1
|
Carr D, Gunari S, Gorostiza G, Mercado M, Pavana L, Duong L, Gomez K, Salinas S, Garcia C, Tsang A, Morisseau C, Hammock BD, Pecic S, Kandasamy R. Synthesis and evaluation of isoquinolinyl and pyridinyl-based dual inhibitors of fatty acid amide hydrolase and soluble epoxide hydrolase to alleviate orofacial hyperalgesia in the rat. Biochem Biophys Rep 2025; 42:102009. [PMID: 40275962 PMCID: PMC12018053 DOI: 10.1016/j.bbrep.2025.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The treatment of orofacial pain disorders is poor. Both opioids and serotonin agonists are commonly used; however, they produce dangerous and unpleasant side effects. Therefore, there is an urgent need to identify new pharmacological treatments that can resolve orofacial pain. Moreover, a treatment that engages multiple mechanisms using one compound may be advantageous. Fatty acid amide hydrolase (FAAH) and soluble epoxide hydrolase (sEH) are two enzymes that can regulate both pain and inflammation via independent pathways. Small molecules that inhibit both enzymes simultaneously were previously synthesized and produced antinociception in vivo. Quinolinyl-based dual inhibitors of FAAH and sEH can inhibit acute inflammatory pain in rats. Here, following on these findings, we generated 7 new isoquinolinyl- and 7 pyridinyl-based analogs and tested their inhibition at both enzymes. Structure-activity relationship study coupled with docking experiments, revealed that the isoquinoline moiety is well-tolerated in the binding pockets of both enzymes, yielding several analogs with nanomolar activity in enzymatic assays. All newly synthesized analogs were assessed in the solubility assay at pH 7.4, and we determined that isoquinolinyl- and substituted pyridinyl-analogs exhibit limited solubility under the experimental conditions. The most potent inhibitor, 4f, with IC50 values in the low nanomolar range for both enzymes, was evaluated in a plasma stability assay in human and rat plasma where it showed a moderate stability. Primary binding assays revealed that 4f does not engage any opioid or serotonin receptors. A high dose (3 mg/kg) of 4f reversed orofacial hyperalgesia following pretreatment with nitroglycerin and orofacial injection of formalin; however, this same dose did not inhibit acute orofacial inflammatory pain or restore pain-depressed wheel running. These findings indicate that simultaneous inhibition of FAAH and sEH using isoquinolinyl-based dual inhibitors may only reverse certain components of orofacial hyperalgesia.
Collapse
Affiliation(s)
- Daniel Carr
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Siena Gunari
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Gabrielle Gorostiza
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Madison Mercado
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Lucy Pavana
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Leah Duong
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Karen Gomez
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Steve Salinas
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Coral Garcia
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Amanda Tsang
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| |
Collapse
|
2
|
Kim M, Kim H, Lee S, Lim I, Kim E, Oh U, Jang Y. Ultra-Sensitive Biosensor Based on Cell-Derived Nanovesicles for CB1 Receptor-Targeted Drug Development in a Live Cell-Free Platform. Anal Chem 2025. [PMID: 40279503 DOI: 10.1021/acs.analchem.4c06959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The endocannabinoid system, particularly the cannabinoid receptor 1 (CB1), is essential for regulating numerous physiological processes, including pain, mood, appetite, and neurodegeneration. Given its crucial role, CB1 has become a target for therapeutic interventions with significant potential for treating various disorders. However, conventional methods such as calcium imaging and patch-clamp can only detect drug concentrations in the nanomolar to micromolar range, highlighting the need to develop more sensitive drug screening methods. To address this issue, we developed an ultrasensitive biosensor based on cell-derived CB1 nanovesicles (CB1-NV) coupled with carbon nanotube (CNT)-printed electrodes. This ultrasensitive sensor can detect cannabinoid compounds at picomolar concentrations by converting receptor-mediated Ca2+ influx into measurable electrical signals. The sensor exhibits remarkable sensitivity in terms of detecting trace tetrahydrocannabinol amounts (approximately 0.001%) in hemp seed oil, which conventional methods fail to detect. Compared with conventional methods, the developed biosensor exhibited a 1000-fold improvement in sensitivity, offering a promising tool for high-throughput drug screening and therapeutic research. Additionally, the CB1-NV sensor utilizes cell-free vesicles to preserve the cellular environment. However, because live cells were not involved, there was no requirement to maintain cell viability during the measurement process.
Collapse
Affiliation(s)
- Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyungsup Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04312, Republic of Korea
| | - Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Inje Lim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunyoung Kim
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Janssen F, Braun M, Dröge J, Brüggmann D, Groneberg DA. Comparison Between Smoked Tobacco and Medical Cannabis Cigarettes Concerning Particulate Matter. Cannabis Cannabinoid Res 2024; 9:1492-1499. [PMID: 38294845 PMCID: PMC11685293 DOI: 10.1089/can.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Introduction: Cannabis is a widely used drug like tobacco and alcohol. In the meantime, it is also prescribed for medical treatment in some countries. Tobacco smoke contains chemical carcinogens and particulate matter (PM) that are both harmful to health. Method: In this study, we investigated PM levels in second-hand smoke (SHS) of hand-tamped cannabis cigarettes compared to cigarettes with tubing tobacco and the 3R4F reference cigarette. Results: It could be demonstrated that the largest proportion of the particle mass is attributable to particles with a diameter of less than 1μm and that every tested cigarette emitted more PM than the 3R4F reference cigarette. In addition, our data clearly revealed that cannabis smoke contains higher PM levels in SHS than tobacco cigarettes. Compared to the reference cigarette, the PM1 emissions of cannabis were 105% higher. Also, the cannabis mixed cigarettes had higher PM levels than the 3R4F cigarettes. For instance, the PM10 emissions were 93% higher. Also, the Gauloises Mélange tubing tobacco also reached higher PM concentrations than the 3R4F cigarette. Discussion: Regardless of negative health effects, cannabis is seen as a harmless drug in the public eye. We found strong indications for potential health risks by PM from cannabis products and, therefore, the public should be educated about a potential harm.
Collapse
Affiliation(s)
- Fenna Janssen
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus Braun
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janis Dröge
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dörthe Brüggmann
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - David A. Groneberg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Harris HM, Gul W, ElSohly MA, Sufka KJ. Differential Effects of Cannabidiol and a Novel Cannabidiol Analog on Oxycodone Place Preference and Analgesia in Mice: an Opioid Abuse Deterrent with Analgesic Properties. Cannabis Cannabinoid Res 2022; 7:804-813. [PMID: 34962133 PMCID: PMC9784596 DOI: 10.1089/can.2021.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background and Purpose: This study sought to determine whether cannabidiol (CBD) or a CBD derivative, CBD monovalinate monohemisuccinate (CBD-val-HS), could attenuate the development of oxycodone reward while retaining its analgesic effects. Experimental Approach: To determine the effect on oxycodone reward, animals were enrolled in the conditioned place preference paradigm and received either saline or oxycodone (3.0 mg/kg) in combination with either CBD or CBD-val-HS utilizing three sets of drug-/no drug-conditioning trials. To determine if the doses of CBD or CBD-val-HS that blocked opioid reward would affect nociceptive processes, animals were enrolled in the hot plate and abdominal writhing assays when administered alone or in combination with a subanalgesic (1.0 mg/kg) or analgesic (3.0 mg/kg) dose of oxycodone. Key Results: Results from condition place preference demonstrated CBD was not able attenuate oxycodone place preference while CBD-val-HS attenuated these rewarding effects at 8.0 mg/kg and was void of rewarding or aversive properties. In contrast to CBD, CBD-val-HS alone produced analgesic effects in both nociceptive assays but was most effective compared with oxycodone against thermal nociception. Of interest, there was a differential interaction of CBD and CBD-val-HS×oxycodone across the two nociceptive assays producing subadditive responses on the hot plate assay, whereas additive responses were observed in the abdominal writhing assay. Conclusion: These findings suggest CBD-val-HS alone, a nonrewarding analgesic compound, could be useful in pain management and addiction treatment settings.
Collapse
Affiliation(s)
- Hannah M. Harris
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Waseem Gul
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- ElSohly Laboratories, Inc., Oxford, Mississippi, USA
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- ElSohly Laboratories, Inc., Oxford, Mississippi, USA
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Kenneth J. Sufka
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- Department of Psychology, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
5
|
Deli SB, Bonab SI, Khakpay R, Khakpai F, Feyzi MH. An interaction between basolateral amygdala orexinergic and endocannabinoid systems in inducing anti-nociception in the rat formalin test. Psychopharmacology (Berl) 2022; 239:3171-3184. [PMID: 35918531 DOI: 10.1007/s00213-022-06199-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
The amygdala has emerged as the main brain center for the emotional affective dimension of pain and pain modulation. In the amygdala, orexin and cannabinoid receptors are expressed in relatively high concentrations. To investigate the possible interaction between the amygdala orexin and cannabinoid systems on the modulation of inflammatory pain, we conducted formalin, rotarod, and plethysmometer tests, as well as analyzing mRNA expression of orexin and cannabinoid receptors in male rats. The basolateral amygdala (BLA) was unilaterally implanted by a guide cannula. Our results showed that, compared to saline and DMSO/saline, intra-BLA microinjection of orexin-A (50 and 100 µM) decreased flinch response in the early phase, but not in the late phase of the formalin test. However, these injections had no significant effect on the mRNA expression level of BLA, orexin receptor type-1 (Orx1), and cannabinoid receptor type-1 (Cb1). Moreover, intra-BLA administration of Orx1 receptor antagonist (SB-334867; 50 nM) and Cb1 receptor antagonist (AM251; 250 and 500 nM) decreased flinch response only in the early phase of the formalin test as compared to the DMSO group. Although the intra-BLA infusion of orexin-A alone and along with SB-334867 or AM251 decreased flinch response in the early phase of the formalin test, intra-BLA co-microinjection of SB-334867/AM251/OrxA increased flinch response in both early and late phases of the formalin test when compared to the DMSO/OrxA group. Interestingly, in the SB-334867/AM251/OrxA group, the Cb1 receptor was upregulated in all groups in comparison to Orx1 receptors. Our results revealed an interaction between BLA, orexin-A, and Cb1 receptors in inducing anti-nociception in the formalin test.
Collapse
Affiliation(s)
- Soghra Borneh Deli
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Samira Iman Bonab
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Roghaieh Khakpay
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
6
|
Thomas PA, Carter GT, Bombardier CH. A scoping review on the effect of cannabis on pain intensity in people with spinal cord injury. J Spinal Cord Med 2022; 45:656-667. [PMID: 33465022 PMCID: PMC9542582 DOI: 10.1080/10790268.2020.1865709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CONTEXT This scoping review examines the current research on the effect of cannabis upon pain intensity in spinal cord injury (SCI) pain. Chronic pain is a significant secondary condition following SCI, and traditional treatments (e.g. opioids, NSAIDs) are often criticized for providing inadequate relief. As a result, there is increasing interest in and use of cannabis and cannabinoid-based medications as an alternative means of pain control. OBJECTIVE The purpose of this review was to examine the scientific evidence on the effect of cannabis/cannabinoids upon pain intensity in SCI by mapping the current literature. METHODS Two hundred and fifty-two studies were identified by searching electronic databases for articles published through February 2020. In addition, reviewers scanned the reference lists of identified articles and examined clinicaltrials.gov for unpublished data in this area. Title, abstract, and full-text reviews were completed by two independent reviewers. Data extraction was performed by a single reviewer and verified by a second reviewer. RESULTS Six articles covering five treatment studies were included. Studies yielded mixed findings likely due to large variability in methodology, including lack of standardized dosing paradigms, modes of use, and duration of trial. CONCLUSIONS The current quality and level of evidence is insufficient to draw reliable conclusions of the efficacy of cannabis upon SCI-related pain itensity. We identify specific limitations of past studies and present guidelines for future research.Trial registration: ClinicalTrials.gov identifier: Nct01606202..
Collapse
Affiliation(s)
- Pavithra A. Thomas
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | | | - Charles H. Bombardier
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Gonçalves MR, da Conceição MS, Jesus CHA, Gasparin AT, Rosa ES, da Cunha JM. Spinal cannabinoid CB1 or CB2 receptors activation attenuates mechanical allodynia in streptozotocin-induced diabetic rats. Behav Pharmacol 2022; 33:158-164. [PMID: 32804775 DOI: 10.1097/fbp.0000000000000580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diabetes is a chronic disease associated with a high number of complications such as peripheral neuropathy, which causes sensorial disturbances and may lead to the development of diabetic neuropathic pain (DNP). The current treatment for DNP is just palliative and the drugs may cause severe adverse effects, leading to discontinuation of treatment. Thus, new therapeutic targets need to be urgently investigated. Studies have shown that cannabinoids have promising effects in the treatment of several pathological conditions, including chronic pain. Thus, we aimed to investigate the acute effect of the intrathecal injection of CB1 or CB2 cannabinoid receptor agonists N-(2-chloroethyl)-5Z, 8Z, 11Z, 14Z-eicosatetraenamide (ACEA) or JWH 133, respectively (10, 30 or 100 μg/rat) on the mechanical allodynia associated with experimental diabetes induced by streptozotocin (60 mg/kg; intraperitoneal) in rats. Cannabinoid receptor antagonists CB1 AM251 or CB2 AM630 (1 mg/kg) were given before treatment with respective agonists to confirm the involvement of cannabinoid CB1 or CB2 receptors. Rats with diabetes exhibited a significant reduction on the paw mechanical threshold 2 weeks after diabetes induction, having the maximum effect observed 4 weeks after the streptozotocin injection. This mechanical allodynia was significantly improved by intrathecal treatment with ACEA or JWH 133 (only at the higher dose of 100 μg). Pre-treatment with AM251 or AM630 significantly reverted the anti-allodynic effect of the ACEA or JWH 133, respectively. Considering the clinical challenge that the treatment of DPN represents, this study showed for the first time, that the intrathecal cannabinoid receptors agonists may represent an alternative for the treatment of DNP.
Collapse
Affiliation(s)
- Maryna Rodrigues Gonçalves
- Department of Pharmacology, Biological Science Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Pourrahimi AM, Abbasnejad M, Raoof M, Esmaeili-Mahani S, Kooshki R. The involvement of orexin 1 and cannabinoid 1 receptors within the ventrolateral periaqueductal gray matter in the modulation of migraine-induced anxiety and social behavior deficits of rats. Peptides 2021; 146:170651. [PMID: 34560171 DOI: 10.1016/j.peptides.2021.170651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/26/2022]
Abstract
Orexin 1 receptors (Orx1R) and cannabinoid 1 receptors (CB1R) are implicated in migraine pathophysiology. This study evaluated the potential involvement of Orx1R and CB1R within the ventrolateral periaqueductal gray matter (vlPAG) in the modulation of anxiety-like behavior and social interaction of migraineurs rats. A rat model of migraine induced by recurrent administration of nitroglycerin (NTG) (5 mg/kg/i.p.). The groups of rats (n = 6) were then subjected to intra-vlPAG microinjection of orexin-A (25, 50 pM), and Orx1R antagonist SB334867 (20, 40 nM) or AM 251 (2, 4 μg) as a CB1R antagonist. Behavioral responses were evaluated in elevated plus maze (EPM), open field (OF) and three-chambered social test apparatus. NTG produced a marked anxiety like behaviors, in both EPM and OF tasks. It did also decrease social performance. NTG-related anxiety and social conflicts were attenuated by orexin-A (25, 50 pM). However, NTG effects were exacerbated by SB334867 (40 nM) and AM251 (2, 4 μg). The orexin-A-mediated suppression of NTG-induced anxiety and social conflicts were prevented by either SB334867 (20 nM) or AM251 (2 μg). The findings suggest roles for Orx1R and CB1R signaling within vlPAG in the modulation of migraine-induced anxiety-like behavior and social dysfunction in rats.
Collapse
Affiliation(s)
- Ali Mohammad Pourrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
9
|
Current Understanding of the Involvement of the Insular Cortex in Neuropathic Pain: A Narrative Review. Int J Mol Sci 2021; 22:ijms22052648. [PMID: 33808020 PMCID: PMC7961886 DOI: 10.3390/ijms22052648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain is difficult to cure and is often accompanied by emotional and psychological changes. Exploring the mechanisms underlying neuropathic pain will help to identify a better treatment for this condition. The insular cortex is an important information integration center. Numerous imaging studies have documented increased activity of the insular cortex in the presence of neuropathic pain; however, the specific role of this region remains controversial. Early studies suggested that the insular lobe is mainly involved in the processing of the emotional motivation dimension of pain. However, increasing evidence suggests that the role of the insular cortex is more complex and may even be related to the neural plasticity, cognitive evaluation, and psychosocial aspects of neuropathic pain. These effects contribute not only to the development of neuropathic pain, but also to its comorbidity with neuropsychiatric diseases. In this review, we summarize the changes that occur in the insular cortex in the presence of neuropathic pain and analgesia, as well as the molecular mechanisms that may underlie these conditions. We also discuss potential sex-based differences in these processes. Further exploration of the involvement of the insular lobe will contribute to the development of new pharmacotherapy and psychotherapy treatments for neuropathic pain.
Collapse
|
10
|
The ω-3 endocannabinoid docosahexaenoyl ethanolamide reduces seizure susceptibility in mice by activating cannabinoid type 1 receptors. Brain Res Bull 2021; 170:74-80. [PMID: 33581310 DOI: 10.1016/j.brainresbull.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most recognized omega-3 unsaturated fatty acids showing neuroprotective activity in animal and clinical studies. Docosahexaenoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) are non-oxygenated endogenous metabolites of DHA and EPA, which might be in charge of the anti-seizure activity of the parent molecules. We examined the effect of these metabolites on the threshold of clonic seizures induced by pentylenetetrazole (PTZ). DHEA and EPEA possess similar chemical structure to the endogenous cannabinoids. Therefore, involvement of cannabinoid (CB) receptors in the anti-seizure effect of these metabolites was also investigated. DHA, DHEA, EPEA, AM251 (CB1 receptor antagonist), and AM630 (CB2 receptor antagonist) were administered to mice by intracerebroventricular (i.c.v.) route. Threshold of clonic seizures was determined 10 and/or 15 min thereafter by intravenous infusion of PTZ. The effect of DHA and DHEA on seizure threshold was then determined in mice, which were pretreated with AM251 and/or AM630. DHA (300μM), and DHEA (100 and 300 μM) significantly increased seizure threshold, 15 (p < 0.05) and 10 min (p < 0.01) after administration, respectively. DHEA was more potent than its parent lipid, DHA in decreasing seizure susceptibility. EPEA (300 and 1000 μM) did not change seizure threshold. AM251 fully prevented the increasing effect of DHA and DHEA on seizure threshold (p < 0.05). AM630 did not inhibit the effect of DHA and DHEA on seizure threshold. This is the first report indicating that DHEA but not EPEA, possesses anti-seizure action via activating CB1 receptors. DHEA is more potent than its parent ω-3 fatty acid DHA in diminishing seizure susceptibility.
Collapse
|
11
|
Peball M, Krismer F, Knaus H, Djamshidian A, Werkmann M, Carbone F, Ellmerer P, Heim B, Marini K, Valent D, Goebel G, Ulmer H, Stockner H, Wenning GK, Stolz R, Krejcy K, Poewe W, Seppi K. Non-Motor Symptoms in Parkinson's Disease are Reduced by Nabilone. Ann Neurol 2020; 88:712-722. [PMID: 32757413 PMCID: PMC7540547 DOI: 10.1002/ana.25864] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The objective of this study was to assess the efficacy and safety of nabilone, a synthetic tetrahydrocannabinol analogue, as a treatment for non-motor symptoms (NMS) in Parkinson's disease (PD). METHODS This was a phase II placebo-controlled, double-blind, parallel-group, enriched enrollment randomized withdrawal trial conducted at the Medical University Innsbruck. A random sample of 47 patients with PD with stable motor disease and disturbing NMS defined by a score of ≥4 points on the Movement Disorder Society - Unified PD Rating Scale-I (MDS-UPDRS-I) underwent open-label nabilone titration (0.25 mg once daily to 1 mg twice daily, phase I). Responders were randomized 1:1 to continue with nabilone or switch to placebo for 4 weeks (phase II). The primary efficacy criterion was the change of the MDS-UPDRS-I between randomization and week 4. Safety was analyzed in all patients who received at least one nabilone dose. RESULTS Between October 2017 and July 2019, 19 patients received either nabilone (median dose = 0.75 mg) or placebo. At week 4, mean change of the MDS-UPDRS-I was 2.63 (95% confidence interval [CI] 1.53 to 3.74, p = 0.002, effect size = 1.15) in the placebo versus 1.00 (95% CI -0.16 to 2.16, p = 0.280, effect size = 0.42) in the nabilone-group (difference: 1.63, 95% CI 0.09 to 3.18, p = 0.030, effect size = 0.66). Seventy-seven percent of patients had adverse events (AEs) during open-label titration, most of them were transient. In the double-blind phase, similar proportions of patients in each group had AEs (42% in the placebo group and 32% in the nabilone group). There were no serious AEs. INTERPRETATION Our results highlight the potential efficacy of nabilone for patients with PD with disturbing NMS, which appears to be driven by positive effects on anxious mood and night-time sleep problems. TRIAL REGISTRY ClinicalTrials.gov (NCT03769896) and EudraCT (2017-000192-86). ANN NEUROL 2020;88:712-722.
Collapse
Affiliation(s)
- Marina Peball
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Florian Krismer
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Hans‐Günther Knaus
- Department for Medical Genetics, Molecular, and Clinical PharmacologyInnsbruck Medical UniversityInnsbruckAustria
| | | | - Mario Werkmann
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Federico Carbone
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Philipp Ellmerer
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Beatrice Heim
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Kathrin Marini
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Dora Valent
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Georg Goebel
- Department of Medical Statistics, Informatics, and Health EconomicsInnsbruck Medical UniversityInnsbruckAustria
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics, and Health EconomicsInnsbruck Medical UniversityInnsbruckAustria
| | - Heike Stockner
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | | - Raphaela Stolz
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | | - Werner Poewe
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Klaus Seppi
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | |
Collapse
|
12
|
Brunetti L, Carrieri A, Piemontese L, Tortorella P, Loiodice F, Laghezza A. Beyond the Canonical Endocannabinoid System. A Screening of PPAR Ligands as FAAH Inhibitors. Int J Mol Sci 2020; 21:ijms21197026. [PMID: 32987725 PMCID: PMC7582602 DOI: 10.3390/ijms21197026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, Peroxisome Proliferator-Activated Receptors (PPARs) have been connected to the endocannabinoid system. These nuclear receptors indeed mediate the effects of anandamide and similar substances such as oleoyl-ethanolamide and palmitoyl-ethanolamide. An increasing body of literature describing the interactions between the endocannabinoid system and PPARs has slowly but surely been accumulating over the past decade, and a multitarget approach involving these receptors and endocannabinoid degrading enzyme FAAH has been proposed for the treatment of inflammatory states, cancer, and Alzheimer’s disease. The lack of knowledge about compounds endowed with such an activity profile therefore led us to investigate a library of readily available, well-characterized PPAR agonists that we had synthesized over the years in order to find a plausible lead compound for further development. Moreover, we propose a rationalization of our results via a docking study, which sheds some light on the binding mode of these PPAR agonists to FAAH and opens the way for further research in this field.
Collapse
|
13
|
Mariano A, Di Sotto A, Leopizzi M, Garzoli S, Di Maio V, Gullì M, Dalla Vedova P, Ammendola S, Scotto d’Abusco A. Antiarthritic Effects of a Root Extract from Harpagophytum procumbens DC: Novel Insights into the Molecular Mechanisms and Possible Bioactive Phytochemicals. Nutrients 2020; 12:nu12092545. [PMID: 32842461 PMCID: PMC7551290 DOI: 10.3390/nu12092545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Harpagophytum procumbens (Burch.) DC. ex Meisn. is a traditional remedy for osteoarticular diseases, including osteoarthritis (OA), although the bioactive constituents and mechanisms involved are yet to be clarified. In the present study, an aqueous H. procumbens root extract (HPE; containing 1.2% harpagoside) was characterized for its effects on synoviocytes from OA patients and phytochemical composition in polyphenols, and volatile compounds were detected. HPE powder was dissolved in different solvents, including deionized water (HPEH2O), DMSO (HPEDMSO), 100% v/v ethanol (HPEEtOH100), and 50% v/v ethanol (HPEEtOH50). The highest polyphenol levels were found in HPEDMSO and HPEEtOH50, whereas different volatile compounds, mainly β-caryophyllene and eugenol, were detected in all the extracts except for HPEH2O. HPEH2O and HPEDMSO were able to enhance CB2 receptor expression and to downregulate PI-PLC β2 in synovial membranes; moreover, all the extracts inhibited FAAH activity. The present results highlight for the first time a multitarget modulation of the endocannabinoid system by HPE, likely ascribable to its hydrosoluble compounds, along with the presence of volatile compounds in H. procumbens root. Although hydrosoluble compounds seem to be mainly responsible for endocannabinoid modulation by HPE, a possible contribution of volatile compounds can be suggested, strengthening the hypothesis that the entire phytocomplex can contribute to the H. procumbens healing properties.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Roma, Italy;
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.D.S.); (M.G.)
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, 04100 Latina, Italy; (M.L.); (V.D.M.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Valeria Di Maio
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, 04100 Latina, Italy; (M.L.); (V.D.M.)
| | - Marco Gullì
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.D.S.); (M.G.)
| | - Pietro Dalla Vedova
- UOC di Ortopedia e Traumatologia, Ospedale Santa Scolastica di Cassino, ASL di Frosinone, Via S. Pasquale, 03043 Cassino, Italy;
| | - Sergio Ammendola
- Ambiotec S.A.S. Via Appia Nord 47, 04012 Cisterna di Latina (LT), Italy;
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Roma, Italy;
- Correspondence: ; Tel.: +39-06-4991-0947
| |
Collapse
|
14
|
Browe BM, Olsen AR, Ramirez C, Rickman RH, Smith ESJ, Park TJ. The naked mole-rat has a functional purinergic pain pathway despite having a non-functional peptidergic pain pathway. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100047. [PMID: 32478202 PMCID: PMC7248424 DOI: 10.1016/j.ynpai.2020.100047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/08/2023]
Abstract
Naked mole-rats (Heterocephalus glaber) have adaptations within their pain pathway that are beneficial to survival in large colonies within poorly ventilated burrow systems, with lower O2 and higher CO2 ambient levels than ground-level environments. These adaptations ultimately lead to a partial disruption of the C-fiber pain pathway, which enables naked mole-rats to not feel pain from the acidosis associated with CO2 accumulation. One hallmark of this disruption is that naked mole-rats do not express neuropeptides, such as Substance P and calcitonin gene-related peptide in their cutaneous C-fibers, effectively making the peptidergic pain pathway hypofunctional. One C-fiber pathway that remains unstudied in the naked mole-rat is the non-peptidergic, purinergic pathway, despite this being a key pathway for inflammatory pain. The current study aimed to establish the functionality of the purinergic pathway in naked mole-rats and the effectiveness of cannabinoids in attenuating pain through this pathway. Cannabinoids can manage chronic inflammatory pain in both humans and mouse models, and studies suggest a major downstream role for the purinergic receptor, P2X3, in this treatment. Here we used Ca2+-imaging of cultured dorsal root ganglion neurons and in vivo behavioral testing to demonstrate that the P2X3 pathway is functional in naked mole-rats. Additionally, formalin-induced inflammatory pain was reduced by the cannabinoid receptor agonist, WIN55 (inflammatory, but not acute phase) and the P2X3 receptor antagonist A-317491 (acute and inflammatory phases). This study establishes that the purinergic C-fiber pathway is present and functional in naked mole-rats and that cannabinoid-mediated analgesia occurs in this species.
Collapse
Affiliation(s)
- Brigitte M. Browe
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Abigail R. Olsen
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Cesar Ramirez
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca H. Rickman
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | | | - Thomas J. Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Khan A, Khan S, Kim YS. Insight into Pain Modulation: Nociceptors Sensitization and Therapeutic Targets. Curr Drug Targets 2020; 20:775-788. [PMID: 30706780 DOI: 10.2174/1389450120666190131114244] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Pain is a complex multidimensional concept that facilitates the initiation of the signaling cascade in response to any noxious stimuli. Action potential generation in the peripheral nociceptor terminal and its transmission through various types of nociceptors corresponding to mechanical, chemical or thermal stimuli lead to the activation of receptors and further neuronal processing produces the sensation of pain. Numerous types of receptors are activated in pain sensation which vary in their signaling pathway. These signaling pathways can be regarded as a site for modulation of pain by targeting the pain transduction molecules to produce analgesia. On the basis of their anatomic location, transient receptor potential ion channels (TRPV1, TRPV2 and TRPM8), Piezo 2, acid-sensing ion channels (ASICs), purinergic (P2X and P2Y), bradykinin (B1 and B2), α-amino-3-hydroxy-5- methylisoxazole-4-propionate (AMPA), N-methyl-D-aspartate (NMDA), metabotropic glutamate (mGlu), neurokinin 1 (NK1) and calcitonin gene-related peptide (CGRP) receptors are activated during pain sensitization. Various inhibitors of TRPV1, TRPV2, TRPM8, Piezo 2, ASICs, P2X, P2Y, B1, B2, AMPA, NMDA, mGlu, NK1 and CGRP receptors have shown high therapeutic value in experimental models of pain. Similarly, local inhibitory regulation by the activation of opioid, adrenergic, serotonergic and cannabinoid receptors has shown analgesic properties by modulating the central and peripheral perception of painful stimuli. This review mainly focused on various classes of nociceptors involved in pain transduction, transmission and modulation, site of action of the nociceptors in modulating pain transmission pathways and the drugs (both clinical and preclinical data, relevant to targets) alleviating the painful stimuli by exploiting nociceptor-specific channels and receptors.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Martin-Saavedra JS, Ruiz-Sternberg AM. The effects of music listening on the management of pain in primary dysmenorrhea: A randomized controlled clinical trial. NORDIC JOURNAL OF MUSIC THERAPY 2020. [DOI: 10.1080/08098131.2020.1761867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Angela Maria Ruiz-Sternberg
- Clinical Research Group, Escuela de Medicina y Ciencias de la Salud-Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
17
|
Avila C, Massick S, Kaffenberger BH, Kwatra SG, Bechtel M. Cannabinoids for the treatment of chronic pruritus: A review. J Am Acad Dermatol 2020; 82:1205-1212. [PMID: 31987788 DOI: 10.1016/j.jaad.2020.01.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 11/17/2022]
Abstract
Medical marijuana is becoming widely available to patients in the United States, and with recreational marijuana now legalized in many states, patient interest is on the rise. The endocannabinoid system plays an important role in skin homeostasis in addition to broader effects on neurogenic responses such as pruritus and nociception, inflammation, and immune reactions. Numerous studies of in vitro and animal models have provided insight into the possible mechanisms of cannabinoid modulation on pruritus, with the most evidence behind neuronal modulation of peripheral itch fibers and centrally acting cannabinoid receptors. In addition, human studies, although limited due to differences in the cannabinoids used, disease models, and delivery method, have consistently shown significant reductions in both scratching and symptoms in chronic pruritus. Clinical studies have shown a reduction in pruritus in several dermatologic (atopic dermatitis, psoriasis, asteatotic eczema, prurigo nodularis, and allergic contact dermatitis) and systemic (uremic pruritus and cholestatic pruritus) diseases. These preliminary human studies warrant controlled trials to confirm the benefit of cannabinoids for treatment of pruritus and to standardize treatment regimens and indications. In patients who have refractory chronic pruritus after standard therapies, cannabinoid formulations may be considered as an adjuvant therapy where it is legal.
Collapse
Affiliation(s)
- Christina Avila
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Susan Massick
- Division of Dermatology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Shawn G Kwatra
- Division of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Bechtel
- Division of Dermatology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
18
|
Kościelniak-Merak B, Batko I, Fleszar M, Kocot-Kępska M, Gamian A, Kobylarz K, Sztefko K, Tomasik PJ. Effect of intravenous, perioperative-administered lidocaine on serum levels of endocannabinoids and related N-acylethanolamines in children. Minerva Anestesiol 2020; 86. [DOI: 10.23736/s0375-9393.19.13703-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
19
|
Cramer S, Johnson J, Ngo T, El‐Alfy AT, Stec J. Modulation of the Endocannabinoid System via Inhibition of Fatty Acid Amide Hydrolase (FAAH) by Novel Urea and Carbamate Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201903375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sarah Cramer
- Chicago State UniversityCollege of PharmacyDepartment of Pharmaceutical Sciences 9501 S. King Drive, Chicago Illinois 60628 United States
| | - Jacklyn Johnson
- Chicago State UniversityCollege of PharmacyDepartment of Pharmaceutical Sciences 9501 S. King Drive, Chicago Illinois 60628 United States
| | - Thanh Ngo
- Chicago State UniversityCollege of PharmacyDepartment of Pharmaceutical Sciences 9501 S. King Drive, Chicago Illinois 60628 United States
| | - Abir T. El‐Alfy
- Chicago State UniversityCollege of PharmacyDepartment of Pharmaceutical Sciences 9501 S. King Drive, Chicago Illinois 60628 United States
- Medical College of Wisconsin School of PharmacyDepartment of Biopharmaceutical Sciences 8701 Watertown Plank Rd, Milwaukee Wisconsin 53226 United States
| | - Jozef Stec
- Chicago State UniversityCollege of PharmacyDepartment of Pharmaceutical Sciences 9501 S. King Drive, Chicago Illinois 60628 United States
- Marshall B. Ketchum UniversityCollege of PharmacyDepartment of Pharmaceutical Sciences 2575 Yorba Linda Blvd., Fullerton California 82831 United States
| |
Collapse
|
20
|
Harris HM, Rousseau MA, Wanas AS, Radwan MM, Caldwell S, Sufka KJ, ElSohly MA. Role of Cannabinoids and Terpenes in Cannabis-Mediated Analgesia in Rats. Cannabis Cannabinoid Res 2019; 4:177-182. [PMID: 31579834 DOI: 10.1089/can.2018.0054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Introduction: Cannabis sativa has been used for centuries in treating pain. However, the analgesic role of many of its constituents including terpenes is unknown. This research examined the contributions of terpenes (volatile oil) and cannabinoids in cannabis-mediated analgesia in rats. Methods: Animals received intraperitoneal administration of either vehicle, 10.0 or 18.0 mg/kg morphine, or various doses of the extract without terpenes, isolated terpenes, Δ9-tetrahydrocannabinol (THC), or the full extract. Thirty minutes later animals were tested on hotplate and tail-flick tests of thermal nociception. One week later, rats received a second administration of test articles and were tested 30 min later in the abdominal writhing test of inflammatory nociception. Results: In the thermal assays, hotplate and tail-flick latencies for morphine-treated rats were dose dependent and significantly higher than vehicle-treated animals. All the cannabinoid compounds except for the isolated terpenes produced dose-dependent increases in hotplate and tail-flick latencies. In the inflammatory nociceptive assay, animals treated with vehicle and isolated terpenes demonstrated increased abdominal writhing, whereas all the cannabinoid compounds significantly decreased abdominal writhing responses. Conclusions: Overall, THC alone produced robust analgesia equivalent to the full cannabis extract, whereas terpenes alone did not produce analgesia. These data suggest the analgesic activity of cannabis is largely mediated by THC, whereas terpenes alone do not cause alterations in cannabis-mediated analgesia.
Collapse
Affiliation(s)
- Hannah M Harris
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi
| | - Margaret A Rousseau
- Department of Psychology, University of Mississippi, University, Mississippi
| | - Amira S Wanas
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi
| | - Mohamed M Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi
| | - Sylvia Caldwell
- Department of Psychology, University of Mississippi, University, Mississippi
| | - Kenneth J Sufka
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi.,Department of Psychology, University of Mississippi, University, Mississippi
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi.,Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, University, Mississippi
| |
Collapse
|
21
|
Brunetti L, Loiodice F, Piemontese L, Tortorella P, Laghezza A. New Approaches to Cancer Therapy: Combining Fatty Acid Amide Hydrolase (FAAH) Inhibition with Peroxisome Proliferator-Activated Receptors (PPARs) Activation. J Med Chem 2019; 62:10995-11003. [PMID: 31407888 DOI: 10.1021/acs.jmedchem.9b00885] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the course of the past decade, peroxisome proliferator-activated receptors (PPARs) have been identified as part of the cannabinoid signaling system: both phytocannabinoids and endocannabinoids are capable of binding and activating these nuclear receptors. Fatty acid amide hydrolase (FAAH) hydrolyzes the endocannabinoid anandamide and other N-acylethanolamines. These substances have been shown to have numerous anticancer effects, and indeed the inhibition of FAAH has multiple beneficial effects that are mediated by PPARα subtype and by PPARγ subtype, especially antiproliferation and activation of apoptosis. The substrates of FAAH are also PPAR agonists, which explains the PPAR-mediated effects of FAAH inhibitors. Much like cannabinoid ligands and FAAH inhibitors, PPARγ agonists show antiproliferative effects on cancer cells, suggesting that additive or synergistic effects may be achieved through the positive modulation of both signaling systems. In this Miniperspective, we discuss the development of novel FAAH inhibitors able to directly act as PPAR agonists and their promising utilization as leads for the discovery of highly effective anticancer compounds.
Collapse
Affiliation(s)
- Leonardo Brunetti
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Luca Piemontese
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Paolo Tortorella
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| |
Collapse
|
22
|
Peball M, Werkmann M, Ellmerer P, Stolz R, Valent D, Knaus HG, Ulmer H, Djamshidian A, Poewe W, Seppi K. Nabilone for non-motor symptoms of Parkinson's disease: a randomized placebo-controlled, double-blind, parallel-group, enriched enrolment randomized withdrawal study (The NMS-Nab Study). J Neural Transm (Vienna) 2019; 126:1061-1072. [PMID: 31129719 PMCID: PMC6647387 DOI: 10.1007/s00702-019-02021-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023]
Abstract
Although open-label observations report a positive effect of cannabinoids on non-motor symptoms (NMS) in Parkinson's disease (PD) patients, these effects remain to be investigated in a controlled trial for a broader use in NMS in PD patients. Therefore, we decided to design a proof-of-concept study to assess the synthetic cannabinoid nabilone for the treatment of NMS. We hypothesize that nabilone will improve NMS in patients with PD and have a favorable safety profile. The NMS-Nab Study is as a mono-centric phase II, randomized, placebo-controlled, double-blind, parallel-group, enriched enrollment withdrawal study. The primary efficacy criterion will be the change in Movement Disorders Society-Unified Parkinson's Disease-Rating Scale Part I score between baseline (i.e. randomization) and week 4. A total of 38 patients will have 80% power to detect a probability of 0.231 that an observation in the treatment group is less than an observation in the placebo group using a Wilcoxon rank-sum test with a 0.050 two-sided significance level assuming a true difference of 2.5 points between nabilone and placebo in the primary outcome measure and a standard deviation of the change of 2.4 points. The reduction of harm through an ineffective treatment, the possibility of individualized dosing, the reduction of sample size, and the possible evaluation of the influence of the placebo effect on efficacy outcomes justify this design for a single-centered placebo-controlled investigator-initiated trial of nabilone. This study should be the basis for further evaluations of long-term efficacy and safety of the use of cannabinoids in PD patients.
Collapse
Affiliation(s)
- Marina Peball
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Mario Werkmann
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Philipp Ellmerer
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Raphaela Stolz
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Dora Valent
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Hans-Günther Knaus
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Peter-Mayr Straße 1, 6020, Innsbruck, Austria
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics, Innsbruck Medical University, Schöpfstraße 41/1, 6020, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
23
|
Salaga M, Binienda A, Piscitelli F, Mokrowiecka A, Cygankiewicz AI, Verde R, Malecka-Panas E, Kordek R, Krajewska WM, Di Marzo V, Fichna J. Systemic administration of serotonin exacerbates abdominal pain and colitis via interaction with the endocannabinoid system. Biochem Pharmacol 2019; 161:37-51. [DOI: 10.1016/j.bcp.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
|
24
|
Rodriguez MFR, Khenti A. PERCEPTION OF HARM AND BENEFITS OF MARIJUANA AND ITS RELATIONSHIP WITH THE INTENTION OF USE AND CONSUMPTION IN COLOMBIAN ADOLESCENTS. TEXTO & CONTEXTO ENFERMAGEM 2019. [DOI: 10.1590/1980-265x-tce-cicad-15-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Objective: analyze the relationship between the perception of harm and benefits associated with the use of marijuana and its relation to real consumption, as well as the intention to use it in a context of regulatory changes, in young students, between 15 and 17 years old, of a public school in Bogota Colombia. Method: a quantitative, cross-sectional survey was carried out. 268 students in grade 9th to 11th from a public school in the city of Bogotá, Colombia participated of the study. Results: results reveled that there is an association between the perception of benefits and the consumption of marijuana. In addition, how a low perception of risk is associated with an intention to use in a context of legalization. Conclusion: this is one of the first studies in Colombia which explores the intention to use (at age 18) in a context of regulatory changes, as well as the attitude of young people towards the legalization of marijuana for medicinal and recreational use.
Collapse
Affiliation(s)
| | - Akwatu Khenti
- University of Toronto, Canada; Centre for Addiction and Mental Health, Canada
| |
Collapse
|
25
|
Conceição MIG, Rodriguez MFR, Henriquez PC, Modeste N, Wynter J, Gray-Phillip G, Tavarez GG, Husaini DC, Tapia MGM, Fierro KR, Hamilton H, Khenti A, Hynes M, Ventura CA, Brands B. PERCEPTION OF HARM AND BENEFITS OF CANNABIS USE AMONG ADOLESCENTS FROM LATIN AMERICA AND CARIBE. TEXTO & CONTEXTO ENFERMAGEM 2019. [DOI: 10.1590/1980-265x-tce-cicad-12-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective: to investigate the perception of harms and benefits associated with cannabis use among adolescents and how regulatory changes might affect their intention to use marijuana. Method: this multi-centric cross-sectional survey study. participants included 2717 students aged 15-17 from 10 cities in Belize, Brazil, Chile, Colombia, Dominican Republic, Jamaica, Mexico, St. Kitts and Nevis, and Trinidad and Tobago. Results: an average lifetime prevalence of cannabis use of 30.6% (25.8% past year, 15.8% past 30 days). Most participants reported that their closest friends use cannabis (60%); many (55%) stated that they would not use marijuana, even if it were legally available. Conclusion: statistics revealed that a strong perception of benefits, a low perception of risk, and friends’ use of cannabis were associated with individual use as well as intention to use within a hypothetical context of regulatory change.
Collapse
Affiliation(s)
| | | | | | - Narsha Modeste
- University of the Southern Caribbean, Trinidad and Tobago
| | | | | | | | | | | | | | | | - Akwatu Khenti
- University of Toronto, Canada; Centre for Addiction and Mental Health, Canada
| | - Marya Hynes
- Comisión Interamericana para el Control del Abuso de Drogas, Estados Unidos
| | | | - Bruna Brands
- University of Toronto, Canada; Centre for Addiction and Mental Health, Canada
| |
Collapse
|
26
|
Rodríguez-Rodríguez IA, Fernandez-Quiroga KA, Morales-San Claudio PD, Balderas-Rentería I, González-Santiago O. No association between G1359A CB1 polymorphisms and pain in young northeastern Mexicans. Pharmacogenomics 2018; 19:1251-1258. [PMID: 30371142 DOI: 10.2217/pgs-2018-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Recent studies show an association between the endocannabinoid system and pain. In this study, we analyzed the association between two CNR1 gene polymorphisms and pain perception in a northeast Mexican population. METHODS Genotypic and allelic frequencies were obtained for both polymorphisms. Pain threshold, tolerance and perception were measured using the cold pressor task. RESULTS No significant association between the polymorphisms and pain perception was found (p > 0.05). CONCLUSION Genotypic and allelic frequencies for both polymorphisms were reported for the first time in a Mexican population; however, our results suggest that there is not a significant association between these and pain.
Collapse
Affiliation(s)
- Ismael A Rodríguez-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo Leon, CP 66455, Mexico
| | - Karla A Fernandez-Quiroga
- Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo Leon, CP 66455, Mexico
| | - Pilar Dc Morales-San Claudio
- Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo Leon, CP 66455, Mexico
| | - Isaías Balderas-Rentería
- Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo Leon, CP 66455, Mexico
| | - Omar González-Santiago
- Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo Leon, CP 66455, Mexico
| |
Collapse
|
27
|
Harris HM, Gul W, ElSohly MA, Sufka KJ. Effects of Cannabidiol and a Novel Cannabidiol Analog against Tactile Allodynia in a Murine Model of Cisplatin-Induced Neuropathy: Enhanced Effects of Sub-Analgesic Doses of Morphine. Med Cannabis Cannabinoids 2018; 1:54-59. [PMID: 34676322 DOI: 10.1159/000489077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 11/19/2022] Open
Abstract
Objective This research examined whether a cannabidiol (CBD)-opioid pharmacotherapy could attenuate cisplatin-induced tactile allodynia. Methods Mice (C57BL/6) were given 6 doses of 2.3 mg/kg cisplatin intraperitoneally (IP) on alternating days to induce tactile allodynia as quantified using an electric von Frey (eVF). Test groups in Experiment 1 received either vehicle, 0.1 or 2.5 mg/kg morphine, 1.0 or 2.0 CBD, or the 2 drugs in combination. Test groups in Experiment 2 received either vehicle, 0.1 or 2.5 mg/kg morphine, 1.0, 2.0, 3.0, or 4.0 mg/kg NB2111 (a long-acting CBD analogue), or the 2 drugs in combination. Drugs were administered IP 45 min before eVF assessment. Results Cisplatin produced tactile allodynia that was attenuated by 2.5 mg/kg morphine. Both CBD and NB2111 produced dose-dependent attenuation of tactile allodynia. CBD and NB2111, given in combination with sub-analgesic doses of morphine, produced attenuation of tactile allodynia equivalent to 2.5 mg/kg morphine. Conclusions While both CBD and NB2111, either alone or in combination with sub-analgesic doses of opioids, exhibited analgesic effects, NB2111 could be capable of superior analgesia over time by virtue of enhanced pharmacokinetics.
Collapse
Affiliation(s)
- Hannah Marie Harris
- Department of Psychology, University of Mississippi, Oxford, Mississippi, USA
| | - Waseem Gul
- National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi, USA.,Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, Oxford, Mississippi, USA.,National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi, USA
| |
Collapse
|
28
|
Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204:20-45. [PMID: 29729263 DOI: 10.1016/j.lfs.2018.04.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF2α-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.
Collapse
|
29
|
Greco R, Demartini C, Zanaboni AM, Piomelli D, Tassorelli C. Endocannabinoid System and Migraine Pain: An Update. Front Neurosci 2018; 12:172. [PMID: 29615860 PMCID: PMC5867306 DOI: 10.3389/fnins.2018.00172] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS. Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache. Clinical observations, in particular, show that the levels of anandamide (AEA)—one of the two primary endocannabinoid lipids—are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord. AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors. Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna M Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Tenci B, Di Cesare Mannelli L, Maresca M, Micheli L, Pieraccini G, Mulinacci N, Ghelardini C. Effects of a water extract of Lepidium meyenii root in different models of persistent pain in rats. ACTA ACUST UNITED AC 2018; 72:449-457. [PMID: 28822987 DOI: 10.1515/znc-2016-0251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
Abstract
Lepidium meyenii (Walp.), commonly called maca, is an Andean crop belonging to the Brassicaceae family. Maca hypocotils are habitually consumed as customary food as well as traditional remedies for pathological conditions such as infertility. Moreover, the characterization of maca extracts revealed the presence of compounds that are able to modulate the nervous system. Aimed to evaluate the efficacy of L. meyenii in persistent pain, the present study analyzed the effects of a commercial root extract from maca in different animal models reproducing the most common causes of chronic painful pathologies. A qualitative characterization of this commercial extract by high performance liquid chromatography-mass spectrometry and tandem mass spectrometry analyses allowed us to confirm the presence of some macamides known as bioactive constituents of this root and the absence of the main aromatic glucosinolates. The acute oral administration of maca extract is able to reduce mechanical hypersensitivity and postural unbalance induced by the intra-articular injection of monoiodoacetate and the chronic-constriction injury of the sciatic nerve. Furthermore, L. meyenii extract reverts pain threshold alterations evoked by oxaliplatin and paclitaxel. A good safety profile in mice and rats was shown. In conclusion, the present maca extract could be considered as a therapeutic opportunity to relieve articular and neuropathic pain.
Collapse
|
31
|
Jee Kim M, Tanioka M, Woo Um S, Hong SK, Hwan Lee B. Analgesic effects of FAAH inhibitor in the insular cortex of nerve-injured rats. Mol Pain 2018; 14:1744806918814345. [PMID: 30380982 PMCID: PMC6247483 DOI: 10.1177/1744806918814345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/10/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023] Open
Abstract
The insular cortex is an important region of brain involved in the processing of pain and emotion. Recent studies indicate that lesions in the insular cortex induce pain asymbolia and reverse neuropathic pain. Endogenous cannabinoids (endocannabinoids), which have been shown to attenuate pain, are simultaneously degraded by fatty acid amide hydrolase (FAAH) that halts the mechanisms of action. Selective inhibitor URB597 suppresses FAAH activity by conserving endocannabinoids, which reduces pain. The present study examined the analgesic effects of URB597 treatment in the insular cortex of an animal model of neuropathic pain. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to nerve injury and cannula implantation. On postoperative day 14, rodents received microinjection of URB597 into the insular cortex. In order to verify the analgesic mechanisms of URB597, cannabinoid 1 receptor (CB1R) antagonist AM251, peroxisome proliferator-activated receptor alpha (PPAR alpha) antagonist GW6471, and transient receptor potential vanilloid 1 (TRPV1) antagonist Iodoresiniferatoxin (I-RTX) were microinjected 15 min prior to URB597 injection. Changes in mechanical allodynia were measured using the von-Frey test. Expressions of CB1R, N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), and TRPV1 significantly increased in the neuropathic pain group compared to the sham-operated control group. Mechanical threshold and expression of NAPE-PLD significantly increased in groups treated with 2 nM and 4 nM URB597 compared with the vehicle-injected group. Blockages of CB1R and PPAR alpha diminished the analgesic effects of URB597. Inhibition of TRPV1 did not effectively reduce the effects of URB597 but attenuated expression of NAPE-PLD compared with the URB597-injected group. In addition, optical imaging demonstrated that neuronal activity of the insular cortex was reduced following URB597 treatment. Our results suggest that microinjection of FAAH inhibitor into the insular cortex causes analgesic effects by decreasing neural excitability and increasing signals related to the endogenous cannabinoid pathway in the insular cortex.
Collapse
Affiliation(s)
- Min Jee Kim
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Motomasa Tanioka
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Woo Um
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Karp Hong
- Division of Bio and Health Sciences, Mokwon University, Daejeon, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Kandasamy R, Dawson CT, Craft RM, Morgan MM. Anti-migraine effect of ∆ 9-tetrahydrocannabinol in the female rat. Eur J Pharmacol 2017; 818:271-277. [PMID: 29111112 DOI: 10.1016/j.ejphar.2017.10.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022]
Abstract
Current anti-migraine treatments have limited efficacy and many side effects. Although anecdotal evidence suggests that marijuana is useful for migraine, this hypothesis has not been tested in a controlled experiment. Thus, the present study tested whether administration of ∆9-tetrahydrocannabinol (THC) produces anti-migraine effects in the female rat. Microinjection of the TRPA1 agonist allyl isothiocyanate (AITC) onto the dura mater produced migraine-like pain for 3h as measured by depression of home cage wheel running. Concurrent systemic administration of 0.32 but not 0.1mg/kg of THC prevented AITC-induced depression of wheel running. However, 0.32mg/kg was ineffective when administered 90min after AITC. Administration of a higher dose of THC (1.0mg/kg) depressed wheel running whether rats were injected with AITC or not. Administration of a CB1, but not a CB2, receptor antagonist attenuated the anti-migraine effect of THC. These data suggest that: 1) THC reduces migraine-like pain when administered at the right dose (0.32mg/kg) and time (immediately after AITC); 2) THC's anti-migraine effect is mediated by CB1 receptors; and 3) Wheel running is an effective method to assess migraine treatments because only treatments producing antinociception without disruptive side effects will restore normal activity. These findings support anecdotal evidence for the use of cannabinoids as a treatment for migraine in humans and implicate the CB1 receptor as a therapeutic target for migraine.
Collapse
Affiliation(s)
- Ram Kandasamy
- Graduate Program in Neuroscience, Washington State University, Pullman, WA, USA.
| | - Cole T Dawson
- Department of Psychology, Washington State University Vancouver, Vancouver, WA, USA
| | - Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, WA, USA; Translational Addiction Research Center, Washington State University, Pullman, WA, USA
| | - Michael M Morgan
- Graduate Program in Neuroscience, Washington State University, Pullman, WA, USA; Department of Psychology, Washington State University Vancouver, Vancouver, WA, USA; Translational Addiction Research Center, Washington State University, Pullman, WA, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Physicians of all disciplines must rapidly adjust their clinical practices following the expansion of marijuana legalization across the country. Organ transplantation teams are uniquely struggling in this gray zone with eight states having passed laws explicitly banning the denial of transplant listing based on a patient's use of medical marijuana. In this review, we examine the clinical evidence of marijuana use in transplant patients to enable psychiatric providers to meaningfully contribute to the relevant medical and psychiatric aspects of this issue in a unique patient population. RECENT FINDINGS There is no consensus among experts regarding marijuana use in transplantation patients. There are extant case reports of post-transplant complications attributed to marijuana use including membranous glomerulonephritis, ventricular tachycardia, and tacrolimus toxicity. However, recent studies suggest that the overall survival rates in kidney, liver, lung, and heart transplant patients using marijuana are equivalent to non-users. Transplant teams should not de facto exclude marijuana users from transplant listing but instead holistically evaluate a patient's candidacy, integrating meaningful medical, psychiatric, and social variables into the complex decision-making process. Psychiatric providers can play a key role in this process. Appropriate stewardship over donor organs, a limited and precious resource, will require a balance of high-clinical standards with inclusive efforts to treat as many patients as possible.
Collapse
Affiliation(s)
- Harinder Singh Rai
- University of Michigan Department of Psychiatry, 9D 9816 University Hospital, 1500 E. Medical Center Dr. SPC 5118, Ann Arbor, MI, 48109-5118, USA
| | - Gerald Scott Winder
- University of Michigan Department of Psychiatry, 9D 9816 University Hospital, 1500 E. Medical Center Dr. SPC 5118, Ann Arbor, MI, 48109-5118, USA.
| |
Collapse
|
34
|
Horst A, de Souza JA, Santos MCQ, Riffel APK, Kolberg C, Partata WA. Effects of N-acetylcysteine on spinal cord oxidative stress biomarkers in rats with neuropathic pain. ACTA ACUST UNITED AC 2017; 50:e6533. [PMID: 29069230 PMCID: PMC5649872 DOI: 10.1590/1414-431x20176533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
N-acetylcysteine (NAC) inhibits nociceptive transmission. This effect has been associated partly with its antioxidant properties. However, the effect of NAC on the levels of lipid hydroperoxides (a pro-oxidant marker), content of ascorbic acid (a key antioxidant molecule of nervous tissue) and total antioxidant capacity (TAC) is unknown. Thus, our study assessed these parameters in the lumbosacral spinal cord of rats with chronic constriction injury (CCI) of the sciatic nerve, one of the most commonly employed animal models of neuropathic pain. Thirty-six male Wistar rats weighing 200–300 g were equally divided into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve). All rats received intraperitoneal injections of NAC (150 mg·kg−1·day−1) or saline for 1, 3, or 7 days. Rats were killed 1, 3, and 7 days after surgery. NAC treatment prevented the CCI-induced increase in lipid hydroperoxide levels only at day 1, although the amount was higher than that found in naive rats. NAC treatment also prevented the CCI-induced increase in ascorbic acid content, which occurred at days 1, 3, and 7. No significant change was found in TAC with NAC treatment. The changes observed here may be related to the antinociceptive effect of NAC because modulation of oxidative-stress parameters seemed to help normalize the spinal cord oxidative status altered by pain.
Collapse
Affiliation(s)
- A Horst
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Univates, Lajeado, RS, Brasil
| | - J A de Souza
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M C Q Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A P K Riffel
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - C Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - W A Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
35
|
Sadria G, Hosseini M, Rezasoltani A, Akbarzadeh Bagheban A, Davari A, Seifolahi A. A comparison of the effect of the active release and muscle energy techniques on the latent trigger points of the upper trapezius. J Bodyw Mov Ther 2017; 21:920-925. [DOI: 10.1016/j.jbmt.2016.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/12/2016] [Accepted: 10/12/2016] [Indexed: 01/27/2023]
|
36
|
Continuous Intrathecal Infusion of Cannabinoid Receptor Agonists Attenuates Nerve Ligation–Induced Pain in Rats. Reg Anesth Pain Med 2017; 42:499-506. [DOI: 10.1097/aap.0000000000000601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Schlabritz-Loutsevitch N, German N, Ventolini G, Larumbe E, Samson J. Fetal Syndrome of Endocannabinoid Deficiency (FSECD) In Maternal Obesity. Med Hypotheses 2016; 96:35-38. [PMID: 27959272 DOI: 10.1016/j.mehy.2016.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
Abstract
The theory of a fetal origin of adult diseases links many pathological conditions to very early life events and is known as a "developmental programming" phenomenon. The mechanisms of this phenomenon are not quite understood and have been explained by inflammation, stress, etc. In particular the epidemic of obesity, with more than 64% of women being overweight or obese, has been associated with conditions in later life such as mental disorders, diabetes, asthma, and irritable bowel syndrome. Interestingly, these diseases were classified a decade ago as Clinical Syndrome of Endocannabinoid Deficiency (CECD), which was first described by Russo in 2004. Cannabinoids have been used for the treatment of chronic pain for millenniums and act through the mechanism of "kick-starting" the components of the endogenous cannabinoid system (ECS). ECS is a pharmacological target for the treatment of obesity, inflammation, cardiovascular and neuronal damage, and pain. We hypothesize that the deteriorating effect of maternal obesity on offspring health is explained by the mechanism of Fetal Syndrome of Endocannabinoid Deficiency (FSECD), which accompanies maternal obesity. Here we provide support for this hypothesis.
Collapse
Affiliation(s)
- Natalia Schlabritz-Loutsevitch
- Department of Obstetrics and Gynecology, College of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA.
| | - Nadezhda German
- Department of Pharmacology, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Gary Ventolini
- Department of Obstetrics and Gynecology, College of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA
| | - Eneko Larumbe
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jacques Samson
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
38
|
Toguri JT, Caldwell M, Kelly MEM. Turning Down the Thermostat: Modulating the Endocannabinoid System in Ocular Inflammation and Pain. Front Pharmacol 2016; 7:304. [PMID: 27695415 PMCID: PMC5024674 DOI: 10.3389/fphar.2016.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid system (ECS) has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues. The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states. Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited. Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time. This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis. Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s), together with their potential application for the treatment of ocular inflammation and pain.
Collapse
Affiliation(s)
- James T. Toguri
- Department of Pharmacology, Dalhousie University, HalifaxNS, Canada
| | - Meggie Caldwell
- Department of Pharmacology, Dalhousie University, HalifaxNS, Canada
| | - Melanie E. M. Kelly
- Department of Pharmacology, Dalhousie University, HalifaxNS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, HalifaxNS, Canada
- Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, HalifaxNS, Canada
| |
Collapse
|
39
|
Cannabinoid Ligands and Alcohol Addiction: A Promising Therapeutic Tool or a Humbug? Neurotox Res 2015; 29:173-96. [PMID: 26353844 PMCID: PMC4701763 DOI: 10.1007/s12640-015-9555-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Abstract
The vast therapeutic potential of cannabinoids of both synthetic and plant-derived origins currently makes these compounds the focus of a growing interest. Although cannabinoids are still illicit drugs, their possible clinical usefulness, including treatment of acute or neuropathic pain, have been suggested by several studies. In addition, some observations indicate that cannabinoid receptor antagonists may be useful for the treatment of alcohol dependence and addiction, which is a major health concern worldwide. While the synergism between alcohol and cannabinoid agonists (in various forms) creates undesirable side effects when the two are consumed together, the administration of CB1 antagonists leads to a significant reduction in alcohol consumption. Furthermore, cannabinoid antagonists also mitigate alcohol withdrawal symptoms. Herein, we present an overview of studies focusing on the effects of cannabinoid ligands (agonists and antagonists) during acute or chronic consumption of ethanol.
Collapse
|
40
|
Baron EP. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It's Been …. Headache 2015; 55:885-916. [PMID: 26015168 DOI: 10.1111/head.12570] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of cannabis, or marijuana, for medicinal purposes is deeply rooted though history, dating back to ancient times. It once held a prominent position in the history of medicine, recommended by many eminent physicians for numerous diseases, particularly headache and migraine. Through the decades, this plant has taken a fascinating journey from a legal and frequently prescribed status to illegal, driven by political and social factors rather than by science. However, with an abundance of growing support for its multitude of medicinal uses, the misguided stigma of cannabis is fading, and there has been a dramatic push for legalizing medicinal cannabis and research. Almost half of the United States has now legalized medicinal cannabis, several states have legalized recreational use, and others have legalized cannabidiol-only use, which is one of many therapeutic cannabinoids extracted from cannabis. Physicians need to be educated on the history, pharmacology, clinical indications, and proper clinical use of cannabis, as patients will inevitably inquire about it for many diseases, including chronic pain and headache disorders for which there is some intriguing supportive evidence. OBJECTIVE To review the history of medicinal cannabis use, discuss the pharmacology and physiology of the endocannabinoid system and cannabis-derived cannabinoids, perform a comprehensive literature review of the clinical uses of medicinal cannabis and cannabinoids with a focus on migraine and other headache disorders, and outline general clinical practice guidelines. CONCLUSION The literature suggests that the medicinal use of cannabis may have a therapeutic role for a multitude of diseases, particularly chronic pain disorders including headache. Supporting literature suggests a role for medicinal cannabis and cannabinoids in several types of headache disorders including migraine and cluster headache, although it is primarily limited to case based, anecdotal, or laboratory-based scientific research. Cannabis contains an extensive number of pharmacological and biochemical compounds, of which only a minority are understood, so many potential therapeutic uses likely remain undiscovered. Cannabinoids appear to modulate and interact at many pathways inherent to migraine, triptan mechanisms ofaction, and opiate pathways, suggesting potential synergistic or similar benefits. Modulation of the endocannabinoid system through agonism or antagonism of its receptors, targeting its metabolic pathways, or combining cannabinoids with other analgesics for synergistic effects, may provide the foundation for many new classes of medications. Despite the limited evidence and research suggesting a role for cannabis and cannabinoids in some headache disorders, randomized clinical trials are lacking and necessary for confirmation and further evaluation.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Headache Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
41
|
Yee JR, Kenkel W, Caccaviello JC, Gamber K, Simmons P, Nedelman M, Kulkarni P, Ferris CF. Identifying the integrated neural networks involved in capsaicin-induced pain using fMRI in awake TRPV1 knockout and wild-type rats. Front Syst Neurosci 2015; 9:15. [PMID: 25745388 PMCID: PMC4333803 DOI: 10.3389/fnsys.2015.00015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/31/2015] [Indexed: 12/18/2022] Open
Abstract
In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1). Capsaicin is an exogenous ligand for the TRPV1 receptor, and in wild-type rats, activated the putative pain neural circuit. In addition, capsaicin-treated wild-type rats exhibited activation in brain regions comprising the Papez circuit and habenular system, systems that play important roles in the integration of emotional information, and learning and memory of aversive information, respectively. As expected, capsaicin administration to TRPV1-KO rats failed to elicit the robust BOLD activation pattern observed in wild-type controls. However, the intradermal injection of formalin elicited a significant activation of the putative pain pathway as represented by such areas as the anterior cingulate, somatosensory cortex, parabrachial nucleus, and periaqueductal gray. Notably, comparison of neural responses to capsaicin in wild-type vs. knock-out rats uncovered evidence that capsaicin may function in an antinociceptive capacity independent of TRPV1 signaling. Our data suggest that neuroimaging of pain in awake, conscious animals has the potential to inform the neurobiological basis of full and integrated perceptions of pain.
Collapse
Affiliation(s)
- Jason R Yee
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| | - William Kenkel
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| | - John C Caccaviello
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| | | | | | | | - Praveen Kulkarni
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| |
Collapse
|
42
|
The combined inhibitory effect of the adenosine A1 and cannabinoid CB1 receptors on cAMP accumulation in the hippocampus is additive and independent of A1 receptor desensitization. BIOMED RESEARCH INTERNATIONAL 2015; 2015:872684. [PMID: 25667928 PMCID: PMC4312621 DOI: 10.1155/2015/872684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/05/2014] [Accepted: 12/21/2014] [Indexed: 12/11/2022]
Abstract
Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3–30 μM) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6 ± 2.7 μM and an Emax of 31% ± 2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10–150 nM), an EC50 of 35 ± 19 nM, and an Emax of 29% ± 5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM) and CPA (100 nM) on cAMP accumulation was 41% ± 6% (n = 4), which did not differ (P > 0.7) from the sum of the individual effects of each agonist (43% ± 8%) but was different (P < 0.05) from the effects of CPA or WIN55212-2 alone. Preincubation with CPA (100 nM) for 95 min caused desensitization of adenosine A1 activity, which did not modify the effect of WIN55212-2 (30 μM) on cAMP accumulation. In conclusion, the combined effect of CB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.
Collapse
|
43
|
|
44
|
Yuan HB, Ho ST. Cannabis in pain medicine still has a long way to go. ACTA ANAESTHESIOLOGICA TAIWANICA : OFFICIAL JOURNAL OF THE TAIWAN SOCIETY OF ANESTHESIOLOGISTS 2013; 51:139-140. [PMID: 24529667 DOI: 10.1016/j.aat.2013.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Hui-Bih Yuan
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shung-Tai Ho
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|