of a 1% metformin solution in an animal model of guided bone regeneration with particulate bovine hydroxyapatite and hyaluronate resulted in greater bone neoformation and xenograft osseointegration than in the control group.
Collapse
Affiliation(s)
- Oier Montalbán-Vadillo
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Esteban Pérez-Pevida
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Faculty of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain
- EDE-SRGROUP, La Salle Higher Center for University Studies, 28023 Madrid, Spain
| | - Iratxe Viteri-Agustín
- Faculty of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain
| | - David Chávarri-Prado
- Faculty of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain
| | | | - Markel Diéguez-Pereira
- Faculty of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain
| | - Fernando Sánchez-Lasheras
- University Institute of Space Sciences and Technologies of Asturias (ICTEA), University of Oviedo, 33004 Oviedo, Spain
- Department of Mathematics, Faculty of Sciences, University of Oviedo, 33007 Oviedo, Spain
| | - Aritza Brizuela-Velasco
- Faculty of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain
| |
Collapse
|
11
|
Ceresa C, Travagin F, Marchetti A, Tessarolo F, Fracchia L, Giovenzana GB, Bosetti M. An In Vitro Study on the Application of Silver-Doped Platelet-Rich Plasma in the Prevention of Post-Implant-Associated Infections. Int J Mol Sci 2024; 25:4842. [PMID: 38732057 PMCID: PMC11084394 DOI: 10.3390/ijms25094842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Implant therapy is a common treatment option in dentistry and orthopedics, but its application is often associated with an increased risk of microbial contamination of the implant surfaces that cause bone tissue impairment. This study aims to develop two silver-enriched platelet-rich plasma (PRP) multifunctional scaffolds active at the same time in preventing implant-associated infections and stimulating bone regeneration. Commercial silver lactate (L) and newly synthesized silver deoxycholate:β-Cyclodextrin (B), were studied in vitro. Initially, the antimicrobial activity of the two silver soluble forms and the PRP enriched with the two silver forms has been studied on microbial planktonic cells. At the same time, the biocompatibility of silver-enriched PRPs has been assessed by an MTT test on human primary osteoblasts (hOBs). Afterwards, an investigation was conducted to evaluate the activity of selected concentrations and forms of silver-enriched PRPs in inhibiting microbial biofilm formation and stimulating hOB differentiation. PRP-L (0.3 µg/mm2) and PRP-B (0.2 µg/mm2) counteract Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans planktonic cell growth and biofilm formation, preserving hOB viability without interfering with their differentiation capability. Overall, the results obtained suggest that L- and B-enriched PRPs represent a promising preventive strategy against biofilm-related implant infections and demonstrate a new silver formulation that, together with increasing fibrin binding protecting silver in truncated cone-shaped cyclic oligosaccharides, achieved comparable inhibitory results on prokaryotic cells at a lower concentration.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Fabio Travagin
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy;
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Giovanni Battista Giovenzana
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| |
Collapse
|
12
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
13
|
Kwaku Akowuah P, Junior Obinwanne C, Owusu E, Kyeremeh S, Bonsu K, Karikari LAA, Akyaa Akomeah F, Kyei Nkansah E, Kobia-Acquah E. Platelet-rich plasma for treating dry eye disease - A systematic review and meta-analysis. Cont Lens Anterior Eye 2024; 47:102091. [PMID: 37951738 DOI: 10.1016/j.clae.2023.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Dry eye disease has public health and economic significance. Platelet-rich plasma is rich in anti-inflammatory agents and growth factors, both beneficial for ocular surface repair. This study aimed to conduct a systematic review and meta-analysis to summarize the benefits of platelet-rich plasma for treating dry eye disease and its adverse effects. METHODS Prospective comparative studies using platelet-rich plasma as monotherapy for dry eye disease were included for efficacy assessment. Before-after studies were included for adverse events assessment. Data sources included PubMed, Google Scholar, Web of Science, and Scopus. A systematic review and meta-analysis protocol was pre-registered on PROSPERO (CRD42022347982). PRISMA guidelines were followed. The National Health Institute (NIH) quality assessment tool for before-after studies, the Cochrane risk of bias tool (RoB2), and the methodological index for non-randomized studies were used to assess the risk of bias. Heterogeneity was assessed using the I2 statistic. RESULTS 19 studies (10 comparative and 9 before-after) were included in the systematic review and meta-analysis. The occurrence rate of adverse effects was 2.6 % (95 % CI: 0.5 - 4.7). The pooled standardized mean difference (SMD) for dry eye symptoms was 0.81 (95 % CI: 0.25 - 1.37; I2 = 82 %; p < 0.00001; Z = 2.84, p = 0.004); tear quality was 0.44 (95 % CI: 0.06 - 0.81; I2 = 67 %; p = 0.003; Z = 2.26, p = 0.02); tear quantity was 0.45 (95 % CI: 0.03 - 0.88; I2 = 74 %; p = 0.0003; Z = 2.10, p = 0.04); and corneal staining 0.72 (95 % CI: 0.14 - 1.30; I2 = 85 %; p < 0.00001; Z = 2.43, p = 0.02). CONCLUSION The current study shows that platelet-rich plasma is efficacious in managing dry eye disease, significantly reducing dry eye signs and symptoms. Such significant improvements could translate to improved quality of life.
Collapse
Affiliation(s)
| | | | - Ebenezer Owusu
- College of Optometry, University of Houston, Houston, TX, USA.
| | - Sylvester Kyeremeh
- Department of Optometry and Visual Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwaku Bonsu
- College of Optometry, University of Houston, Houston, TX, USA.
| | | | - Felicia Akyaa Akomeah
- Department of Optometry and Visual Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ernest Kyei Nkansah
- Centre for Eye Research Ireland, Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Emmanuel Kobia-Acquah
- Department of Optometry and Visual Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Centre for Eye Research Ireland, Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Rumyantsev VA, Blinova AV, Atayan RR, Kolosov NS, Aleksanyan DA, Pogosyan AS. [Cellular engineering in periodontology]. STOMATOLOGIIA 2024; 103:57-62. [PMID: 39436251 DOI: 10.17116/stomat202410305157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
An overview of various cell engineering techniques being developed for modern conservative and reconstructive periodontology is presented. The accelerated development of cellular engineering technologies poses to medicine and, in particular, periodontics, the task of early implementation of the results of such experiments into patient management protocols. The main groups of promising techniques that are closest to practical healthcare are: isolation and use of stem cells; synthesis of biologically active (inductive) signaling molecules; development of scaffolds that ensure three-dimensional tissue growth.
Collapse
Affiliation(s)
| | | | - R R Atayan
- Tver State Medical University, Tver, Russia
| | | | | | | |
Collapse
|
15
|
Ciszyński M, Dominiak S, Dominiak M, Gedrange T, Hadzik J. Allogenic Bone Graft in Dentistry: A Review of Current Trends and Developments. Int J Mol Sci 2023; 24:16598. [PMID: 38068918 PMCID: PMC10706024 DOI: 10.3390/ijms242316598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In an effort to prepare non-autologous bone graft or biomaterial that would possess characteristics comparable to autologous bone, many different allogenic bone derivatives have been created. Although different existing processing methods aim to achieve the very same results, the specific parameters applied during different stages material preparation can result in significant differences in the material's mechanical and biological properties The properties, including osteoconductive, osteoinductive, and even osteogenic potential, can differ vastly depending on particular preparation and storage techniques used. Osteogenic properties, which have long been thought to be characteristic to autogenic bone grafts only, now seem to also be achievable in allogenic materials due to the possibility to seed the host's stem cells on a graft before its implantation. In this article, we aim to review the available literature on allogenic bone and its derivatives as well as the influence of different preparation methods on its performance.
Collapse
Affiliation(s)
| | | | | | | | - Jakub Hadzik
- Department of Dental Surgery, Faculty of Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| |
Collapse
|
16
|
Gu Y, Hu Y, Huang S, Ruiz S, Kawai T, Bai Y, Han X. CpG ODN/Mangiferin Dual Delivery through Calcium Alginate Hydrogels Inhibits Immune-Mediated Osteoclastogenesis and Promotes Alveolar Bone Regeneration in Mice. BIOLOGY 2023; 12:976. [PMID: 37508406 PMCID: PMC10376397 DOI: 10.3390/biology12070976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
The immune system plays an important role in the skeletal system during bone repair and regeneration. The controlled release of biological factors from the immune system could facilitate and optimize the bone remodeling process through the regulation of the activities of bone cells. This study aimed to determine the effect of the controlled delivery of immunomodulatory biologicals on bone regeneration. Immunostimulatory cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) and glucosylxanthone Mangiferin (MAG)-embedded microbeads were incubated with P. gingivalis-challenged splenocytes, or co-cultured with RAW264.7 cells. The effect of CpG ODN/MAG-containing microbeads on bone regeneration was then tested in vivo in a mouse alveolar bone defect model. The results demonstrated that MAG significantly antagonized P. gingivalis proliferation and reduced the live/dead cell ratio. After the addition of CpG ODN + MAG microbeads, anti-inflammatory cytokines IL-10 and IL-4 were upregulated on day 2 but not day 4, whereas pro-inflammatory cytokine IL-1β responses showed no difference at both timepoints. RANKL production by splenocytes and TRAP+ cell formation of RAW264.7 cells were inhibited by the addition of CpG ODN + MAG microbeads. Alveolar bony defects, filled with CpG ODN + MAG microbeads, showed significantly increased new bone after 4 weeks. In summary, this study evaluated a new hydrogel-based regimen for the local delivery and controlled release of biologicals to repair and regenerate alveolar bony defects. The combined CpG ODN + MAG treatment may promote alveolar bone regeneration through the anti-microbial/anti-inflammatory effects and the inhibition of RANKL-mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Yang Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Shengyuan Huang
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Sunniva Ruiz
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
17
|
Ferrà-Cañellas MDM, Munar-Bestard M, Floris I, Ramis JM, Monjo M, Garcia-Sureda L. A Sequential Micro-Immunotherapy Medicine Increases Collagen Deposition in Human Gingival Fibroblasts and in an Engineered 3D Gingival Model under Inflammatory Conditions. Int J Mol Sci 2023; 24:10484. [PMID: 37445663 DOI: 10.3390/ijms241310484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Periodontal therapies use immune mediators, but their side effects can increase with dosage. Micro-immunotherapy (MI) is a promising alternative that employs immune regulators at low and ultralow doses to minimize adverse effects. In this study, the effects of 5 capsules and the entire 10-capsule sequence of the sequential MI medicine (MIM-seq) were tested in two in vitro models of periodontitis. Firstly, human gingival fibroblasts (hGFs) exposed to interleukin (IL)-1β to induce inflammation were treated with five different capsules of MIM-seq for 3 days or with MIM-seq for 24 days. Subsequently, MIM-seq was analyzed in a 3D model of human tissue equivalent of gingiva (GTE) under the same inflammatory stimulus. Simultaneously, a non-IL-1β-treated control and a vehicle were included. The effects of the treatments on cytotoxicity, collagen deposition, and the secreted levels of IL-1α, IL-6, prostaglandin E2 (PGE2), matrix metalloproteinase-1 (MMP-1), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were evaluated. None of the tested items were cytotoxic. The complete sequence of MIM-seq decreased PGE2 release and restored collagen deposition levels induced by IL-1β treatment in hGFs exposed to IL-1β. MIM-seq treatment restored collagen production levels in both models. These promising preclinical findings suggest that MIM-seq should be further investigated for periodontitis treatment.
Collapse
Affiliation(s)
- Maria Del Mar Ferrà-Cañellas
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Preclinical Research Department, Labo'Life España, 07330 Consell, Spain
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma de Mallorca, Spain
| | - Marta Munar-Bestard
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma de Mallorca, Spain
| | - Ilaria Floris
- Preclinical Research Department, Labo'Life France, 44000 Nantes, France
| | - Joana Maria Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma de Mallorca, Spain
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma de Mallorca, Spain
| | | |
Collapse
|
18
|
Effectiveness of Hyaluronic Acid Gel Injection with and without PRGF for Management of Interdental Papillary Loss: A Randomized Clinical Trial. J Funct Biomater 2023; 14:jfb14020114. [PMID: 36826913 PMCID: PMC9967875 DOI: 10.3390/jfb14020114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND To evaluate the effectiveness of hyaluronic acid (HA) gel injection with and without plasma rich in growth factors (PRGF) for the management of interdental papillary loss. METHODS A single blinded randomized clinical trial was carried out on 21 subjects with 34 sites. Patients within the age group 18-45 years who had Class I and II papillary recession in the maxillary anterior region were selected. The sites involved were randomly assigned to Group HA alone and Group HA + PRGF. The patients were recalled 4 weeks after receiving supragingival and subgingival instrumentation. HA or HA + PRGF was injected into the defective papilla at baseline and at 3 and 6 weeks. Image based measurements of Papillary Width (PW), Papillary Deficient Height (PDH), Deficient Area (DA), Deficient Volume (DV) were registered at baseline, 3 weeks, 6 weeks and 12 weeks. A vernier caliper was used to measure the papillary depth in the impression made using additional silicone impression material pre- and post-intervention. RESULTS There was a significant improvement in the within-group comparison of PW, PDH, DA and DV in both the groups. Group HA + PRGF showed significantly greater improvement in comparison to Group HA alone in terms of PDH, DA and DV at 6 and 12 weeks. CONCLUSIONS Even though HA gel has already been established as a promising injectable agent in the minimally invasive treatment of interdental papillary deficiency, PRGF may also have a significant adjuvant effect when used along with HA. Further clinical studies with longer follow up duration, larger sample size and standardization of the tooth shape are required for a better understanding of the adjuvant effect of PRGF when used along with HA.
Collapse
|
19
|
Li Y, Huang Z, Huang X, Xu R, He Y, Deng F, Chen G. The influences of PEG-functionalized graphdiyne on cell growth and osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2023; 111:1309-1317. [PMID: 36762569 DOI: 10.1002/jbm.b.35234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Guided bone regeneration (GBR) is a frequently used technique for patients with insufficient alveolar bone. The discovery of bone substitutes that can enhance osteogenesis is critical for GBR. Graphdiyne (GDY), a newly discovered carbon-based nanomaterial, has been recognized as the most stable allotrope of acetylene carbon and is anticipated to be able to promote osteogenesis. Whereas it still remains unknown whether it could enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, GDY was modified with polyethylene glycol (PEG) and the influences of GDY-PEG at different concentrations on BMSCs cell growth and osteogenic differentiation were researched for the first time. In this study, we found that GDY-PEG at low concentration possessed premium bio-compatibility and revealed evident facilitation of BMSCs osteogenic differentiation. The cell growth and osteogenic differentiation of BMSCs treated with GDY-PEG were dose-dependent. GDY-PEG at 1 μg/mL demonstrated the optimal promoting effects of BMSCs osteogenic differentiation. Moreover, the regulating effect of BMSCs osteogenic differentiation by GDY-PEG might be associated with the Wnt/β-catenin signaling pathway. In all, the present study indicated a novel application of GDY in promoting bone tissue regeneration, providing a novel biomaterial for bone augmentation in clinics.
Collapse
Affiliation(s)
- Yiming Li
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ziqing Huang
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoqiong Huang
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ruogu Xu
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi He
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
20
|
Troha K, Vozel D, Arko M, Bedina Zavec A, Dolinar D, Hočevar M, Jan Z, Kisovec M, Kocjančič B, Pađen L, Pajnič M, Penič S, Romolo A, Repar N, Spasovski V, Steiner N, Šuštar V, Iglič A, Drobne D, Kogej K, Battelino S, Kralj-Iglič V. Autologous Platelet and Extracellular Vesicle-Rich Plasma as Therapeutic Fluid: A Review. Int J Mol Sci 2023; 24:3420. [PMID: 36834843 PMCID: PMC9959846 DOI: 10.3390/ijms24043420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The preparation of autologous platelet and extracellular vesicle-rich plasma (PVRP) has been explored in many medical fields with the aim to benefit from its healing potential. In parallel, efforts are being invested to understand the function and dynamics of PVRP that is complex in its composition and interactions. Some clinical evidence reveals beneficial effects of PVRP, while some report that there were no effects. To optimize the preparation methods, functions and mechanisms of PVRP, its constituents should be better understood. With the intention to promote further studies of autologous therapeutic PVRP, we performed a review on some topics regarding PVRP composition, harvesting, assessment and preservation, and also on clinical experience following PVRP application in humans and animals. Besides the acknowledged actions of platelets, leukocytes and different molecules, we focus on extracellular vesicles that were found abundant in PVRP.
Collapse
Affiliation(s)
- Kaja Troha
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Domen Vozel
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Matevž Arko
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Drago Dolinar
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
- MD-RI Institute for Materials Research in Medicine, Bohoričeva 5, SI-1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia
| | - Zala Jan
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Boštjan Kocjančič
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
| | - Ljubiša Pađen
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Manca Pajnič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Samo Penič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Anna Romolo
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Neža Repar
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Vesna Spasovski
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Nejc Steiner
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vid Šuštar
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Ksenija Kogej
- University of Ljubljana, Chair of Physical Chemistry, Faculty of Chemistry and Chemical Technology, SI-1000 Ljubljana, Slovenia
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Peláez-Cruz P, López Jornet P, Tatullo M, Pons-Fuster López E. Epigallocatechin-3-gallate improves the biocompatibility of bone substitutes in dental pulp stem cells. Ann Anat 2023; 246:152045. [PMID: 36584903 DOI: 10.1016/j.aanat.2022.152045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND The Biocompatibility between osteoprogenitor cells and bone substitutes is necessary for cell differentiation and osteogenesis. The aim of this study was to assess the in vitro effect of bovine (Geistlich BioOss®), porcine (OsteoBiol Gen-Os®) and beta-tricalcium phosphate (Cerasorb M®) bone substitutes, and their combination with polyphenol epigallocatechin-3-gallate (EGCG), upon cultured dental pulp stem cells (DPSCs). METHODS The DPSCs were isolated from third molars extracted from healthy individuals and seeded with 5 mg/ml of Bio-Oss® (BO), Gen-Os® (GO) and Cerasorb® (CE) in combination with EGCG 1 μM. The effects were evaluated based on cell viability / cytotoxicity assay (MTT, cell viability staining test), cell migration, scanning electron microscopy (SEM), and alkaline phosphatase (ALP) activity. RESULTS BO and CE produced negative effects upon cell viability and migration, and GO and CE resulted in deficient cell adhesion. On the other hand, all the biomaterials exerted no negative effects upon ALP activity. Interestingly, the addition of EGCG reverted the cytotoxic effect and the loss of migration capacity in the BO and CE groups, and improved cell adhesion in the GO and CE groups. Furthermore, EGCG promoted an overall increased in ALP activity. CONCLUSION The addition of EGCG to the tested biomaterials BO, GO and CE reverts their negative impact on DPSCs, and improves their biocompatibility with cultured DPSCs. The use of EGCG, thus, appears to be a promising strategy for restoring and enhancing the osteoconductive properties of BO, GO and CE in bone regeneration treatments.
Collapse
Affiliation(s)
- Priscilla Peláez-Cruz
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
| | - Pia López Jornet
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Marco Tatullo
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari, Bari, Italy; School of Dentistry, University of Dundee, Dundee, UK
| | - Eduardo Pons-Fuster López
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
22
|
Miguel-Pastor L, Satué K, Chicharro D, Peláez P, Torres-Torrillas M, Carrillo JM, Cerón JJ, Sopena JJ, Rubio M. Evaluation of Platelet-Rich Plasma by means of PRGF ®-Endoret ® protocol in leukemia cats: PDGF-BB and TGF-ß1 valuation. Front Vet Sci 2023; 10:1110055. [PMID: 36777664 PMCID: PMC9909748 DOI: 10.3389/fvets.2023.1110055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Feline leukemia virus (FeLV) is a chronic disease that leads to the weakening of a cat's immune system. Platelet-rich plasma (PRP) offers therapeutic effects for multiple diseases, the use of PRP and growth factors (GFs) determination could be an alternative treatment to improve the quality of life in these patients. The objectives of this study were to determine and compare the concentration of platelets (PLTs), red blood cells (RBCs) and white blood cells (WBCs) between samples of whole blood (WB), PRP and platelet-poor plasma (PPP) fractions, and to evaluate the concentration of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β1 (TGF-β1) in both fractions in FeLV cats using a PRGF®-Endoret® protocol previously standardized in this species. Methods WB was collected from 11 asymptomatic FeLV-positive cats. PRP and PPP was obtained following PRGF®-Endoret® technology according to centrifugation at 265 g for 10 min. Cellular components, RBCs, WBCs, PLTs, and the PDGF-BB and TGF-β1 concentrations in PRP and PPP fractions were determined. Results PLT in the PRP fraction was statistically higher than WB and PPP fraction, with no statistical differences between WB and PPP. PLT concentration increased 1.4 times in PRP fraction compared to WB. Mean platelet volume (MPV) did not differ significantly between the WB, PRP, and PPP fractions. Compared to WB, the absolute numbers of RBCs and WBCs were decreased by 99% and more than 95% in the PRP and PPP fractions, respectively. TGF-ß1 concentrations increased in PRP vs. PPP, with no changes in PDGF-BB. Discussion Based on the degree of PLT enrichment and the absence of RBCs and WBCs, this blood product could be classified as a Pure Platelet-Rich Plasma (P-PRP). The presence of GFs in PRP and PPP samples suggests that the PRGF®-Endoret® methodology is suitable for obtaining PRP in FeLV cats, despite future studies are necessary to optimize the technique, standardize the results and assess clinical efficacy.
Collapse
Affiliation(s)
- Laura Miguel-Pastor
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Katy Satué
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - José M. Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - José J. Cerón
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Murcia, Spain
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,*Correspondence: Joaquín J. Sopena ✉
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| |
Collapse
|
23
|
Abu-Mostafa NA, Alotaibi YN, Alkahtani RN, Almutairi FK, Alfaifi AA, Alshahrani OD. The Outcomes of Vertical Alveolar Bone Augmentation by Guided Bone Regeneration with Titanium Mesh: A Systematic Review. J Contemp Dent Pract 2022; 23:1280-1288. [PMID: 37125527 DOI: 10.5005/jp-journals-10024-3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
AIM This study aimed to systematically review the published studies on vertical alveolar bone augmentation (VABA) by guided bone regeneration (GBR) with titanium mesh (TM). BACKGROUND Guided bone regeneration is a procedure that can be used for VABA of the alveolar ridge. Titanium mesh is used as a barrier due to its ability to maintain a space that the newly formed bone will occupy. MATERIALS AND METHODS A computerized literature search was conducted on the databases PubMed, SCOPUS, Science Direct, and Cochrane Library to review the published article on VABA by TM from 2011 to 2021. REVIEW RESULTS Eight out of 574 retrieved articles were included in the qualitative analysis, three randomized clinical trials, two prospective clinical trials, and three retrospective trials. They were assessed for risk of bias using the critical appraisal skills program checklist. Titanium mesh was utilized as a barrier in three different ways, adapted directly on the alveolar bone, bent preoperatively on three-dimensional (3D) models, and 3D-printed. Two randomized clinical trials (RCTs) reported 20.8% bone gain, while the other studies reported the means ranging from 2.56 to 4.78 mm. All studies reported TM exposure that ranged from 7.69 to 66.66%. Exposure during the four postoperative weeks led to inadequate bone regeneration. However, late exposure had no effect or caused only slight bone resorption. Early TM removal was performed in two studies, one case per each, ranging from 2.4 to 11.1%. Infection was presented in three studies, one case per each, and the percentages were 5, 11.1, and 25%. CONCLUSION All types of TM had exposure, which was the most common complication, but early removal was indicated only in a few cases. Titanium mesh showed reliability and efficacy as a barrier for VABA by GBR. CLINICAL SIGNIFICANCE By this procedure, bone height can be restored, however, meticulous follow-up is recommended for the detection and management of TM exposures.
Collapse
Affiliation(s)
- Nedal A Abu-Mostafa
- Department of Oral and Maxillofacial Surgery and Diagnostic Science, Riyadh Elm University, Kingdom of Saudi Arabia, Phone: +00966506275782, e-mail:
| | | | - Rose N Alkahtani
- King Saud bin Abdulaziz University for Health Sciences, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
24
|
Farmani AR, Nekoofar MH, Ebrahimi-Barough S, Azami M, Najafipour S, Moradpanah S, Ai J. Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:870-885. [PMID: 36373108 PMCID: PMC9638231 DOI: 10.1007/s10924-022-02615-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of organic-inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol-gel method was used to prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentiation. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature (T g) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and T g continuously. Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentiation biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet extracts can be a good strategy for bone repair.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Bahçeşehir University, Istanbul, Turkey
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohrab Najafipour
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Moradpanah
- Department of Obstetrics and Gynecology, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Anitua E, de la Fuente M, Troya M, Zalduendo M, Alkhraisat MH. Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture. Dent J (Basel) 2022; 10:dj10090173. [PMID: 36135168 PMCID: PMC9497518 DOI: 10.3390/dj10090173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Plasma rich in growth factors (PRGF) has several applications in dentistry that may require repeated applications of PRGF. Furthermore, it has been used for ex vivo expansion of human origin cells for their clinical application. One of the most relevant issues in these applications is to guarantee the genetic stability of cells. In this study, the chromosomal stability of gingival fibroblasts and alveolar osteoblasts after long-term culture was evaluated. Cells were expanded with PRGF or foetal bovine serum (FBS) as a culture medium supplement until passage 7 or 8 for gingival fibroblast or alveolar osteoblasts, respectively. A comparative genomic hybridization (CGH) array was used for the genetic stability study. This analysis was performed at passage 3 and after long-term culture with the corresponding culture medium supplements. The cell proliferative rate was superior after PRGF culture. Array CGH analysis of cells maintained with all the three supplements did not reveal the existence of alterations in copy number or genetic instability. The autologous PRGF technology preserves the genomic stability of cells and emerges as a safe substitute for FBS as a culture medium supplement for the clinical translation of cell therapy.
Collapse
|
26
|
Thu AC. The use of platelet-rich plasma in management of musculoskeletal pain: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:206-215. [PMID: 35673831 PMCID: PMC9273137 DOI: 10.12701/jyms.2022.00290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 01/16/2023]
Abstract
Musculoskeletal pain is the most common pain reported by patients. Platelet-rich plasma (PRP) is widely used to treat musculoskeletal pain. However, the efficacy of PRP to treat this pain remains controversial. This review highlights the application of PRP in the treatment of musculoskeletal pain. PRP treatment appears to reduce pain and improve function in patients with musculoskeletal pain. However, there are limitations to the currently published studies. These limitations include the PRP preparation methods, type of activators, types of pathology to be treated, methods and times of administration, and association of PRP with other treatments.
Collapse
Affiliation(s)
- Aung Chan Thu
- Department of Physical Medicine and Rehabilitation, University of Medicine, Mandalay, Myanmar
- Corresponding author: Aung Chan Thu, MD, PhD Department of Physical Medicine and Rehabilitation, University of Medicine, 30th Street, Between 73rd & 74th Streets, Mandalay, Myanmar Tel: +95-9977277511 • E-mail:
| |
Collapse
|
27
|
Concentrated Growth Factors (CGF) Combined with Melatonin in Guided Bone Regeneration (GBR): A Case Report. Diagnostics (Basel) 2022; 12:diagnostics12051257. [PMID: 35626412 PMCID: PMC9141849 DOI: 10.3390/diagnostics12051257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
During implant restorative dentistry, common and crippling postoperative complications are pain and swelling of perioral soft tissues which engraving on patient quality of life. Concentrated growth factors (CGF), a novel generation of autologous platelet concentrate, and melatonin, endogenous indoleamine with also bone regenerative properties, may be useful for reconstruction of bony defects as well as in prosthetic and esthetic rehabilitation. We report a clinical case in which guided bone regeneration was performed combining CGF, melatonin and heterologous biomaterial. Great postoperative recovery without any complications was reported. In conclusion, in restorative dentistry the combined use of CGF and melatonin may have important roles in restoring bone defect, in improving implant osteointegration and, not less important, in preventing postoperative complications.
Collapse
|
28
|
Anatomical journals as publication platforms for dental research. Ann Anat 2022; 244:151960. [DOI: 10.1016/j.aanat.2022.151960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022]
|
29
|
Wu J, Mao S, Xu L, Qiu D, Wang S, Dong Y. Odontogenic Differentiation Induced by TGF-β1 Binding Peptide-Modified Bioglass. J Dent Res 2022; 101:1190-1197. [PMID: 35411824 DOI: 10.1177/00220345221089238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Emerging evidence suggests that growth factors are crucial in regenerative endodontic therapy. To achieve the desired effects, the systematic administration of supraphysiologic concentrations of exogenous growth factors is commonly performed, but this is usually associated with high costs, technique, and safety issues. Here, we describe a novel biomaterial that can manipulate endogenous growth factors without the need for adding exogenous growth factors. Transforming growth factor β1 binding peptide (TGFp) was grafted onto the surface of a neutral pH phytic acid-derived bioactive glass (PSC) to synthesize modified bioactive glass (PSC-TGFp). Fourier transform infrared spectroscopy and thermogravimetric analysis results demonstrated that the TGFp was successfully grafted to the surface of the PSC. Scanning electron microscopy and x-ray diffraction showed that PSC-TGFp possessed good in vitro bioactivity. After soaking in simulated body fluid for 24 h, hydroxyapatite formed on the surface of PSC-TGFp. Enzyme-linked immunosorbent assay showed that PSC-TGFp could capture endogenous transforming growth factor β1 from dentin matrix-extracted proteins (DMEP) and release it slowly over 21 d. Cytologic experiments revealed that PSC-TGFp after adsorbing DMEP could enhance the adhesion, migration, viability, and odontogenic differentiation of stem cells from apical papilla. The results highlight that PSC-TGFp may be a promising biomaterial to manipulate endogenous growth factors for regenerative endodontic therapy in the future.
Collapse
Affiliation(s)
- J Wu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - S Mao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - L Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - D Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - S Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Y Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
30
|
Steiner N, Vozel D, Urbančič J, Božič D, Kralj-Iglič V, Battelino S. Clinical implementation of platelet- and extracellular vesicle-rich product preparation protocols. Tissue Eng Part A 2022; 28:770-780. [DOI: 10.1089/ten.tea.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nejc Steiner
- University Medical Centre Ljubljana, ENT department, ENT, Ljubljana, Slovenia,
| | - Domen Vozel
- University of Ljubljana Faculty of Medicine, 37664, Otorhinolaringology, Ljubljana, Slovenia,
- University Medical Centre Ljubljana, Otorhinolaringology, Ljubljana, Slovenia,
| | - Jure Urbančič
- University of Ljubljana Faculty of Medicine, 37664, Otorhinolaringology, Ljubljana, Slovenia,
- University Medical Centre Ljubljana, Otorhinolaringology, Ljubljana, Slovenia,
| | - Darja Božič
- University of Ljubljana Faculty of Health Sciences, 68934, Ljubljana, Slovenia,
| | | | - Saba Battelino
- University of Ljubljana Faculty of Medicine, 37664, Otorhinolaringology, Ljubljana, Slovenia,
- University Medical Centre Ljubljana, Otorhinolaringology, Ljubljana, Slovenia,
| |
Collapse
|
31
|
Iglesias-Velázquez Ó, Zamora RS, López-Pintor RM, Tresguerres FGF, Berrocal IL, García CM, Tresguerres IF, García-Denche JT. Periosteal Pocket Flap technique for lateral ridge augmentation. A comparative pilot study versus guide bone regeneration. Ann Anat 2022; 243:151950. [DOI: 10.1016/j.aanat.2022.151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
32
|
Pecci-Lloret MP, Nandin-Muttoni G, Pecci-Lloret MR, Guerrero-Gironés J, Rodríguez-Lozano FJ. SCAFFOLDS FOR PULP REVITALIZATION: A SYSTEMATIC REVIEW OF RANDOMIZED CLINICAL TRIALS. Ann Anat 2022; 243:151936. [DOI: 10.1016/j.aanat.2022.151936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
|
33
|
Barbieri M, Colombini A, Stogicza A, de Girolamo L. Effectiveness of plasma rich in growth factors in the management of chronic spinal pain: a case series of 32 patients. Regen Med 2022; 17:175-184. [PMID: 35068201 DOI: 10.2217/rme-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: This prospective, case-series study aimed to assess the clinical effectiveness of plasma rich in growth factors (PRGF) in patients with chronic low back pain (LBP) and to identify the features of the responsive patients. Materials & methods: PRGF was injected into the intervertebral disc, epidural space and/or facet and sacroiliac joints of 32 patients with chronic LBP. The efficacy of the treatment was assessed by algo-functional scores after 3 and 6 months. Results: Overall, the patients did not ameliorate after PRGF treatment, although eight patients showed an algo-functional improvement. They were mainly males treated at two sites who were younger, less sedentary and with fewer musculoskeletal co-morbidities than the nonresponders. Conclusion: PRGF is a potential treatment in a specific subpopulation of difficult-to-treat patients affected by chronic LBP.
Collapse
Affiliation(s)
- Massimo Barbieri
- IRCCS Istituto Ortopedico Galeazzi, Terapia del Dolore Interventistica, Milan, 20161, Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, 20161, Italy
| | - Agnes Stogicza
- St Magdolna Private Hospital, Department of Anesthesiology & Pain Medicine, Budapest, 1123, Hungary
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, 20161, Italy
| |
Collapse
|
34
|
Polymer-Based Bone Substitutes in Periodontal Infrabony Defects: A Systematic Evaluation of Clinical Studies. Polymers (Basel) 2021; 13:polym13244445. [PMID: 34960996 PMCID: PMC8705724 DOI: 10.3390/polym13244445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background and Objectives: The aim was to systematically review the available literature regarding the use of polymers as a bone substitute for the treatment of periodontal infrabony defect. Materials and methods: Three databases (PubMed, Scopus and Web of Science) were searched to find all relevant studies published in English from inception until September 2021 using a combination of keywords. The inclusion criteria consisted of human clinical studies which reported the use of a polymer-based bone substitute in the treatment of infrabony defects. Results: 164 studies were provided from the databases. Of these, five articles were eligible and reported favorable outcome in terms of probing depth, clinical attachment gain and defect fill at the follow-up (3 months and 6 months). Conclusions: Polymer based-bone substitutes may represent a useful alternative in treating infrabony defects. Due to the limited number of studies, more research is needed to sustain the advantages of these products.
Collapse
|
35
|
Peláez P, Damiá E, Torres-Torrillas M, Chicharro D, Cuervo B, Miguel L, del Romero A, Carrillo JM, Sopena JJ, Rubio M. Cell and Cell Free Therapies in Osteoarthritis. Biomedicines 2021; 9:1726. [PMID: 34829953 PMCID: PMC8615373 DOI: 10.3390/biomedicines9111726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular disease in adults and has a current prevalence of 12% in the population over 65 years old. This chronic disease causes damage to articular cartilage and synovial joints, causing pain and leading to a negative impact on patients' function, decreasing quality of life. There are many limitations regarding OA conventional therapies-pharmacological therapy can cause gastrointestinal, renal, and cardiac adverse effects, and some of them could even be a threat to life. On the other hand, surgical options, such as microfracture, have been used for the last 20 years, but hyaline cartilage has a limited regeneration capacity. In recent years, the interest in new therapies, such as cell-based and cell-free therapies, has been considerably increasing. The purpose of this review is to describe and compare bioregenerative therapies' efficacy for OA, with particular emphasis on the use of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP). In OA, these therapies might be an alternative and less invasive treatment than surgery, and a more effective option than conventional therapies.
Collapse
Affiliation(s)
- Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ayla del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Jose Maria Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
36
|
Valiño-Cultelli V, Varela-López Ó, González-Cantalapiedra A. Does PRGF Work? A Prospective Clinical Study in Dogs with A Novel Polylactic Acid Scaffold Injected with PRGF Using the Modified Maquet Technique. Animals (Basel) 2021; 11:ani11082404. [PMID: 34438861 PMCID: PMC8388684 DOI: 10.3390/ani11082404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary PRGF is a concentration of autologous platelets in a small volume of plasma, which is performed in a specific way and is an accessible resource in veterinary medicine. The PRGF has multiple demonstrated properties as antimicrobial, analgesic and anti-inflammatory but their osteoinductivity potential is controversial. We decided to use PRGF in combination with a PLA bioresorbable scaffold (a specific type of implant with osteoconduction properties) performed by 3D printing, and personalized for each patient, to determinate if the PRGF can produce osteoinduction and as a result, a faster bone healing and a faster patient recovery. Furthermore, in this study PLA scaffolds are proposed as an alternative for metallic implants to avoid the problems that those can cause. The MMT was the technique selected for solving the RCrCL as it is a variant of TTA that follows the same principle for the correction of the patellar tendon angle to neutralize distractive forces; however, this technique needs a lower amount of metallic implants for the scaffold fixation. Abstract Tibial tuberosity advancement is a surgical technique to restore the dynamical stability in the knee by advancing the insertion of the patellar ligament, for which it is necessary to advance the tibial crest, being maintained in the desired position usually by a cage and metallic implants. The purpose of this study was to replace the cage with a polylactic acid biodegradable scaffold designed for each patient by 3D printing, inserting platelet-rich in growth factors (PRGF) to demonstrate its osteoinductive properties. To this end, we used the modified Maquet technique to reduce the amount of metal to a minimum. Fifty-three dogs finished the study. The control and PRGF groups did not present any statistically significant differences in terms of ossification degree (p > 0.001) but they demonstrated satisfactory ossification compared to previous publications, although in the PRGF group three of the scaffolds suffered complete reabsorption. The PRGF and control groups did not show any statistically significant differences in terms of lameness degree (p > 0.001). However, the PRGF group showed at the first control some analgesic and anti-inflammatory properties but they were not enough for reducing the functional recovery time in a significant way. The PRGF group did not show any complications or negative results associated with their use.
Collapse
|
37
|
Kubo Y, Lang O, Amin L, Waldmann F, Bayer A, Lippross S, Pufe T, Tohidnezhad M. Platelet-released growth factors protect articular chondrocytes from inflammatory condition. Ann Anat 2021; 238:151787. [PMID: 34144154 DOI: 10.1016/j.aanat.2021.151787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although platelet-released growth factors (PRGF) can protect cells from inflammation or oxidative stress condition, their therapeutic efficacy for articular cartilage degeneration has been little discussed. The purpose of this study was to investigate the effect of PRGF on human articular chondrocytes under inflammatory conditions. METHODS Human C-28/I2 chondrocytes were treated with PRGF, the production from liquid-preserved platelet concentrates obtained by platelet apheresis from human volunteers. Cell proliferation/viability, and collagen type (COL) II and SOX9 gene expressions for chondrogenesis were evaluated with different PRGF concentrations. Additionally, in vitro inflammatory condition was mimicked by stimulating the cells with tumor necrosis factor (TNF)-α. Under inflammation, cell viability, TNF-α gene expression, and the protein levels of cytokines including TNF-α, interleukin (IL)-1β and -6, and vascular endothelial growth factor (VEGF) angiogenesis marker, were compared with and without PRGF treatment. RESULTS Cell proliferation/viability, and SOX9 and COL II expressions in chondrocytes stimulated with 10% PRGF were significantly higher than without treatment. Cell viability with 10% PRGF was also statistically higher than without treatment under inflammation. The TNF-α gene expression with 10% PRGF was significantly lower than without treatment under inflammation. The protein levels of endogenous TNF-α with 5% PRGF, IL-1β with 10% PRGF, and IL-6 with 5 and 10% PRGF in chondrocytes were significantly lower than untreated ones under inflammation. The VEGF-protein level in chondrocytes stimulated with 20% PRGF was significantly higher than without treatment under inflammation, while there was no significant difference between with 10% PRGF and without treatment. CONCLUSIONS Our results reveal that optimal PRGF treatment leads to the increase of chondrocyte proliferation/viability and chondrogenic markers, while it increased cell viability but reduced IL-1β and IL-6 expressions under inflammatory condition, suggesting the therapeutic role of PRGF for protection from articular cartilage degeneration through anti-inflammatory effects.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Olga Lang
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Lavin Amin
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Felix Waldmann
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Andreas Bayer
- Institute of Anatomy, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany.
| | - Sebastian Lippross
- Department of Trauma Surgery, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
38
|
Xiong Y, Duan H, Zhang B, Ren C, Yu Z, Yan Y. Experimental study on repair of large segmental bone defects of goat femur by nano calcium-deficient hydroxyapatite-multi (amino acid) copolymer membrane tubes. J Biomater Appl 2021; 36:492-502. [PMID: 33673763 DOI: 10.1177/08853282211000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this study was to observe feasibility of nano calcium-deficient hydroxyapatite-multi (amino acid) copolymer (n-CDHA-MAC) membrane tubes in repairing goat femurs' large defects. METHODS Twelve goats were divided into two groups, whose femurs were created 30 mm segmental bone defects and then implants were performed. In experimental group, the bone defect of right femur was reconstructed by n-CDHA-MAC membrane tube, while left side was reconstructed by allogenic bone tube in control group. Every three goats were sacrificed at 4, 8, 16, 24 weeks after operation respectively. General observation, X-ray analysis, histology, Scanning electron microscope (SEM) examination and protein level comparison of BMP-2 were conducted to evaluate the effects of repairing segmental bone defects. RESULTS All goats recovered well from anesthesia and surgical interventions. The radiographic evaluations showed that periosteal reaction outside of the membrane tubes and allogenic bone tubes were observed 4 weeks after surgery. At 16 weeks, callus was continuously increased in experimental group, which was more obvious than control group. At 24 weeks, callus outside of the membrane tubes connected together. Histologic evaluation showed fibro-cartilage callus was evolved into bony callus in experimental group, which was more obvious than control group at 8 and 16 weeks. The protein expression level of BMP-2 increased at 4, 8 weeks and peaked at 16 weeks in experimental groups. There were statistical differences at 8 and 16 weeks (P < 0.05). At each time point in 8, 16, 24 weeks after surgery, the bending stiffness, torsional stiffness and compressive strength of the two groups were similar, and there was no significant difference (P > 0.05). CONCLUSIONS This novel surface degradation n-CDHA-MAC membrane tube has good ability to maintain enough membrane space, which can provide long-term and stable biomechanical support for large bone defects and integrate well with the surrounding bone.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Hong Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Bin Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Cheng Ren
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Zeping Yu
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Yonggang Yan
- College of Physical Science and Technology, Sichuan University, Sichuan, China
| |
Collapse
|
39
|
Huchim-Chablé M, de Arredondo RSM, Rivero-Navarrete JA, Mendiburu-Zavala C, Cárdenas-Erosa R, Peñaloza-Cuevas R. Calcium Sulfate and Plasma Rich in Growth Factors Enhance Bone Regeneration after Extraction of the Mandibular Third Molar: A Proof of Concept Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1126. [PMID: 33673695 PMCID: PMC7957751 DOI: 10.3390/ma14051126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate the mixture of Calcium Sulfate and Plasma Rich in Growth Factors (CaSO4 + PRGF) as a bone-graft substitute in extracted mandibular third molar (MTM) alveoli during a 4-month period. Bilateral MTM extractions were performed in 10 patients (18-25 years) at the Oral-Surgery-Clinic of the Universidad Autónoma de Yucatán (UADY). A CaSO4 + PRGF mixture was placed in the right alveolus (Experimental Group (EG)) and a natural blood clot in the left (Control Group (CG)). Monthly X-ray controls were performed using a gray scale to measure Bone Regeneration (BR). A non-parametric Sign Test was used to evaluate Radiopacity/Bone Regeneration (Ro/BR) over 4 months, and a Friedman's non-parametric test was used for intra-group analysis over these months. The study was approved by the Centro de Investigaciones Regionales (Dr. Hideyo Noguchi, UADY Bioethics Committee, ID 0026-2015). Using a non-parametric test of the sign, the EG showed significant difference of Ro/BR between groups p = 0.002 (p < 0.05). Significant differences were observed in all quadrants and areas p = 0.002 (p < 0.05) except in area A in month 4 (p = 0.016), which could be explained by its being the closest to native bone. EG CaSO4 + PRGF showed a higher degree of bone regeneration compared to CG.
Collapse
Affiliation(s)
- María Huchim-Chablé
- General Dentistry Private Practice; Av. Itzaes # 252 X 29 Colonia García Ginerés, Mérida 97070, Yucatán, Mexico;
| | - Roberto Sosa-Martínez de Arredondo
- Private Practice, Central Odontológica of Yucatán; 26 Street # 218-B X 27 and 29, Colonia García Ginerés, Mérida 97070, Yucatán, Mexico;
| | - José Alberto Rivero-Navarrete
- Statistics Research Department, Universidad Autónoma of Yucatán, 55 Street X Circuito Colonias y Fraccionamiento del Parque, Mérida 97159, Yucatán, Mexico;
| | - Celia Mendiburu-Zavala
- Faculty of Dentistry, Universidad Autónoma of Yucatán (UADY), 61st Street # 492 x Av. Itzáes, Colonia Centro, Mérida 97000, Yucatán, Mexico; (C.M.-Z.); (R.C.-E.)
| | - Rubén Cárdenas-Erosa
- Faculty of Dentistry, Universidad Autónoma of Yucatán (UADY), 61st Street # 492 x Av. Itzáes, Colonia Centro, Mérida 97000, Yucatán, Mexico; (C.M.-Z.); (R.C.-E.)
| | - Ricardo Peñaloza-Cuevas
- Faculty of Dentistry, Universidad Autónoma of Yucatán (UADY), 61st Street # 492 x Av. Itzáes, Colonia Centro, Mérida 97000, Yucatán, Mexico; (C.M.-Z.); (R.C.-E.)
| |
Collapse
|
40
|
Growth Factors in Oral Tissue Engineering: New Perspectives and Current Therapeutic Options. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8840598. [PMID: 33506039 PMCID: PMC7808803 DOI: 10.1155/2021/8840598] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
The present investigation is aimed at systematically analyzing the recent literature about the innovative scaffold involved in the reconstructive surgeries by applying growth factors and tissue engineering. An extensive review of the contemporary literature was conducted according to the PRISMA guidelines by accessing the PubMed, Embase, and Scopus Elsevier databases. Authors performed the English language manuscript research published from 2003 to 2020. A total of 13 relevant studies were included in the present review. The present systematic review included only papers with significant results about correlation between scaffold, molecular features of growth factor, and reconstructive surgeries in oral maxillofacial district. The initial research with filters recorded about 1023 published papers. Beyond reading and considering of suitability, only 42 and then 36 full-text papers were recorded for the revision. All the researches recorded the possibility of using growth factors on rebuilding atrophic jaws. Different growth factors like morphogenetic factors, cytokines, and inflammatory ones and their application over different scaffold materials were recorded. Further investigations should be required in order to state scientific evidence about a clear advantage of applying tissue engineering for therapeutic purpose.
Collapse
|
41
|
Mlachkova A, Dosseva-Panova V, Popova C. Application of PRP (platelet-rich plasma) in surgical periodontal therapy: overview. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1878932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Antoaneta Mlachkova
- Faculty of Dental Medicine, Department of Periodontology, Medical University of Sofia, Sofia, Bulgaria
| | - Velitchka Dosseva-Panova
- Faculty of Dental Medicine, Department of Periodontology, Medical University of Sofia, Sofia, Bulgaria
| | - Christina Popova
- Faculty of Dental Medicine, Department of Periodontology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
42
|
Cappellin M. Simplified protocol for horizontal and vertical post-extractive GBR with intentionally exposed PTFE membrane - Case series. JOURNAL OF SURGERY PERIDONTOLOGY AND IMPLANT RESEARCH 2020; 2:38-43. [DOI: 10.35252/jspir.2020.1.002.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Purpose: Post-extractive sites often need soft and hard tissue regeneration in order to
place implants with optimal functional and aesthetic conditions. The author proposed
several techniques for bone preservation and regeneration: most of them requires
release incisions and coronally advanced flap to obtain primary closure, so regain a
correct alignment of keratinized gingiva makes mandatory a further surgery with a
connective tissue graft from secondary surgical site.
Case report: Since May 2018 we applied with some adjustments Open Barrier Technique
(proposed by E. Funakoshi, 2005) in 152 post-extractive alveolar preservation and GBR;
after 3-6 months we placed 194 implants, with 100% success and survival rate.
Conclusions: Our simplified protocol allows performing vertical and horizontal GBR
in post-extractive sites without release incisions: non resorbable PTFE membrane
protects wound and bone graft for 6-8 week; secondary healing ensures thick
keratinized tissue and bone maturation, suitable to place implants after 3-6 months.
Collapse
|