1
|
A magnetostrictive self-powered biosensor based on Au-BaTiO3-FeGa & PDMS. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Bai Y, Wang Y, Li Q, Dou L, Liu M, Shao S, Zhu J, Shen J, Wang Z, Wen K, Yu W. Binding affinity-guided design of a highly sensitive noncompetitive immunoassay for small molecule detection. Food Chem 2021; 351:129270. [PMID: 33640770 DOI: 10.1016/j.foodchem.2021.129270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
Small molecules are immunochemically classified as hapten that lacking of at least two epitopes, usually using competitive format for establishing immunoassays. However, theoretically, noncompetitive immunoassay format is more sensitive and has a wider analytical range. In the present study, a novel hapten of halofuginone was synthesized and used to produce a monoclonal antibody (mAb). By analyzing the binding kinetics, we found that the affinity of analyte-enzyme to mAb was much greater than that of analyte, which could result in a low sensitivity of competitive assay format. Based on this, we established a novel noncompetitive immunoassay by using a replacement approach. The noncompetitive format has obvious advantages in sensitivity and analytical range, which promoted approximately 3.5- and 5-fold, respectively, compared to the competitive immunoassay. Ultimately, the newly designed noncompetitive immunoassay in this work will provide insights as well as alternative method to traditional small molecule competitive assays.
Collapse
Affiliation(s)
- Yuchen Bai
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Yahui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China; Agricultural Information Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Qiang Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Jianyu Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Li Z, Barnych B, Huo J, Wan D, Vasylieva N, Xu J, Li P, Liu B, Zhang C, Hammock BD. Investigation of the Small Size of Nanobodies for a Sensitive Fluorescence Polarization Immunoassay for Small Molecules: 3-Phenoxybenzoic Acid, an Exposure Biomarker of Pyrethroid Insecticides as a Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11536-11541. [PMID: 31589045 PMCID: PMC7134064 DOI: 10.1021/acs.jafc.9b04621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Limited reports on the use of nanobodies (Nbs) in fluorescence polarization immunoassay (FPIA) aroused us to explore if the small size of Nbs is a drawback for the development of sensitive FPIA to small molecular compounds, particularly since FPIA is a technology strongly dependent on molecular weight. In the present work, three different molecular weight Nbs against 3-phenoxybenzoic acid (3-PBA), an exposure biomarker of pyrethroid insecticides, including bare Nbs (15 kDa), Nbs-Avidin (Nbs-AV, 60 kDa), and Nbs-Alkaline phosphatase (Nbs-AP, 130 kDa) were specifically generated to cover distinct regions on the polarization and molecular weight relationship curve for a fluorescein tracer. In competitive FPIA, similar half-maximal inhibitory concentrations (IC50) of 3-PBA of 16.4, 12.2, and 14.8 ng mL-1 were obtained for Nbs, Nbs-AV, and Nbs-AP, respectively, indicating that the size of Nbs in the range tested had no significant effect on the sensitivity of the resulting competitive FPIA. An IC50 of 20.2 ng mL-1 for an anti-3-PBA polyconal antibody based FPIA further demonstrated the performance of Nbs, which was comparable to that of traditional antibodies in FPIA. Spike-recovery studies showed good and reproducible recovery of 3-PBA in urine samples, demonstrating the applicability of Nb-based FPIA. Overall, our results show that Nb-based FPIA achieves sensitivity levels of FPIA based on conventional antibodies and further indicate that Nb absolutely meets the sensitivity requirement of FPIA.
Collapse
Affiliation(s)
- Yulong Wang
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Zhenfeng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Jingqian Huo
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, China
| | - Debin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Junli Xu
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Pan Li
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Beibei Liu
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Cunzheng Zhang
- Institute of Food safety and nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Corresponding Author. &
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- Corresponding Author. &
| |
Collapse
|
4
|
Oda M, Azuma T. Affinity maturation of anti-(4-hydroxy-3-nitrophenyl)acetyl antibodies accompanies a modulation of antigen specificity. Mol Immunol 2015; 70:8-12. [PMID: 26688069 DOI: 10.1016/j.molimm.2015.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies bearing λ1 chains are known to possess fine specificity, referred to as heterocliticity, which causes these antibodies to bind to hapten analogues such as (4-hydroxy-3-iodo-5-nitrophenyl)acetyl (NIP) and (4-hydroxy-3,5-dinitrophenyl)acetyl (NNP) with higher affinity than to the autologous hapten, NP. They also show preferential binding to the phenolate form of hapten than to the phenolic form. We address here the question of whether affinity maturation accompanies in the fine specificity of these antibodies by analyzing the interaction between NP1-, NIP1-, or NNP1-hen egg lysozyme and anti-NP antibodies that possess different association constants to NP using a surface plasmon resonance biosensor. We measured interactions at various pH values and found that heterocliticity as well as preferential binding to the phenolate form of hapten were most prominent in a germline antibody having immature affinity and that fine specificity becomes less evident, i.e., anti-NP antibodies become more specific to the immunizing antigen, NP during the process of affinity maturation.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan.
| | - Takachika Azuma
- Research Institute for Biological Sciences (RIBS), Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| |
Collapse
|
5
|
Eisen HN. Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. Cancer Immunol Res 2014; 2:381-92. [PMID: 24795350 DOI: 10.1158/2326-6066.cir-14-0029] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antibodies produced initially in response to most antigens are high molecular weight (MW) immunoglobulins (IgM) with low affinity for the antigen, while the antibodies produced later are lower MW classes (e.g., IgG and IgA) with, on average, orders of magnitude higher affinity for that antigen. These changes, often termed affinity maturation, take place largely in small B-cell clusters (germinal center; GC) in lymphoid tissues in which proliferating antigen-stimulated B cells express the highly mutagenic cytidine deaminase that mediates immunoglobulin class-switching and sequence diversification of the immunoglobulin variable domains of antigen-binding receptors on B cells (BCR). Of the large library of BCR-mutated B cells thus rapidly generated, a small minority with affinity-enhancing mutations are selected to survive and differentiate into long-lived antibody-secreting plasma cells and memory B cells. BCRs are also endocytic receptors; they internalize and cleave BCR-bound antigen, yielding peptide-MHC complexes that are recognized by follicular helper T cells. Imperfect correlation between BCR affinity for antigen and cognate T-cell engagement may account for the increasing affinity heterogeneity that accompanies the increasing average affinity of antibodies. Conservation of mechanisms underlying mutation and selection of high-affinity antibodies over the ≈200 million years of evolution separating bird and mammal lineages points to the crucial role of antibody affinity enhancement in adaptive immunity.
Collapse
Affiliation(s)
- Herman N Eisen
- Authors' Affiliations: Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| |
Collapse
|
6
|
Wang J, Jiang P, Qiu L, Wang C, Xia J. Resolving antibody–peptide complexes with different ligand stoichiometries reveals a marked affinity enhancement through multivalency. Talanta 2013; 115:394-400. [DOI: 10.1016/j.talanta.2013.05.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/25/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
|
7
|
Haselberg R, Harmsen S, Dolman MEM, de Jong GJ, Kok RJ, Somsen GW. Characterization of drug-lysozyme conjugates by sheathless capillary electrophoresis-time-of-flight mass spectrometry. Anal Chim Acta 2011; 698:77-83. [PMID: 21645662 DOI: 10.1016/j.aca.2011.04.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 12/27/2022]
Abstract
Drug-protein conjugates have been widely used for the cell-specific targeting of drugs to cells that can bind and internalize the proteinaceous carrier. For renal drug targeting, lysozyme (LZM) can be used as an effective carrier that accumulates in proximal tubular cells. We used capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF-MS) for the characterization of different drug-LZM conjugates. A recently developed prototype porous tip sprayer was employed for sheathless electrospray ionization (ESI) CE-MS interfacing. In order to prevent adsorption of LZM conjugates to the capillary wall, a positively charged polyethylenimine capillary coating was used in combination with a low-pH background electrolyte. Drug-LZM products had been prepared by first coupling BOC-l-methionine hydroxysuccinimide ester (BOCmet) to lysine residues of LZM followed by conjugation with the kinase inhibitors LY364947, erlotinib, or Y27632 via a platinum(II)-based linker. CE-TOF-MS of each preparation showed narrow symmetrical peaks for the various reaction products demonstrating that drug-LZM conjugates remained stable during the CE analysis and subsequent ESI. Components observed in the drug-LZM products were assigned based on their relative migration times and on molecular mass as obtained by TOF-MS. The TOF-MS data obtained for the individual components revealed that the preparations contained LZM carrying one or two drug molecules, next to unmodified and BOCmet-modified LZM. Based on relative peak areas (assuming an equimolar response for each component) a quantitative conjugate profile could be derived for every preparation leading to drug loading values of 0.4-0.6 mol drug per mole protein.
Collapse
Affiliation(s)
- R Haselberg
- Biomolecular Analysis, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Nishimura M, Murakami A, Hara Y, Azuma T. Characterization of memory B cells responsible for affinity maturation of anti- (4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies. Int Immunol 2011; 23:271-85. [PMID: 21421736 DOI: 10.1093/intimm/dxr002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We searched for memory B cells responsible for high-affinity anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibody production by C57BL/6 mice immunized with NP-chicken γ-globulin (CGG), using flow cytometry. We first prepared transfectants expressing B-cell antigen receptor (BCR) of known affinity as a memory B-cell model as well as NP-allophycocyanin (APC) of different NP valences, NP(lo), NP(med) and NP(hi). We then used the latter as probes capable of distinguishing BCR affinities: NP(lo)-APC bound to BCRs with an affinity higher than 3.4 × 10(6) M(-1), while NP(med)-APC bound to those with a higher than germline affinity. B cells capable of binding to NP(lo)-APC appeared in spleens on day 14 post-immunization, and harbored Tyr95 (Tyr95 type) as well as a mutation from Trp33 to Leu. B cells with BCRs harboring Gly95 (Gly95 type) appeared only in the NP(med)-APC-binding fraction on day 56 and in the NP(lo)-APC-binding fraction on day 77, indicating that this long duration was necessary for Gly95 type B cells to acquire high affinity and to become a member of the group of memory B cells with high affinity. Administration of NP-CGG on day 77 caused little change in the proportion of the Gly95 type in NP(lo)-APC-binding B cells in the following 2 weeks but brought about an increase in the number of high-affinity antibody-secreting cells (ASC), suggesting that the memory B-cell compartment established was maintained at a later stage and supplied high-affinity ASCs. The relationship between these Gly95 type memory B cells and ASCs is discussed.
Collapse
Affiliation(s)
- Miyuki Nishimura
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | |
Collapse
|
9
|
Oda M, Kitai A, Murakami A, Nishimura M, Ohkuri T, Abe Y, Ueda T, Nakamura H, Azuma T. Evaluation of the conformational equilibrium of reduced hen egg lysozyme by antibodies to the native form. Arch Biochem Biophys 2010; 494:145-50. [DOI: 10.1016/j.abb.2009.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/26/2022]
|
10
|
Effects of antibody affinity and antigen valence on molecular forms of immune complexes. Mol Immunol 2009; 47:357-64. [PMID: 19800690 DOI: 10.1016/j.molimm.2009.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/03/2009] [Indexed: 11/20/2022]
Abstract
The effect of antibody affinity on molecular forms of immune complexes was investigated by measuring antigen-antibody interactions using surface plasmon resonance (SPR), electrospray ionization time-of-flight mass spectrometry under non-denaturing conditions (MS), analytical ultracentrifugation (AUC), and transmission electron microscopy (TEM). (4-Hydroxy-3-nitrophenyl)acetic acid (NP) of different valences was conjugated to bovine serum albumin (BSA) and these conjugates were used as antigens. In the interaction between N1G9, a low affinity antibody, and NP(7)-BSA, a 1:1 immune complex was detected as the major product and higher molecular weight complexes were not obtained by any of the methods employed. These results suggested that N1G9 predominantly formed an intramolecular divalent complex with NP(7)-BSA using the two Fab arms of an antibody. Although complexes of various sizes were detected by MS, AUC, and TEM in the interaction between C6, a high affinity antibody, and NP(7)-BSA, only 1:1 immune complexes were observed by SPR. These results showed that two NP(7)-BSA molecules cannot simultaneously bind to an antibody, irrespective of antibody affinity strength, when the Fc region is immobilized to a flexible dextran matrix on sensor chip but are able to do so with high affinity antibodies free in solution. The results also showed that the stoichiometry of the antigen-antibody interaction is altered by restricting the movement of the Fc region. Since immunoglobulins exist as antibodies in solution or as B cell receptors on the cell surface, it is suggested that interactions of B cell receptors with polyvalent antigens such as NP-BSA might be different from those of antibodies free in solution.
Collapse
|
11
|
A novel broad-specific noncompetitive immunoassay and its application in the determination of total aflatoxins. Anal Chim Acta 2008; 630:82-90. [DOI: 10.1016/j.aca.2008.09.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/19/2008] [Accepted: 09/29/2008] [Indexed: 11/23/2022]
|
12
|
Abeywickrama C, Matsuda H, Jockusch S, Zhou J, Jang YP, Chen BX, Itagaki Y, Erlanger BF, Nakanishi K, Turro NJ, Sparrow JR. Immunochemical recognition of A2E, a pigment in the lipofuscin of retinal pigment epithelial cells. Proc Natl Acad Sci U S A 2007; 104:14610-5. [PMID: 17804788 PMCID: PMC1976245 DOI: 10.1073/pnas.0706806104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The autofluorescent lipofuscin pigment A2E accumulates in retinal pigment epithelial cells with age and is particularly abundant in some retinal disorders. To generate a polyclonal antibody that recognizes this pyridinium bisretinoid molecule, we immunized rabbits with bovine serum albumin (BSA) conjugates in which the protein was linked to the A2E molecule via its pyridinium ethanolamine moiety. Analysis by matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) of the A2E-BSA conjugate indicated the presence of five intact A2E molecules covalently linked to BSA, thus deeming it a suitable antigen for immunization. By immunocytochemical staining, the rabbit polyclonal antibody recognized A2E that had accumulated in cultured cells, whereas dot-blot analysis revealed binding to both A2E and A2E-rabbit serum albumin (A2E-RSA) conjugate but no cross-reactivity with various retinoids. Preimmune serum was nonreactive. In fluorescence spectroscopy studies, antibody-A2E binding was evidenced by a fluorescence increase and by a blue-shift in the emission maximum consistent with a change in A2E milieu upon antibody binding. The changes in fluorescence emission upon antibody binding could reflect several processes including restrictions on trans-cis isomerization and intersystem crossing of photo-excited A2E.
Collapse
Affiliation(s)
| | - Hiroko Matsuda
- *Department of Chemistry, Columbia University, New York, NY 10027; and
| | - Steffen Jockusch
- *Department of Chemistry, Columbia University, New York, NY 10027; and
| | | | | | - Bi-Xing Chen
- Microbiology, Columbia University, New York, NY 10032
| | - Yasuhiro Itagaki
- *Department of Chemistry, Columbia University, New York, NY 10027; and
| | | | - Koji Nakanishi
- *Department of Chemistry, Columbia University, New York, NY 10027; and
- To whom correspondence may be addressed at:
Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027. E-mail: or
| | - Nicholas J. Turro
- *Department of Chemistry, Columbia University, New York, NY 10027; and
- To whom correspondence may be addressed at:
Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027. E-mail: or
| | - Janet R. Sparrow
- Departments of Ophthalmology
- Pathology and Cell Biology, and
- To whom correspondence may be addressed at:
Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, 630 West 168th Street, New York, NY 10032. E-mail:
| |
Collapse
|
13
|
Oda M, Uchiyama S, Robinson CV, Fukui K, Kobayashi Y, Azuma T. Regional and segmental flexibility of antibodies in interaction with antigens of different size. FEBS J 2006; 273:1476-87. [PMID: 16689933 DOI: 10.1111/j.1742-4658.2006.05168.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The interaction of antibodies (Abs) with protein antigens (Ags) of different size, such as hen egg white lysozyme, ovalbumin, and bovine serum albumin, was examined using analytical ultracentrifugation, electrospray ionization time-of-flight mass spectrometry, and surface plasmon resonance in order to estimate regional and segmental Ab flexibility. When both Abs and Ags were free in solution, sedimentation equilibrium and surface plasmon resonance analyses showed the formation of an Ag(2)Ab(1) complexes regardless of Ag size, suggesting that the Fab arms were able to move to avoid interference between Ags bound to Ab combining sites. The Ag(2)Ab(1) complex, as well as the Ag(1)Ab(1) complex, was observed by MS. However, when Abs were immobilized on the surface of a sensor chip through the Fc region, the stoichiometry of the Ag-Ab complex was dependent on the Ag size; Ag(2)Ab(1) forming with hen egg white lysozyme and Ag(1)Ab(1) with ovalbumin and bovine serum albumin. These results indicated that immobilization of the Fc region reduces the dynamic range of the Fab arms and results in interference from the first Ag bound to either combining site, which in turn prevents the binding of the second Ag to the other combining site. Our results allow us to propose that the Fab arms of B-cell receptors whose Fc regions are immobilized on cell surface have a reduced dynamic range.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Agriculture, Kyoto Prefectural University, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|