1
|
Wu Y, Li Z, Kaur S, Zhang Z, Yue J, Tumber A, Zhang H, Song Z, Yang P, Dong Y, Yang F, Li X, Schofield CJ, Zhang X. Light-Induced, Lysine-Targeting Irreversible Covalent Inhibition of the Human Oxygen Sensing Hydroxylase Factor Inhibiting HIF (FIH). J Am Chem Soc 2025. [PMID: 40344676 DOI: 10.1021/jacs.5c01935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase that catalyzes protein hydroxylations, including of specific asparagines in the C-terminal transcriptional activation domains of hypoxia-inducible factor alpha (HIF-α) isoforms. FIH is of medicinal interest due to its ability to alter metabolism and modulate the course of the HIF-mediated hypoxic response. We report the development of a light-induced, lysine (Lys106)-targeting irreversible covalent inhibitor of FIH. The approach is complementary to optogenetic methods for regulation of transcription. The covalently reacting inhibitor NBA-ZG-2291 was the result of structure-guided modification of the reported active site binding FIH inhibitor ZG-2291 with an appropriately positioned o-nitrobenzyl alcohol (o-NBA) group. The results demonstrate that NBA-ZG-2291 forms a stable covalent bond in a light-dependent process with Lys106 of FIH, inactivating its hydroxylation activity and resulting in sustained upregulation of FIH-dependent HIF target genes. The light-controlled inhibitors targeting a lysine residue enable light and spatiotemporal control of FIH activity in a manner useful for dissecting the context-dependent physiological roles of FIH.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Samanpreet Kaur
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Zewei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Yue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Anthony Tumber
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Haoshu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhe Song
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Peiyao Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Dong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fulai Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Christopher J Schofield
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Cheng C, Liu K, Zhang J, Han Y, Zhang T, Hou Y, Bai G. Ginsenoside CK targets PHD2 to prevent platelet adhesion and enhance blood circulation by modifying the three-dimensional arrangement of collagen. Acta Pharm Sin B 2025; 15:1497-1513. [PMID: 40370536 PMCID: PMC12069249 DOI: 10.1016/j.apsb.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 05/16/2025] Open
Abstract
Platelets are indispensable for physiological hemostasis and pathological thrombus formation, and platelet adhesion to endothelial collagen is a critical initial step in thrombus formation, often overlooked in current antiplatelet therapies. This study aims to elucidate how ginsenoside CK enhances hemodynamic circulation, alleviates stasis, and proposes therapeutic mechanisms. Inspired by the effects on improving microcirculatory disturbances in an acute soft tissue injury model, CK was identified as a PHD2 inhibitor, effectively suppressing platelet adhesion to collagen. It was proposed that targeting PHD2 regulates collagen hydroxylation modification, thereby influencing the formation of its three-dimensional structure, reducing the binding affinity between VWF and collagen, and ultimately suppressing thrombotic events. The efficacy of this mechanism was subsequently confirmed through a mouse DIC model, demonstrating the feasibility of CK in alleviating circulatory disorders. It is worth noting that when Phd2 was knocked down in mice's lungs, pulmonary embolism was significantly reduced. Additionally, PHD2 inhibitors approved for other diseases have exhibited similar anti-thrombotic effects. Moreover, when PHD2 inhibitors were combined with aspirin, they more effectively inhibited arterial thrombosis in rats. The findings offer valuable insights into potential targets for developing antiplatelet drugs or expanding therapeutic applications for existing PHD2 inhibitors in treating thrombotic diseases.
Collapse
Affiliation(s)
- Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jinling Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yanqi Han
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| |
Collapse
|
3
|
Liu K, Cheng C, Yan J, Chi F, Wang W, Shen F, Zhang J, Zhang M, Hou Y, Bai G. Polydatin mitigates thrombosis by inhibiting PHD2-induced proline hydroxylation on collagen, reducing platelet adhesion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156392. [PMID: 39826283 DOI: 10.1016/j.phymed.2025.156392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Platelet adhesion to collagen, a critical initial step in thrombus formation, remains an underexplored therapeutic target in thrombosis. Current disease treatment strategies primarily focus on platelet activation and aggregation, often overlooking the crucial initial adhesion phase. Reynoutria japonica (Huzhang, HZ), utilized in traditional Chinese medicine to enhance blood circulation and resolve blood stasis, lacks comprehensive insights into its active components and their anti-thrombotic mechanisms. PURPOSE This study investigated the antithrombotic effects and mechanisms of polydatin, a stilbene derived from HZ, with a focus on its effect on platelet adhesion. METHODS An acute pulmonary infection model was used, along with metabolomic and proteomic analyses, to investigate the antithrombotic efficacy of the active component polydatin and identify its targets. Chemical biology, protein mass spectrometry analyses, and molecular interaction analysis were performed to investigate its mechanism. Multiple models of circulatory disorders, including disseminated intravascular coagulation (DIC) and atherosclerosis in mice, with or without targeted gene knockdown, were employed to assess the role of polydatin in modulating platelet adhesion. RESULTS Our investigation revealed that polydatin targets prolyl hydroxylase 2 (PHD2), thereby inhibiting hydroxylation of proline residues on collagen. This disruption in collagen assembly and the von Willebrand factor (VWF)-collagen interaction reduces platelet adhesion, significantly impacting circulation in both DIC and atherosclerosis. This represents a novel mechanism of antithrombotic action, distinct from currently available therapies. CONCLUSION Targeting PHD2 to modulate collagen structure and platelet adhesion presents a promising novel therapeutic strategy for thrombosis-related circulatory disorders.
Collapse
Affiliation(s)
- Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Jin Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Fuyun Chi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Wenshuang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China; Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Jinling Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| |
Collapse
|
4
|
Tarantino R, Jensen HM, Waldman SD. 13C Metabolic Flux Analysis in Chondrocytes Reveals a Novel Switch in Metabolic Phenotype. Tissue Eng Part A 2024; 30:550-562. [PMID: 38368544 DOI: 10.1089/ten.tea.2023.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024] Open
Abstract
Chondrocytes are typically known for their anaerobic metabolism both in vivo and under culture conditions in vitro. However, chondrocytes have been shown to display greater biosynthetic activity when subjected to conditions that elicit aerobic metabolism. We have previously shown that tissue formation by chondrocytes can be upregulated by controlling nutrient availability and that this response arises from changes in glucose metabolism. The aim of the present study was to further characterize these changes through 13C-metabolic flux analysis (13C-MFA), as well as to determine the most optimal response. Primary bovine chondrocytes were grown in scaffold-free high-density tissue culture. [U-13C] glucose labeling experiments were combined with a tissue-specific metabolic network model to carry out 13C-MFA under varying levels of nutrient availability. 13C-MFA results demonstrated that when subjected to increasing nutrient availability, chondrocytes switch from a predominately anaerobic to a mixed aerobic-anaerobic phenotype. This metabolic switch was attributed to the saturation of the lactate fermentation pathway and metabolite overflow toward the tricarboxylic acid cycle. This effect appears to be similar to, but the inverse of, the Crabtree effect ("inverse Crabtree effect"). The relationships between metabolic flux and nutrient availability were then utilized to identify culture conditions that promote enhanced tissue formation. This novel metabolic effect presents a simple but effective approach for enhancing the biosynthetic response of chondrocytes-a key requirement to develop functional engineered cartilaginous tissue for joint resurfacing.
Collapse
Affiliation(s)
- Roberto Tarantino
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Unity Health and Toronto Metropolitan University, Toronto, Canada
| | - Halie Mei Jensen
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Unity Health and Toronto Metropolitan University, Toronto, Canada
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada
| | - Stephen D Waldman
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Unity Health and Toronto Metropolitan University, Toronto, Canada
| |
Collapse
|
5
|
Zhang Y, Sang CY, Wang XR, Wang CB, Meng XH, Wang WF, Yang JL. Rapid evaluation of PHD2 inhibitory activity of natural products based on capillary electrophoresis online stacking strategy. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124064. [PMID: 38430605 DOI: 10.1016/j.jchromb.2024.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Prolyl hydroxylase domain 2 (PHD2) is an important enzyme in the human body that perceives changes in oxygen concentration and regulates response in hypoxic environments. Evaluation of PHD2 inhibitory activity of natural products is crucial for drug development of hypoxia related diseases. At present, the detection of low concentration of α-ketoglutaric acid (the substrate of PHD2 enzymatic reaction) requires derivatization reactions or sample pretreatment, which undoubtedly increases the workload of PHD2 inhibitory activity evaluation. In this paper, a direct detection approach of α-ketoglutaric acid was established by using the online stacking strategy of capillary electrophoresis to evaluate the PHD2 inhibitory activity of natural products. Under optimized conditions, detection of a single sample can be achieved within 2 min. By calculation, the intraday precision RSD of the apparent electrophoretic mobility and peak areas of α-ketoglutaric acid are 0.92 % and 0.79 %, respectively, and the interday RSD were 1.27 % and 0.96 % respectively. The recoveries of the present approach were 97.9-105.2 %, and the LOQ and LOD were 2.0 μM and 5.0 μM, respectively. Furthermore, this approach was applied for the evaluation of inhibitory activity of PHD2 for 13 natural products, and PHD2 inhibitory activity of salvianolic acid A was firstly reported. The present work not only realizes evaluation of PHD2 inhibitory activity through direct detection of α-ketoglutaric acid, but also provides technical support for the discovery of potential drug molecules in hypoxia related diseases.
Collapse
Affiliation(s)
- Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Chun-Yan Sang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Xing-Rong Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Cheng-Bo Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Xian-Hua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China.
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Rastogi S, Ansari MN, Saeedan AS, Singh SK, Mukerjee A, Kaithwas G. Novel furan chalcone modulates PHD-2 induction to impart antineoplastic effect in mammary gland carcinoma. J Biochem Mol Toxicol 2024; 38:e23679. [PMID: 38486411 DOI: 10.1002/jbt.23679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Normoxic inactivation of prolyl hydroxylase-2 (PHD-2) in tumour microenvironment paves the way for cancer cells to thrive under the influence of HIF-1α and NF-κB. Henceforth, the present study is aimed to identify small molecule activators of PHD-2. A virtual screening was conducted on a library consisting of 265,242 chemical compounds, with the objective of identifying molecules that exhibit structural similarities to the furan chalcone scaffold. Further, PHD-2 activation potential of screened compound was determined using in vitro 2-oxoglutarate assay. The cytotoxic activity and apoptotic potential of screened compound was determined using various staining techniques, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 4',6-diamidino-2-phenylindole (DAPI), 1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), and acridine orange/ethidium bromide (AO/EB), against MCF-7 cells. 7,12-Dimethylbenz[a]anthracene (DMBA) model of mammary gland cancer was used to study the in vivo antineoplastic efficacy of screened compound. [(E)-1-(4-fluorophenyl)-3-(furan-2-yl) prop-2-en-1-one] (BBAP-7) was screened and validated as a PHD-2 activator by an in vitro 2-oxo-glutarate assay. The IC50 of BBAP-7 on MCF-7 cells is 18.84 µM. AO/EB and DAPI staining showed nuclear fragmentation, blebbing and condensation in MCF-7 cells following BBAP-7 treatment. The red-to-green intensity ratio of JC-1 stained MCF-7 cells decreased after BBAP-7 treatment, indicating mitochondrial-mediated apoptosis. DMBA caused mammary gland dysplasia, duct hyperplasia and ductal carcinoma in situ. Carmine staining, histopathology, and scanning electron microscopy demonstrated that BBAP-7, alone or with tirapazamine, restored mammary gland surface morphology and structural integrity. Additionally, BBAP-7 therapy significantly reduced oxidative stress and glycolysis. The findings reveal that BBAP-7 activates PHD-2, making it a promising anticancer drug.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia
| | - Sunil Kumar Singh
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Alok Mukerjee
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Roennfeldt AE, Allen TP, Trowbridge BN, Beard MR, Whitelaw ML, Russell DL, Bersten DC, Peet DJ. NanoFIRE: A NanoLuciferase and Fluorescent Integrated Reporter Element for Robust and Sensitive Investigation of HIF and Other Signalling Pathways. Biomolecules 2023; 13:1545. [PMID: 37892227 PMCID: PMC10605489 DOI: 10.3390/biom13101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The Hypoxia Inducible Factor (HIF) transcription factors are imperative for cell adaption to low oxygen conditions and development; however, they also contribute to ischaemic disease and cancer. To identify novel genetic regulators which target the HIF pathway or small molecules for therapeutic use, cell-based reporter systems are commonly used. Here, we present a new, highly sensitive and versatile reporter system, NanoFIRE: a NanoLuciferase and Fluorescent Integrated Reporter Element. Under the control of a Hypoxic Response Element (HRE-NanoFIRE), this system is a robust sensor of HIF activity within cells and potently responds to both hypoxia and chemical inducers of the HIF pathway in a highly reproducible and sensitive manner, consistently achieving 20 to 150-fold induction across different cell types and a Z' score > 0.5. We demonstrate that the NanoFIRE system is adaptable via substitution of the response element controlling NanoLuciferase and show that it can report on the activity of the transcriptional regulator Factor Inhibiting HIF, and an unrelated transcription factor, the Progesterone Receptor. Furthermore, the lentivirus-mediated stable integration of NanoFIRE highlights the versatility of this system across a wide range of cell types, including primary cells. Together, these findings demonstrate that NanoFIRE is a robust reporter system for the investigation of HIF and other transcription factor-mediated signalling pathways in cells, with applications in high throughput screening for the identification of novel small molecule and genetic regulators.
Collapse
Affiliation(s)
- Alison E. Roennfeldt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia;
| | - Timothy P. Allen
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
| | - Brooke N. Trowbridge
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Michael R. Beard
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Murray L. Whitelaw
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 169857, Singapore
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia;
| | - David C. Bersten
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia;
| | - Daniel J. Peet
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
| |
Collapse
|
8
|
Maghsoud Y, Vázquez-Montelongo EA, Yang X, Liu C, Jing Z, Lee J, Harger M, Smith AK, Espinoza M, Guo HF, Kurie JM, Dalby KN, Ren P, Cisneros GA. Computational Investigation of a Series of Small Molecules as Potential Compounds for Lysyl Hydroxylase-2 (LH2) Inhibition. J Chem Inf Model 2023; 63:986-1001. [PMID: 36779232 PMCID: PMC10233724 DOI: 10.1021/acs.jcim.2c01448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The catalytic function of lysyl hydroxylase-2 (LH2), a member of the Fe(II)/αKG-dependent oxygenase superfamily, is to catalyze the hydroxylation of lysine to hydroxylysine in collagen, resulting in stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs). Reports show that high amounts of LH2 lead to the accumulation of HLCCs, causing fibrosis and specific types of cancer metastasis. Some members of the Fe(II)/αKG-dependent family have also been reported to have intramolecular O2 tunnels, which aid in transporting one of the required cosubstrates into the active site. While LH2 can be a promising target to combat these diseases, efficacious inhibitors are still lacking. We have used computational simulations to investigate a series of 44 small molecules as lead compounds for LH2 inhibition. Tunneling analyses indicate the existence of several intramolecular tunnels. The lengths of the calculated O2-transporting tunnels in holoenzymes are relatively longer than those in the apoenzyme, suggesting that the ligands may affect the enzyme's structure and possibly block (at least partially) the tunnels. The sequence alignment analysis between LH enzymes from different organisms shows that all of the amino acid residues with the highest occurrence rate in the oxygen tunnels are conserved. Our results suggest that the enolate form of diketone compounds establishes stronger interactions with the Fe(II) in the active site. Branching the enolate compounds with functional groups such as phenyl and pyridinyl enhances the interaction with various residues around the active site. Our results provide information about possible leads for further LH2 inhibition design and development.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erik Antonio Vázquez-Montelongo
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xudong Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Juhoon Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew Harger
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ally K Smith
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Miguel Espinoza
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Hou-Fu Guo
- Department of Molecular and Cellular Biochemistry, College of Medicine, The University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77005, United States
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
9
|
Zhu S, Wu L, Zhang M, Li S, Xing W, Zhao Z, Guo H, Ma L, Wu H. Collagen Peptides as a Hypoxia-Inducible Factor-2α-Stabilizing Prolyl Hydroxylase Inhibitor to Stimulate Intestinal Iron Absorption by Upregulating Iron Transport Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15095-15103. [PMID: 36475394 DOI: 10.1021/acs.jafc.2c05411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Iron intervention is not always safe and effective to correct iron deficiency. Host iron absorption stimulation is emerging as a promising adjunctive/alternative treatment. Here, porcine collagen hydrolysate (CH) and collagen-derived dipeptide prolyl-hydroxyproline, rather than collagen amino acids, namely, glycine, proline, and hydroxyproline, were found to increase cellular iron reduction, absorption, and transportation, to upregulate duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), ferroportin (FPN), and hephaestin, and to nongenomically activate hypoxia-inducible factor-2α signaling in polarized Caco-2 cells. Prolyl-hydroxyproline showed both competitive and uncompetitive inhibition of recombinant human prolyl hydroxylase-3 activity with EC50 and Ki values of 10.62 and 6.73 μM, respectively. Docking simulations revealed collagen peptides as iron chelators and/or steric hindrances for prolyl hydroxylase-3. CH and prolyl-hydroxyproline acutely increased duodenal hypoxia-inducible factor-2α stability and Dcytb, DMT1, FPN, and hephaestin transcription in rats. Overall, collagen peptides act as a hypoxia-inducible factor-2α-stabilizing prolyl hydroxylase inhibitor to stimulate intestinal iron absorption.
Collapse
Affiliation(s)
- Suqin Zhu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingyu Wu
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Meichao Zhang
- Weihai Institute for Food and Drug Control, Weihai 264299, China
| | - Shiyang Li
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wenshuo Xing
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zifang Zhao
- Haikou Research & Development Center for Biopeptide Engineering, Huayan Collagen Technology Co., Ltd., Haikou 571000, China
| | - Hongxing Guo
- Haikou Research & Development Center for Biopeptide Engineering, Huayan Collagen Technology Co., Ltd., Haikou 571000, China
| | - Lei Ma
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Haohao Wu
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Haikou Research & Development Center for Biopeptide Engineering, Huayan Collagen Technology Co., Ltd., Haikou 571000, China
| |
Collapse
|
10
|
Guo Z, Zi J, Hao Y, Li Y, Liu Z, Zhao Q, Hao L, Diao A. Production of functional recombinant prolyl hydroxylase-2 enzyme in insect cells for small molecule inhibitor screening studies. Protein Expr Purif 2022; 194:106073. [DOI: 10.1016/j.pep.2022.106073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
|
11
|
Schmidl D, Jonasson NSW, Menke A, Schneider S, Daumann L. Spectroscopic and in vitro investigations of Fe2+/α-Ketoglutarate-dependent enzymes involved in nucleic acid repair and modification. Chembiochem 2022; 23:e202100605. [PMID: 35040547 PMCID: PMC9401043 DOI: 10.1002/cbic.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Indexed: 11/08/2022]
Abstract
The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Enzymes of special interest are the human homologs AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being revealed. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and NMR spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor and inhibitor addition. Several methods are now available to assess activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point of view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.
Collapse
Affiliation(s)
- David Schmidl
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Niko S W Jonasson
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Annika Menke
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Sabine Schneider
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Lena Daumann
- Ludwig-Maximilians-Universität München, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| |
Collapse
|
12
|
Tarantino R, Chiu LLY, Weber JF, Yat Tse M, Bardana DD, Pang SC, Waldman SD. Effect of nutrient metabolism on cartilaginous tissue formation. Biotechnol Bioeng 2021; 118:4119-4128. [PMID: 34265075 DOI: 10.1002/bit.27888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022]
Abstract
A major shortcoming in cartilage tissue engineering is the low biosynthetic response of chondrocytes. While different strategies have been investigated, a novel approach may be to control nutrient metabolism. Although known for their anaerobic metabolism, chondrocytes are more synthetically active under conditions that elicit mixed aerobic-anaerobic metabolism. Here, we postulate this metabolic switch induces HIF-1α signaling resulting in improved growth. Transition to different metabolic states can result in the pooling of metabolites, several of which can stabilize HIF-1α by interfering with PHD2. Chondrocytes cultured under increased media availability accelerated tissue deposition with the greatest effect occurring at 2 ml/106 cells. Under higher media availability, metabolism switched from anaerobic to mixed aerobic-anaerobic. Around this transition, maximal changes in PHD2 activity, HIF-1α expression, and HIF-1 target gene expression were observed. Loss-of-function studies using YC-1 confirmed the involvement of HIF-1. Lastly, targeted metabolomic studies revealed that intracellular lactate and succinate correlated with PHD2 activity. This study demonstrates that cartilaginous tissue formation can be regulated by nutrient metabolism and that this response is mediated through changes in HIF-1α signaling. By harnessing this newly identified metabolic switch, engineered cartilage implants may be developed without the need for sophisticated methods which could aid translation to the clinic.
Collapse
Affiliation(s)
- Roberto Tarantino
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Loraine L Y Chiu
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Joanna F Weber
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Man Yat Tse
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Davide D Bardana
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephen D Waldman
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Wu Y, Li Z, McDonough MA, Schofield CJ, Zhang X. Inhibition of the Oxygen-Sensing Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-Inducible Factor: A Potential Hypoxia Response Modulating Strategy. J Med Chem 2021; 64:7189-7209. [PMID: 34029087 DOI: 10.1021/acs.jmedchem.1c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxogluarate and Fe(II)-dependent oxygenase that catalyzes hydroxylation of specific asparagines in the C-terminal transcriptional activation domain of hypoxia-inducible factor alpha (HIF-α) isoforms. This modification suppresses the transcriptional activity of HIF by reducing its interaction with the transcriptional coactivators p300/CBP. By contrast with inhibition of the HIF prolyl hydroxylases (PHDs), inhibitors of FIH, which accepts multiple non-HIF substrates, are less studied; they are of interest due to their potential ability to alter metabolism (either in a HIF-dependent and/or -independent manner) and, provided HIF is upregulated, to modulate the course of the HIF-mediated hypoxic response. Here we review studies on the mechanism and inhibition of FIH. We discuss proposed biological roles of FIH including its regulation of HIF activity and potential roles of FIH-catalyzed oxidation of non-HIF substrates. We highlight potential therapeutic applications of FIH inhibitors.
Collapse
Affiliation(s)
- Yue Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Zhang X, Wang D, Elberse J, Qi L, Shi W, Peng YL, Schuurink RC, Van den Ackerveken G, Liu J. Structure-guided analysis of Arabidopsis JASMONATE-INDUCED OXYGENASE (JOX) 2 reveals key residues for recognition of jasmonic acid substrate by plant JOXs. MOLECULAR PLANT 2021; 14:820-828. [PMID: 33516967 DOI: 10.1016/j.molp.2021.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 12/20/2020] [Accepted: 01/22/2021] [Indexed: 05/06/2023]
Abstract
The jasmonic acid (JA) signaling pathway is used by plants to control wound responses. The persistent accumulation of JA inhibits plant growth, and the hydroxylation of JA to 12-hydroxy-JA by JASMONATE-INDUCED OXYGENASEs (JOXs, also named jasmonic acid oxidases) is therefore vital for plant growth, while structural details of JA recognition by JOXs are unknown. Here, we present the 2.65 Å resolution X-ray crystal structure of Arabidopsis JOX2 in complex with its substrate JA and its co-substrates 2-oxoglutarate and Fe(II). JOX2 contains a distorted double-stranded β helix (DSBH) core flanked by α helices and loops. JA is bound in the narrow substrate pocket by hydrogen bonds with the arginine triad R225, R350, and R354 and by hydrophobic interactions mainly with the phenylalanine triad F157, F317, and F346. The most critical residues for JA binding are F157 and R225, both from the DSBH core, which interact with the cyclopentane ring of JA. The spatial distribution of critical residues for JA binding and the shape of the substrate-binding pocket together define the substrate selectivity of the JOXs. Sequence alignment shows that these critical residues are conserved among JOXs from higher plants. Collectively, our study provides insights into the mechanism by which higher plants hydroxylate the hormone JA.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dongli Wang
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Joyce Elberse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Linlu Qi
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Shi
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB Utrecht, the Netherlands.
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Development of a colorimetric α-ketoglutarate detection assay for prolyl hydroxylase domain (PHD) proteins. J Biol Chem 2021; 296:100397. [PMID: 33571527 PMCID: PMC7961094 DOI: 10.1016/j.jbc.2021.100397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
Since the discovery of the prolyl hydroxylases domain (PHD) proteins and their canonical hypoxia-inducible factor (HIF) substrate two decades ago, a number of in vitro hydroxylation (IVH) assays for PHD activity have been developed to measure the PHD-HIF interaction. However, most of these assays either require complex proteomics mass spectrometry methods that rely on the specific PHD-HIF interaction or require the handling of radioactive material, as seen in the most commonly used assay measuring [14C]O2 release from labeled [14C]α-ketoglutarate. Here, we report an alternative rapid, cost-effective assay in which the consumption of α-ketoglutarate is monitored by its derivatization with 2,4-dinitrophenylhydrazine (2,4-DNPH) followed by treatment with concentrated base. We extensively optimized this 2,4-DNPH α-ketoglutarate assay to maximize the signal-to-noise ratio and demonstrated that it is robust enough to obtain kinetic parameters of the well-characterized PHD2 isoform comparable with those in published literature. We further showed that it is also sensitive enough to detect and measure the IC50 values of pan-PHD inhibitors and several PHD2 inhibitors in clinical trials for chronic kidney disease (CKD)-induced anemia. Given the efficiency of this assay coupled with its multiwell format, the 2,4-DNPH α-KG assay may be adaptable to explore non-HIF substrates of PHDs and potentially to high-throughput assays.
Collapse
|
16
|
Li Z, Zhen S, Su K, Tumber A, Yu Q, Dong Y, McDonough M, Schofield CJ, Zhang X. A small-molecule probe for monitoring binding to prolyl hydroxylase domain 2 by fluorescence polarisation. Chem Commun (Camb) 2020; 56:14199-14202. [PMID: 33111730 DOI: 10.1039/d0cc06353c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inhibition of the dioxygen sensing hypoxia-inducible factor prolyl hydroxylases has potential therapeutic benefit for treatment of diseases, including anaemia. We describe the discovery of a small-molecule probe useful for monitoring binding to human prolyl hydroxylase domain 2 (PHD2) via fluorescence polarisation. The assay is suitable for high-throughput screening of PHD inhibitors with both weak and strong affinities, as shown by work with clinically used inhibitors and naturally occurring PHD inhibitors.
Collapse
Affiliation(s)
- Zhihong Li
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang X, Lei Y, Hu T, Wu Y, Li Z, Jiang Z, Yang C, Zhang L, You Q. Discovery of Clinical Candidate (5-(3-(4-Chlorophenoxy)prop-1-yn-1-yl)-3-hydroxypicolinoyl)glycine, an Orally Bioavailable Prolyl Hydroxylase Inhibitor for the Treatment of Anemia. J Med Chem 2020; 63:10045-10060. [DOI: 10.1021/acs.jmedchem.0c01161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yonghua Lei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Tianhan Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhensheng Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Changyong Yang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Devi U, Singh M, Roy S, Tripathi AC, Gupta PS, Saraf SK, Ansari MN, Saeedan AS, Kaithwas G. PHD-2 activation: a novel strategy to control HIF-1α and mitochondrial stress to modulate mammary gland pathophysiology in ER+ subtype. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1239-1256. [PMID: 31154466 DOI: 10.1007/s00210-019-01658-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive mammary gland carcinoma and its involvement in regulation of overexpressed hypoxia-inducible factor-1α and fatty acid synthase level in hypoxia influenced cancer cells are the present molecular crosstalk of this entire study. To test the hypothesis, we have proceed our study through chemical activation of prolyl hydroxylase 2 which leads to inhibition of hypoxia-inducible factor-1α and fatty acid synthase in ER+MCF-7 cancer cell line and n-methyl-n-nitrosourea induced mammary gland carcinoma rat model. ER+MCF-7 cells were evident with array of nuclear changes when stained through acridine orange/ethidium bromide. Afterward, JC-1 staining of the cells was evident in mitochondrial depolarization. The cells were arrested in G2/M phase when analyzed with flow cytometry. The morphological analysis of rat mammary gland tissue revealed decrease in alveolar buds, restoration of histopathological features along with intra-arterial cushion. The western blotting and fold change expressions of the genes validating the anticancer efficacy of BBAPH-1 is mediated through mitochondria-mediated apoptosis pathway. BBAPH-1 also modulates the expression of prolyl hydroxylase-2 with significant curtailment of hypoxia-inducible factor-1α, fatty acid synthase expression, and their respective downstream markers. These finding suggest that the BBAP-1-mediated activation of prolyl hydroxylase-2 significantly decreased the level of hypoxia-inducible factor-1α and fatty acid synthase. BBAPH-1 also activates the mitochondria-mediated death apoptosis pathway.
Collapse
Affiliation(s)
- Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Avinash C Tripathi
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Shailendra K Saraf
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Md Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India.
| |
Collapse
|
19
|
Strowitzki MJ, Cummins EP, Taylor CT. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells 2019; 8:cells8050384. [PMID: 31035491 PMCID: PMC6562979 DOI: 10.3390/cells8050384] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
All metazoans that utilize molecular oxygen (O2) for metabolic purposes have the capacity to adapt to hypoxia, the condition that arises when O2 demand exceeds supply. This is mediated through activation of the hypoxia-inducible factor (HIF) pathway. At physiological oxygen levels (normoxia), HIF-prolyl hydroxylases (PHDs) hydroxylate proline residues on HIF-α subunits leading to their destabilization by promoting ubiquitination by the von-Hippel Lindau (VHL) ubiquitin ligase and subsequent proteasomal degradation. HIF-α transactivation is also repressed in an O2-dependent way due to asparaginyl hydroxylation by the factor-inhibiting HIF (FIH). In hypoxia, the O2-dependent hydroxylation of HIF-α subunits by PHDs and FIH is reduced, resulting in HIF-α accumulation, dimerization with HIF-β and migration into the nucleus to induce an adaptive transcriptional response. Although HIFs are the canonical substrates for PHD- and FIH-mediated protein hydroxylation, increasing evidence indicates that these hydroxylases may also have alternative targets. In addition to PHD-conferred alterations in protein stability, there is now evidence that hydroxylation can affect protein activity and protein/protein interactions for alternative substrates. PHDs can be pharmacologically inhibited by a new class of drugs termed prolyl hydroxylase inhibitors which have recently been approved for the treatment of anemia associated with chronic kidney disease. The identification of alternative targets of HIF hydroxylases is important in order to fully elucidate the pharmacology of hydroxylase inhibitors (PHI). Despite significant technical advances, screening, detection and verification of alternative functional targets for PHDs and FIH remain challenging. In this review, we discuss recently proposed non-HIF targets for PHDs and FIH and provide an overview of the techniques used to identify these.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin P Cummins
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac T Taylor
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Devi U, Singh M, Roy S, Gupta PS, Ansari MN, Saeedan AS, Kaithwas G. Activation of prolyl hydroxylase-2 for stabilization of mitochondrial stress along with simultaneous downregulation of HIF-1α/FASN in ER + breast cancer subtype. Cell Biochem Funct 2019; 37:216-227. [PMID: 30950543 DOI: 10.1002/cbf.3389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/05/2022]
Abstract
The present study was undertaken to inquest the chemical activation of prolyl hydroxylase-2 for the curtailment of hypoxia-inducible factor-1α and fatty acid synthase. It was well documented that hypoxia-inducible factor-1α and fatty acid synthase were overexpressed in mammary gland carcinomas. After screening a battery of compounds, BBAP-2 was retrieved as a potential prolyl hydroxylase-2 activator and validates its activity using ER + MCF-7 cell line and n-methyl-n-nitrosourea-induced rat in vivo model, respectively. BBAP-2 was palpable for the morphological characteristics of apoptosis along with changes in the mitochondrial intergrity as visualized by acridine orange/ethidium bromide and JC-1 staining against ER + MCF-7 cells. BBAP-2 also arrest the cell cycle of ER + MCF-7 cells at G2/M phase. Afterward, BBAP-2 has scrutinized against n-methyl-n-nitrosourea-induced mammary gland carcinoma in albino Wistar rats. BBAP-2 restored the morphological architecture when screened through carmine staining, haematoxylin and eosin staining, and scanning electron microscopy. BBAP-2 also delineated the markers of oxidative stress favourably. The immunoblotting and mRNA expression analysis validated that BBAP-2 has a potentialty activate the prolyl hydroxylase-2 with sequential downregulating effect on hypoxia-inducible factor-1α and its downstream checkpoint. BBAP-2 also fostered apoptosis through mitochondrial-mediated death pathway. The present study elaborates the chemical activation of prolyl hydroxylase-2 by which the increased expression of HIF-1α and FASN can be reduced in mammary gland carcinoma.
Collapse
Affiliation(s)
- Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom University of Agricultural, Technology and Sciences, Allahabad, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom University of Agricultural, Technology and Sciences, Allahabad, India
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|
21
|
Devkota AK, Veloria JR, Guo HF, Kurie JM, Cho EJ, Dalby KN. Development of a High-Throughput Lysyl Hydroxylase (LH) Assay and Identification of Small-Molecule Inhibitors against LH2. SLAS DISCOVERY 2018; 24:484-491. [PMID: 30589612 DOI: 10.1177/2472555218817057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lysyl hydroxylase-2 (LH2) catalyzes the hydroxylation of telopeptidyl lysine residues on collagen, leading to the formation of stable collagen cross-links that connect collagen molecules and stabilize the extracellular matrix. High levels of LH2 have been reported in the formation and stabilization of hydroxylysine aldehyde-derived collagen cross-links (HLCCs), leading to fibrosis and cancer metastasis in certain tissues. Identification of small-molecule inhibitors targeting LH2 activity requires a robust and suitable assay system, which is currently lacking. Thus, despite being a promising target for these diseases, small-molecule inhibitors for LH2 have yet to be reported. Therefore, we developed a luminescence-based strategy to monitor LH activity and validated its ability to identify new inhibitors in a screen of approximately 65,000 compounds against LH2. Primary hits were confirmed using the same LH assay against mimiviral L230. This newly developed LH assay is robust, suitable for high-throughput screening, and able to identify potent specific inhibitors of LH2.
Collapse
Affiliation(s)
- Ashwini K Devkota
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, TX, USA
| | - John R Veloria
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, TX, USA
| | - Hou-Fu Guo
- 2 Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan M Kurie
- 2 Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eun Jeong Cho
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, TX, USA
| | - Kevin N Dalby
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, TX, USA.,3 Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, TX, USA
| |
Collapse
|
22
|
Developing a colorimetric assay for Fe(II)/2-oxoglutarate-dependent dioxygenase. Anal Biochem 2018; 548:109-114. [DOI: 10.1016/j.ab.2018.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 01/27/2023]
|
23
|
Singh M, Devi U, Roy S, Gupta PS, Kaithwas G. Chemical activation of prolyl hydroxylase-2 by BBAP-1 down regulates hypoxia inducible factor-1α and fatty acid synthase for mammary gland chemoprevention. RSC Adv 2018; 8:12848-12860. [PMID: 35541235 PMCID: PMC9079607 DOI: 10.1039/c8ra01239c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/19/2018] [Indexed: 02/04/2023] Open
Abstract
(4-[7-(Acetyloxy)-2-ethyl-2H-chromen-3-yl] phenyl acetate) (BBAP-1) was identified as a potential prolyl hydroxylase-2 activator and tested for this activity using the 2-oxoglutarate dependent in vitro assay. BBAP-1 was evaluated for its cytotoxic potential against ER + MCF-7 cells, and N-methyl-N-nitrosourea induced estrogen positive mammary gland carcinoma model. The effect of BBAP-1 on cellular morphology was evaluated using in vitro acridine orange/ethidium bromide and JC-1 staining. The morphological symptoms of apoptosis were evident after BBAP-1 treatment when studied through cell staining using acridine orange/ethidium bromide and JC-1 dye. Flow cytometric analysis revealed that BBAP-1 treatment arrested the cell cycle in the G2/M phase. In vivo study revealed the morphological changes of mammary gland tissue when scrutinized using carmine staining, hematoxylin and eosin staining and scanning electron microscopy. BBAP-1 treatment produced a marked effect on histopathological and morphological features when scrutinized against N-methyl-N-nitrosourea induced mammary gland carcinoma. Treatment with BBAP-1 also attenuated the deleterious effects of N-methyl-N-nitrosourea as measured on the basis of oxidative stress markers. Immunoblotting and qRT-PCR analysis revealed the participation of BBAP-1 in the mitochondrial mediated death apoptosis pathway and BBAP-1 also downregulated the hypoxic pathway through activation of prolyl hydroxylase-2. It was concluded that BBAP-1 activated the prolyl hydroxylase-2 enzyme and curtailed the over expression of hypoxia inducible factor-1α and fatty acid synthase along with the mitochondrial mediated death apoptosis pathway.
Collapse
Affiliation(s)
- Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road Lucknow-226025 UP India +91 9670204349
| | - Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom University of Agricultural Sciences and Technology Naini Allahabad UP India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road Lucknow-226025 UP India +91 9670204349
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road Lucknow-226025 UP India +91 9670204349
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road Lucknow-226025 UP India +91 9670204349
| |
Collapse
|
24
|
Alves J, Vidugiris G, Goueli SA, Zegzouti H. Bioluminescent High-Throughput Succinate Detection Method for Monitoring the Activity of JMJC Histone Demethylases and Fe(II)/2-Oxoglutarate-Dependent Dioxygenases. SLAS DISCOVERY 2017; 23:242-254. [PMID: 29239273 DOI: 10.1177/2472555217745657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The modification of a diverse array of substrates by Fe(II)/2-oxoglutarate-dependent dioxygenases is central to the modulation of distinct biological processes such as epigenetics, hypoxic signaling, and DNA/RNA repair. Of these, JumonjiC domain-containing histone lysine demethylases (JMJCs) and prolyl hydroxylases are potential drug targets due to their relevance to human diseases. Thus, assays to interrogate this enzyme superfamily are needed to identify selective and potent inhibitors as leads for drug development and that could also be useful research tools. Since succinate is a common product to all Fe(II)/2-oxoglutarate-dependent dioxygenase reactions, a method that detects succinate would be suitable to all members of this enzyme superfamily. We therefore developed a bioluminescent and homogenous succinate detection assay and validated its use with diverse sets of enzyme classes. We evaluated the substrate specificities of these enzymes, their apparent kinetic constants, and inhibition profiles and mode of action of reported and novel inhibitors. Our results indicate that succinate detection is a useful readout for the monitoring of enzymatic activities with distinct substrate entities, as well as for the discovery of novel inhibitors. By investigating a large number of Fe(II)/2-oxoglutarate-dependent enzymes, this method could have a significant impact on the field of dioxygenase research.
Collapse
Affiliation(s)
- Juliano Alves
- 1 Promega Corporation, R&D Department, Madison, WI, USA
| | | | - Said A Goueli
- 1 Promega Corporation, R&D Department, Madison, WI, USA
- 2 Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | |
Collapse
|
25
|
Wu Y, Jiang Z, You Q, Zhang X. Application of in-vitro screening methods on hypoxia inducible factor prolyl hydroxylase inhibitors. Bioorg Med Chem 2017. [DOI: 10.1016/j.bmc.2017.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Guo HF, Cho EJ, Devkota AK, Chen Y, Russell W, Phillips GN, Yamauchi M, Dalby KN, Kurie JM. A scalable lysyl hydroxylase 2 expression system and luciferase-based enzymatic activity assay. Arch Biochem Biophys 2017; 618:45-51. [PMID: 28216326 DOI: 10.1016/j.abb.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 11/24/2022]
Abstract
Hydroxylysine aldehyde-derived collagen cross-links (HLCCs) accumulate in fibrotic tissues and certain types of cancer and are thought to drive the progression of these diseases. HLCC formation is initiated by lysyl hydroxylase 2 (LH2), an Fe(II) and α-ketoglutarate (αKG)-dependent oxygenase that hydroxylates telopeptidyl lysine residues on collagen. Development of LH2 antagonists for the treatment of these diseases will require a reliable source of recombinant LH2 protein and a non-radioactive LH2 enzymatic activity assay that is amenable to high throughput screens of small molecule libraries. However, LH2 protein generated using E coli- or insect-based expression systems is either insoluble or enzymatically unstable, and the LH2 enzymatic activity assays that are currently available measure radioactive CO2 released from 14C-labeled αKG during its conversion to succinate. To address these deficiencies, we have developed a scalable process to purify human LH2 protein from Chinese hamster ovary cell-derived conditioned media samples and a luciferase-based assay that quantifies LH2-dependent conversion of αKG to succinate. These methodologies may be applicable to other Fe(II) and αKG-dependent oxygenase systems.
Collapse
Affiliation(s)
- Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eun Jeong Cho
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Ashwini K Devkota
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - William Russell
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - George N Phillips
- Department of Biosciences and Chemistry, Rice University, Houston, TX, United States
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kevin N Dalby
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States; Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
27
|
Hadi-Alijanvand H, Proctor EA, Ding F, Dokholyan NV, Moosavi-Movahedi AA. A hidden aggregation-prone structure in the heart of hypoxia inducible factor prolyl hydroxylase. Proteins 2016; 84:611-23. [DOI: 10.1002/prot.25011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department of Biological Sciences; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan Iran
- Institute of Biochemistry and Biophysics (IBB), University of Tehran; Tehran Iran
| | - Elizabeth A. Proctor
- Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts 02139
| | - Feng Ding
- Department of Biochemistry and Biophysics; University of North Carolina at Chapel Hill, School of Medicine; Chapel Hill North Carolina 27599
- Department of Physics and Astronomy; Clemson University; Clemson South Carolina 29634
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics; University of North Carolina at Chapel Hill, School of Medicine; Chapel Hill North Carolina 27599
- Curriculum in Bioinformatics and Computational Biology; University of North Carolina at Chapel Hill, School of Medicine; Chapel Hill North Carolina 27599
- Program in Molecular and Cellular Biophysics; University of North Carolina at Chapel Hill, School of Medicine; Chapel Hill North Carolina 27599
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran; Tehran Iran
- Center of Excellence in Biothermodynamics, Institute of Biochemistry and Biophysics (IBB), University of Tehran; Tehran Iran
| |
Collapse
|
28
|
Pharmacological targeting of the HIF hydroxylases--A new field in medicine development. Mol Aspects Med 2016; 47-48:54-75. [PMID: 26791432 DOI: 10.1016/j.mam.2016.01.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Abstract
In human cells oxygen levels are 'sensed' by a set of ferrous iron and 2-oxoglutarate dependent dioxygenases. These enzymes regulate a broad range of cellular and systemic responses to hypoxia by catalysing the post-translational hydroxylation of specific residues in the alpha subunits of hypoxia inducible factor (HIF) transcriptional complexes. The HIF hydroxylases are now the subject of pharmaceutical targeting by small molecule inhibitors that aim to activate or augment the endogenous HIF transcriptional response for the treatment of anaemia and other hypoxic human diseases. Here we consider the rationale for this therapeutic strategy from the biochemical, biological and medical perspectives. We outline structural and mechanistic considerations that are relevant to the design of HIF hydroxylase inhibitors, including likely determinants of specificity, and review published reports on their activity in pre-clinical models and clinical trials.
Collapse
|
29
|
Wu Y, Wang N, Lei Y, Hu T, You Q, Zhang X. Small-molecule inhibitors of HIF-PHD2: a valid strategy to renal anemia treatment in clinical therapy. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00240d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Patients with chronic kidney diseases (CKD) always suffer from anemia with severe impacts on their quality of life.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Nan Wang
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yonghua Lei
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Tianhan Hu
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qidong You
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
30
|
Lei Y, Hu T, Wu X, Wu Y, Bao Q, Zhang L, Xia H, Sun H, You Q, Zhang X. Affinity-Based Fluorescence Polarization Assay for High-Throughput Screening of Prolyl Hydroxylase 2 Inhibitors. ACS Med Chem Lett 2015; 6:1236-40. [PMID: 26713111 DOI: 10.1021/acsmedchemlett.5b00394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 12/30/2022] Open
Abstract
Prolyl hydroxylase domain 2 (PHD2) enzyme, a Fe(II) and 2-oxoglutarate (2-OG) dependent oxygenase, mediates key physiological responses to hypoxia by modulating the levels of hypoxia inducible factor 1-α (HIF1α). PHD2 has been shown to have the therapeutic potentials for conditions including anemia and ischemic disease. Currently, many activity-based assays have been developed for identifying PHD2 inhibitors. Here we report an affinity-based fluorescence polarization method using FITC-labeled HIF1α (556-574) peptide as a probe for quantitative and site-specific screening of small molecule PHD2 inhibitors.
Collapse
Affiliation(s)
- Yonghua Lei
- Jiangsu
Key Laboratory of Drug Design and Optimization, and State Key Laboratory
of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tianhan Hu
- Jiangsu
Key Laboratory of Drug Design and Optimization, and State Key Laboratory
of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xingsen Wu
- Jiangsu
Key Laboratory of Drug Design and Optimization, and State Key Laboratory
of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Wu
- Jiangsu
Key Laboratory of Drug Design and Optimization, and State Key Laboratory
of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qichao Bao
- Jiangsu
Key Laboratory of Drug Design and Optimization, and State Key Laboratory
of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lianshan Zhang
- National Engineering and Research Center for Target Drugs, Lianyungang 222000, China
| | - Hua Xia
- Jiangsu
Key Laboratory of Drug Design and Optimization, and State Key Laboratory
of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Jiangsu
Key Laboratory of Drug Design and Optimization, and State Key Laboratory
of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu
Key Laboratory of Drug Design and Optimization, and State Key Laboratory
of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojin Zhang
- Jiangsu
Key Laboratory of Drug Design and Optimization, and State Key Laboratory
of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department
of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
31
|
Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications. Molecules 2015; 20:20551-68. [PMID: 26610437 PMCID: PMC6332328 DOI: 10.3390/molecules201119717] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD) and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.
Collapse
|
32
|
Philmus B, Decamps L, Berteau O, Begley TP. Biosynthetic versatility and coordinated action of 5'-deoxyadenosyl radicals in deazaflavin biosynthesis. J Am Chem Soc 2015; 137:5406-13. [PMID: 25781338 PMCID: PMC4416281 DOI: 10.1021/ja513287k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 12/30/2022]
Abstract
Coenzyme F420 is a redox cofactor found in methanogens and in various actinobacteria. Despite the major biological importance of this cofactor, the biosynthesis of its deazaflavin core (8-hydroxy-5-deazaflavin, F(o)) is still poorly understood. F(o) synthase, the enzyme involved, is an unusual multidomain radical SAM enzyme that uses two separate 5'-deoxyadenosyl radicals to catalyze F(o) formation. In this paper, we report a detailed mechanistic study on this complex enzyme that led us to identify (1) the hydrogen atoms abstracted from the substrate by the two radical SAM domains, (2) the second tyrosine-derived product, (3) the reaction product of the CofH-catalyzed reaction, (4) the demonstration that this product is a substrate for CofG, and (5) a stereochemical study that is consistent with the formation of a p-hydroxybenzyl radical at the CofH active site. These results enable us to propose a mechanism for F(o) synthase and uncover a new catalytic motif in radical SAM enzymology involving the use of two 5'-deoxyadenosyl radicals to mediate the formation of a complex heterocycle.
Collapse
Affiliation(s)
- Benjamin Philmus
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Laure Decamps
- ChemSyBio,
UMR 1319 Micalis, INRA, F-78350 Jouy-en-Josas, France
- ChemSyBio,
UMR Micalis, AgroParisTech, F-78350 Jouy-en-Josas, France
| | - Olivier Berteau
- ChemSyBio,
UMR 1319 Micalis, INRA, F-78350 Jouy-en-Josas, France
- ChemSyBio,
UMR Micalis, AgroParisTech, F-78350 Jouy-en-Josas, France
| | - Tadhg P. Begley
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
33
|
Ma X, Wang X, Cao J, Geng Z, Wang Z. Effect of proline analogues on activity of human prolyl hydroxylase and the regulation of HIF signal transduction pathway. PLoS One 2014; 9:e95692. [PMID: 24755992 PMCID: PMC3995910 DOI: 10.1371/journal.pone.0095692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/29/2014] [Indexed: 12/16/2022] Open
Abstract
Hypoxia inducible factor 1 (HIF-1) plays a pivotal role in cellular responses to hypoxia. Prolyl hydroxylase 3 (PHD3) degrades HIF-1α under normoxic conditions through the hydroxylation of HIF-1α for proteolysis. Inhibiting PHD3 activity is crucial for up-regulating HIF-1α, thereby acting as a potential target for treating hypoxia-related diseases. In this study, two proline analogues (PA1 and PA2) were screened as PHD3 inhibitors with apparent EC50 values of 1.53 and 3.17 µM respectively, indicating good inhibition potency. Nine proteins, significantly regulated by PA1, were identified using 2-DE coupled with MALDI-TOF/TOF MS. Pyruvate kinase isozymes M1/M2 (PKM) and alpha-enolase 1 (ENO1), which are key modulators of glycolysis, are directly regulated by HIF-1α. Moreover, VEGF, a signal protein stimulating angiogenesis, was strongly promoted by PA1. Our findings suggest that PA1 stabilized HIF-1α as well as up-regulated glycolysis and angiogenesis proteins. Herein, for the first time, we systematically studied proline analogue PA1 as a PHD3 inhibitor, which provides innovative evidence for the treatment of HIF-related diseases.
Collapse
Affiliation(s)
- Xiaoyan Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xiaoxin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, PR China
| | - Jing Cao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, PR China
| |
Collapse
|
34
|
Singh AK, Mukhopadhyay C, Biswas S, Singh VK, Mukhopadhyay CK. Intracellular pathogen Leishmania donovani activates hypoxia inducible factor-1 by dual mechanism for survival advantage within macrophage. PLoS One 2012; 7:e38489. [PMID: 22701652 PMCID: PMC3373497 DOI: 10.1371/journal.pone.0038489] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Recent evidence established a crucial role for mammalian oxygen sensing transcription factor hypoxia inducible factor-1 (HIF-1) in innate immunity against intracellular pathogens. In response to most of these pathogens host phagocytes increase transcription of HIF-1α, the regulatory component of HIF-1 to express various effector molecules against invaders. Leishmania donovani (LD), a protozoan parasite and the causative agent of fatal visceral leishmaniasis resides in macrophages within mammalian host. The mechanism of HIF-1 activation or its role in determining the fate of LD in infected macrophages is still not known. To determine that J774 macrophages were infected with LD and about four-fold increase in HIF-1 activity and HIF-1α expression were detected. A strong increase in HIF-1α expression and nuclear localization was also detected in LD-infected J774 cells, peritoneal macrophages and spleen derived macrophages of LD-infected BALB/c mice. A two-fold increase in HIF-1α mRNA was detected in LD-infected macrophages suggesting involvement of a transcriptional mechanism that was confirmed by promoter activity. We further revealed that LD also induced HIF-1α expression by depleting host cellular iron pool to affect prolyl hydroxylase activity resulting in to stabilization of HIF-1α. To determine the role of HIF-1 on intracellular LD, cells were transfected with HIF-1α siRNA to attenuate its expression and then infected with LD. Although, initial infection rate of LD in HIF-1α attenuated cells was not affected but intracellular growth of LD was significantly inhibited; while, over-expression of stabilized form of HIF-1α promoted intracellular growth of LD in host macrophage. Our results strongly suggest that LD activates HIF-1 by dual mechanism for its survival advantage within macrophage.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chaitali Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sudipta Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vandana Kumari Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chinmay K. Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
35
|
Cao J, Geng Z, Ma X, Wen J, Yin Y, Wang Z. Evidence for inhibition of HIF-1α prolyl hydroxylase 3 activity by four biologically active tetraazamacrocycles. Org Biomol Chem 2012; 10:3913-23. [PMID: 22481471 DOI: 10.1039/c2ob07076f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hypoxia inducible factor 1 (HIF-1) is central to the hypoxic response in mammals. HIF-1α prolyl hydroxylase 3 (PHD3) degrades HIF through the hydroxylation of HIF-1α. Inhibition of PHD3 activity is crucial for up-regulating HIF-1α levels, thereby acting as HIF-dependent diseases therapy. Macrocyclic polyamines which display high stability on iron-chelating may well inhibit the enzyme activity. Thus inhibition and interaction on catalytic PHD3 by four biologically active tetraazamacrocycles (1-4), which have two types of parent rings to chelate iron(ii) dissimilarly, were studied. The apparent IC(50) values of 2.56, 1.91, 5.29 and 2.44 μM, respectively, showed good inhibition potency of the four compounds. K(I) values were 7.86, 3.69, 1.59 and 2.92 μM for 1-4, respectively. Different inhibition actions of the two groups of compounds were identified. Circular dichroism (CD) and fluorescence spectrometries proved that one type of compound has significant effects on protein conformation while another type does not. Computational methodology was constructed to employ the equilibrium geometry of enzyme active site with the presence of substrate competitive inhibitor. Iron(ii) coordination in the active site by inhibitors of this kind induces conformational change of the enzyme and blocks substrate binding.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P R China
| | | | | | | | | | | |
Collapse
|
36
|
Flagg SC, Martin CB, Taabazuing CY, Holmes BE, Knapp MJ. Screening chelating inhibitors of HIF-prolyl hydroxylase domain 2 (PHD2) and factor inhibiting HIF (FIH). J Inorg Biochem 2012; 113:25-30. [PMID: 22687491 DOI: 10.1016/j.jinorgbio.2012.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 02/04/2012] [Accepted: 03/09/2012] [Indexed: 12/12/2022]
Abstract
Two primary O(2)-sensors for humans are the HIF-hydroxylases, enzymes that hydroxylate specific residues of the hypoxia inducible factor-α (HIF). These enzymes are factor inhibiting HIF (FIH) and prolyl hydroxylase-2 (PHD2), each an α-ketoglutarate (αKG) dependent, non-heme Fe(II) dioxygenase. Although the two enzymes have similar active sites, FIH hydroxylates Asn(803) of HIF-1α while PHD2 hydroxylates Pro(402) and/or Pro(564) of HIF-1α. The similar structures but unique functions of FIH and PHD2 make them prime targets for selective inhibition leading to regulatory control of diseases such as cancer and stroke. Three classes of iron chelators were tested as inhibitors for FIH and PHD2: pyridines, hydroxypyrones/hydroxypyridinones and catechols. An initial screen of the ten small molecule inhibitors at varied [αKG] revealed a non-overlapping set of inhibitors for PHD2 and FIH. Dose response curves at moderate [αKG] ([αKG]~K(M)) showed that the hydroxypyrones/hydroxypyridinones were selective inhibitors, with IC(50) in the μM range, and that the catechols were generally strong inhibitors of both FIH and PHD2, with IC(50) in the low μM range. As support for binding at the active site of each enzyme as the mode of inhibition, electron paramagnetic resonance (EPR) spectroscopy were used to demonstrate inhibitor binding to the metal center of each enzyme. This work shows some selective inhibition between FIH and PHD2, primarily through the use of simple aromatic or pseudo-aromatic chelators, and suggests that hydroxypyrones and hydroxypyridones may be promising chelates for FIH or PHD2 inhibition.
Collapse
Affiliation(s)
- Shannon C Flagg
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
37
|
Thirstrup K, Christensen S, Møller HA, Ritzén A, Bergström AL, Sager TN, Jensen HS. Endogenous 2-oxoglutarate levels impact potencies of competitive HIF prolyl hydroxylase inhibitors. Pharmacol Res 2011; 64:268-73. [PMID: 21504793 DOI: 10.1016/j.phrs.2011.03.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 12/01/2022]
Abstract
The stability and transcriptional activity of the hypoxia-inducible factors (HIFs) are regulated by oxygen-dependent hydroxylation that is catalyzed by three HIF prolyl 4-hydroxylases (HPHs). Use of HPH inhibition as a mean for HIF-upregulation has recently gained interest as a potential treatment paradigm against neurodegenerative diseases like ischemia and Parkinson's disease. In the present investigation we report the development of a new and robust assay to measure HPH activity. The assay is based on capture of hydroxylated peptide product by the von Hippel-Lindau protein which is directly measured in a scintillation proximity assay. In addition we describe the determination of HPH subtype potencies of HPH inhibitors which either directly or indirectly inhibit the HPH enzyme. The potencies of the HPH inhibitors displayed almost identical IC(50) values toward the HPH1 and HPH2 subtype while the potency against the HPH3 subtype was increased for several of the compounds. For the most potent compound, a hydroxyl thiazole derivative, the potency against HPH2 and HPH3 was 7nM and 0.49nM, respectively corresponding to a 14-fold difference. These results suggest that HPH subtype-selective compounds may be developed. In addition we determined the 2-oxoglutarate concentration in brain tissue and neuronal cell lines as 2-oxoglutarate is an important co-factor used by the HPH enzyme during the hydroxylation reaction. The high intracellular 2-oxoglutarate concentration provides an explanation for the diminished cellular HIF activating potency of a competitive HPH inhibitor compared to its orders of magnitude higher HPH inhibiting potency. The present reported data suggest that in the development of specific Hif prolyl hydroxylase inhibitors the high 2-oxoglutarate tissue level should be taken into account as this might affect the cellular potency. Thus to specifically inhibit the intracellular HPH enzymatic reaction a competitive inhibitor with a low Ki should be developed.
Collapse
|
38
|
Rose NR, McDonough MA, King ONF, Kawamura A, Schofield CJ. Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev 2011; 40:4364-97. [PMID: 21390379 DOI: 10.1039/c0cs00203h] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
2-Oxoglutarate (2OG) dependent oxygenases are ubiquitous iron enzymes that couple substrate oxidation to the conversion of 2OG to succinate and carbon dioxide. In humans their roles include collagen biosynthesis, fatty acid metabolism, DNA repair, RNA and chromatin modifications, and hypoxic sensing. Commercial applications of 2OG oxygenase inhibitors began with plant growth retardants, and now extend to a clinically used pharmaceutical compound for cardioprotection. Several 2OG oxygenases are now being targeted for therapeutic intervention for diseases including anaemia, inflammation and cancer. In this critical review, we describe studies on the inhibition of 2OG oxygenases, focusing on small molecules, and discuss the potential of 2OG oxygenases as therapeutic targets (295 references).
Collapse
Affiliation(s)
- Nathan R Rose
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | |
Collapse
|
39
|
Kinetic characterization and identification of a novel inhibitor of hypoxia-inducible factor prolyl hydroxylase 2 using a time-resolved fluorescence resonance energy transfer-based assay technology. Anal Biochem 2009; 384:213-23. [DOI: 10.1016/j.ab.2008.09.052] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/16/2008] [Accepted: 09/25/2008] [Indexed: 11/19/2022]
|
40
|
Gorres KL, Raines RT. Direct and continuous assay for prolyl 4-hydroxylase. Anal Biochem 2008; 386:181-5. [PMID: 19111518 DOI: 10.1016/j.ab.2008.11.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/13/2008] [Accepted: 11/29/2008] [Indexed: 01/23/2023]
Abstract
Prolyl 4-hydroxylase (P4H) is a nonheme iron dioxygenase that catalyzes the posttranslational hydroxylation of (2S)-proline (Pro) residues in protocollagen strands. The resulting (2S,4R)-4-hydroxyproline (Hyp) residues are essential for the folding, secretion, and stability of the collagen triple helix. P4H uses alpha-ketoglutarate and O2 as cosubstrates, and forms succinate and CO2 as well as Hyp. Described herein is the first assay for P4H that continuously and directly detects turnover of the proline-containing substrate. This assay is based on (2S,4S)-4-fluoroproline (flp), a proline analogue that is transformed into (2S)-4-ketoproline (Kep) and inorganic fluoride by P4H. The fluoride ion, and thus turnover by P4H, is detected by a fluoride ion-selective electrode. Using this assay, steady-state kinetic parameters for the human P4H-catalyzed turnover of a flp-containing peptide were determined and found to be comparable to those obtained with a discontinuous HPLC-based assay. In addition, this assay can be used to characterize P4H variants, as demonstrated by a comparison of catalysis by D414A P4H and the wild-type enzyme. Finally, the use of the assay to identify small-molecule inhibitors of P4H was verified by an analysis of catalysis in the presence of 2,4-pyridine dicarboxylate, an analogue of alpha-ketoglutarate. Thus, the assay described herein could facilitate biochemical analyses of this essential enzyme.
Collapse
Affiliation(s)
- Kelly L Gorres
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | |
Collapse
|
41
|
Lee SH, Ryu SE. Monoclonal antibody-based screening assay for factor inhibiting hypoxia-inducible factor inhibitors. ACTA ACUST UNITED AC 2008; 13:494-503. [PMID: 18566480 DOI: 10.1177/1087057108318800] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The factor-inhibiting hypoxia-inducible factor (FIH) hydroxylates the asparagine 803 (Asn803) residue of the hypoxia-inducible factor 1alpha (HIF-1alpha), and the modification abrogates the transcriptional activity of HIF-1alpha. Because FIH is more active on HIF-1alpha than prolyl hydroxylase domain proteins under hypoxic conditions, its inhibitors have potential to be developed as anti-ischemic drugs targeting normal cells stressed by hypoxia. In this study, the authors developed the first monoclonal antibody, SHN-HIF1alpha, specifically to Asn803 hydroxylated HIF-1alpha and a sensitive assay system for FIH inhibitors using the monoclonal antibody (Mab). SHN-HIF1alpha showed 740 times higher affinity to the Asn803 hydroxylated HIF-1alpha peptide than the unmodified one. An enzyme-linked immunosorbent assay-based system using SHN-HIF1alpha displayed at least 30 times more sensitivity than previous methods for screening FIH inhibitors and was easily applicable to develop a high-throughput screening system. SHN-HIF1alpha also showed an Asn803 hydroxylation-dependent specificity to HIF-1alpha in cells. Taken together, the results suggest that it may be used to analyze the in vivo and in vitro activities of FIH inhibitors.
Collapse
Affiliation(s)
- Sang-Hyeup Lee
- Systemic Proteomics Research Center, KRIBB, Yuseong, Daejeon, Korea
| | | |
Collapse
|
42
|
Margittai E, Bánhegyi G. Isocitrate dehydrogenase: A NADPH-generating enzyme in the lumen of the endoplasmic reticulum. Arch Biochem Biophys 2008; 471:184-90. [PMID: 18201546 DOI: 10.1016/j.abb.2007.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 12/21/2007] [Accepted: 12/30/2007] [Indexed: 11/26/2022]
Abstract
The aim of the present study was the investigation of the occurrence of NADPH-generating pathways in the endoplasmic reticulum others then hexose-6-phosphate dehydrogenase. A significant isocitrate and a moderate malate-dependent NADP+ reduction were observed in endoplasmic reticulum-derived rat liver microsomes. The isocitrate-dependent activity was very likely attributable to the appearance of the cytosolic isocitrate dehydrogenase isozyme in the lumen. The isocitrate dehydrogenase activity of microsomes was present in the luminal fraction; it showed a strong preference towards NADP+ versus NAD+, and it was almost completely latent. Antibodies against the cytosolic isoform of isocitrate dehydrogenase immunorevealed a microsomal protein of identical molecular weight; the microsomal enzyme showed similar kinetic parameters and oxalomalate inhibition as the cytosolic one. Measurable luminal isocitrate dehydrogenase activity was also present in microsomes from rat epididymal fat. The results suggest that isocitrate dehydrogenase is an important NADPH-generating enzyme in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Eva Margittai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Pathobiochemistry Research Group of The Hungarian Academy of Sciences, 1444 Budapest, P.O. Box 260, Budapest, Hungary
| | | |
Collapse
|
43
|
Cudic M, Patel DA, Lauer-Fields JL, Brew K, Fields GB. Development of a convenient peptide-based assay for lysyl hydroxylase. Biopolymers 2007; 90:330-8. [PMID: 17610258 DOI: 10.1002/bip.20799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydroxylysine (Hyl) is a posttranslationally modified amino acid found mainly in collagens, the most abundant protein in mammals. Lysyl hydroxylase (LH) catalyzes the hydroxylation of the C-5 position of a Lys residue, resulting in the production of Hyl. Mechanistically, LH incorporates one oxygen atom into both Lys and 2-oxoglutarate; the latter is decarboxylated to form succinate and CO(2). To develop a convenient, RP-HPLC based LH assay, we used Fmoc solid-phase methodology to synthesize three different peptides designed as LH substrates and one peptide corresponding to an LH product. Peptides were characterized by RP-HPLC, MALDI-TOF mass spectrometry and CD spectroscopy. Separation of peptides was examined under a variety of RP-HPLC conditions. The best results were achieved using peptide derivatization (1-anthroylnitrile for organic phase and dansyl chloride for aqueous phase) prior to RP-HPLC analysis. The products (di- and tetra-substituted Lys- and Hyl-containing peptides) were well resolved by RP-HPLC. The resolution of each peak allows for quantification of peak areas, which in turn, when examined as a function of time, can be utilized for studying the kinetics of LH catalyzed reactions. Most significantly, the RP-HPLC assay directly monitors the Hyl containing product. Prior LH assay methods are multi-step, require radio-labeled substrates, and/or measure depletion of 2-oxoglutarate or formation of CO(2). Since the LH reaction with 2-oxoglutarate is uncoupled from Lys hydroxylation, the most accurate assay of LH activity should monitor the formation of Hyl.
Collapse
Affiliation(s)
- Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431-0991, USA
| | | | | | | | | |
Collapse
|
44
|
Ehrismann D, Flashman E, Genn D, Mathioudakis N, Hewitson K, Ratcliffe P, Schofield C. Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochem J 2007; 401:227-34. [PMID: 16952279 PMCID: PMC1698668 DOI: 10.1042/bj20061151] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activity and levels of the metazoan HIF (hypoxia-inducible factor) are regulated by its hydroxylation, catalysed by 2OG (2-oxoglutarate)- and Fe(II)-dependent dioxygenases. An oxygen consumption assay was developed and used to study the relationship between HIF hydroxylase activity and oxygen concentration for recombinant forms of two human HIF hydroxylases, PHD2 (prolyl hydroxylase domain-containing protein 2) and FIH (factor inhibiting HIF), and compared with two other 2OG-dependent dioxygenases. Although there are caveats on the absolute values, the apparent K(m) (oxygen) values for PHD2 and FIH were within the range observed for other 2OG oxygenases. Recombinant protein substrates were found to have lower apparent K(m) (oxygen) values compared with shorter synthetic peptides of HIF. The analyses also suggest that human PHD2 is selective for fragments of the C-terminal over the N-terminal oxygen-dependent degradation domain of HIF-1alpha. The present results, albeit obtained under non-physiological conditions, imply that the apparent K(m) (oxygen) values of the HIF hydroxylases enable them to act as oxygen sensors providing their in vivo capacity is appropriately matched to a hydroxylation-sensitive signalling pathway.
Collapse
Affiliation(s)
- Dominic Ehrismann
- *Chemistry Research Laboratory, Department of Chemistry and Oxford Centre for Molecular Sciences, University of Oxford, Oxford OXI 3TA, U.K
| | - Emily Flashman
- *Chemistry Research Laboratory, Department of Chemistry and Oxford Centre for Molecular Sciences, University of Oxford, Oxford OXI 3TA, U.K
| | - David N. Genn
- *Chemistry Research Laboratory, Department of Chemistry and Oxford Centre for Molecular Sciences, University of Oxford, Oxford OXI 3TA, U.K
| | - Nicolas Mathioudakis
- *Chemistry Research Laboratory, Department of Chemistry and Oxford Centre for Molecular Sciences, University of Oxford, Oxford OXI 3TA, U.K
| | - Kirsty S. Hewitson
- *Chemistry Research Laboratory, Department of Chemistry and Oxford Centre for Molecular Sciences, University of Oxford, Oxford OXI 3TA, U.K
| | - Peter J. Ratcliffe
- †The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, U.K
- Correspondence may be addressed to either of the authors (email and )
| | - Christopher J. Schofield
- *Chemistry Research Laboratory, Department of Chemistry and Oxford Centre for Molecular Sciences, University of Oxford, Oxford OXI 3TA, U.K
- Correspondence may be addressed to either of the authors (email and )
| |
Collapse
|
45
|
Abstract
The adaptation of animals to oxygen availability is mediated by a transcription factor termed hypoxia-inducible factor (HIF). HIF is an alpha (alpha)/beta (beta) heterodimer that binds hypoxia response elements (HREs) of target genes, including some of medicinal importance, such as erythropoietin (EPO) and vascular endothelial growth factor (VEGF). While the concentration of the HIF-beta subunit, a constitutive nuclear protein, does not vary with oxygen availability, the abundance and activity of the HIF-alpha subunits are tightly regulated via oxygen-dependent modification of specific residues. Hydroxylation of prolyl residues (Pro402 and Pro564 in HIF-1alpha) promotes interaction with the von Hippel-Lindau E3 ubiquitin ligase and, consequently, proteolytic destruction by the ubiquitin-proteasome pathway. This prolyl hydroxylation is catalyzed by the prolyl-hydroxylase domain (PHD) containing enzymes for which three isozymes have been identified in humans (1-3). Additionally, asparaginyl hydroxylation (Asn803 in HIF-1alpha) by factor-inhibiting HIF (FIH) ablates interaction of the HIF-alpha subunit with the coactivator p300, providing an alternative mechanism for down-regulation of HIF-dependent genes. Under hypoxic conditions, when oxygen-mediated regulation of the alpha-subunits is curtailed or minimized, dimerization of the alpha- and beta-subunits occurs with subsequent target gene upregulation. Therapeutic activation of HIF signaling has been suggested as a potential treatment for numerous conditions, including ischemia, stroke, heart attack, inflammation, and wounding. One possible route to achieve this is via inhibition of the HIF hydroxylases. This chapter details methods for the purification and assaying of PHD2, the most abundant PHD and the most important in setting steady-state levels of HIF-alpha. Assays are described that measure the activity of PHD2 via direct and indirect means. Furthermore, conditions for the screening of small molecules against PHD2 are described.
Collapse
|
46
|
Linke S, Hampton‐Smith RJ, Peet DJ. Characterization of Ankyrin Repeat–Containing Proteins as Substrates of the Asparaginyl Hydroxylase Factor Inhibiting Hypoxia‐Inducible Transcription Factor. Methods Enzymol 2007; 435:61-85. [DOI: 10.1016/s0076-6879(07)35004-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Stok JE, Baldwin JE. Development of enzyme-linked immunosorbent assays for the detection of deacetoxycephalosporin C and isopenicillin N synthase activity. Anal Chim Acta 2006; 577:153-62. [PMID: 17723666 DOI: 10.1016/j.aca.2006.06.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 06/13/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Although there are a number of existing assays for monitoring the activity of both isopenicillin N synthase (IPNS) and deacetoxycephalosporin C synthase (DAOCS), none have demonstrated the qualities required for screening a mutant library. Hence, enzyme-linked immunosorbent assays (ELISAs) for IPNS and DAOCS were developed based on the detection of the catalytic turnover products isopenicillin N and cephalexin/phenylacetyl-7-aminodeacetoxycephalosporanic acid (G-7-ADCA), respectively. These assays are relatively fast compared to existing assays, such as the hole-plate bioassay, and are amenable with high-throughput screening. Both the IPNS and DAOCS-ELISAs were optimised for use with crude protein extracts rather than purified protein, thereby eliminating any additional time required for purification. The ELISA developed for the detection of cephalexin had an IC50 value of 154+/-9 ng mL(-1) and LOD of 7.2+/-2.2 ng mL(-1) under conditions required for the assay. Good recoveries and correlation was observed for spiked samples when the concentration of crude protein was kept below 1 mg mL(-1). The DAOCS-ELISA was found to have increased sensitivity compared to the hole-plate bioassay (10.3 microg mL(-1)). The IPNS-ELISA did not significantly increase the sensitivity (approximately 5 microg mL(-1)) compared to that of the hole-plate bioassay (16 microg mL(-1)) for isopenicillin N. The minimum amount of crude protein extract required for producing detectable amounts of product for both assays was below 0.5% of the maximum amount of protein that the assay could contain without any effect on the ELISA. This suggests that when screening a mutant library, mutants producing low amounts of the product could still be detected using these assays.
Collapse
Affiliation(s)
- Jeanette E Stok
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| | | |
Collapse
|
48
|
McDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Liénard BMR, Zondlo J, Oldham NJ, Clifton IJ, Lewis J, McNeill LA, Kurzeja RJM, Hewitson KS, Yang E, Jordan S, Syed RS, Schofield CJ. Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci U S A 2006; 103:9814-9. [PMID: 16782814 PMCID: PMC1502536 DOI: 10.1073/pnas.0601283103] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Indexed: 11/18/2022] Open
Abstract
Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-alpha subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 A resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded beta-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.
Collapse
Affiliation(s)
- Michael A. McDonough
- *Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Vivian Li
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1789
| | - Emily Flashman
- *Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Rasheduzzaman Chowdhury
- *Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher Mohr
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1789
| | - Benoît M. R. Liénard
- *Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - James Zondlo
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1789
| | - Neil J. Oldham
- *Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ian J. Clifton
- *Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jeffrey Lewis
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1789
| | - Luke A. McNeill
- ReOx Ltd., Magdalen Center, Oxford Science Park, Oxford OX4 4GA, United Kingdom; and
| | | | - Kirsty S. Hewitson
- *Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- ReOx Ltd., Magdalen Center, Oxford Science Park, Oxford OX4 4GA, United Kingdom; and
| | - Evelyn Yang
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1789
| | - Steven Jordan
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1789
| | - Rashid S. Syed
- ReOx Ltd., Magdalen Center, Oxford Science Park, Oxford OX4 4GA, United Kingdom; and
| | - Christopher J. Schofield
- *Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
49
|
Luo L, Pappalardi MB, Tummino PJ, Copeland RA, Fraser ME, Grzyska PK, Hausinger RP. An assay for Fe(II)/2-oxoglutarate-dependent dioxygenases by enzyme-coupled detection of succinate formation. Anal Biochem 2006; 353:69-74. [PMID: 16643838 DOI: 10.1016/j.ab.2006.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/07/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
The Fe(II)/2-oxoglutarate-dependent dioxygenases are a catalytically diverse family of nonheme iron enzymes that oxidize their primary substrates while decomposing the 2-oxoglutarate cosubstrate to form succinate and CO(2). We report a generic assay for these enzymes that uses succinyl-coenzyme A synthetase, pyruvate kinase, and lactate dehydrogenase to couple the formation of the product succinate to the conversion of reduced nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide. We demonstrate the utility of this new method by measuring the kinetic parameters of two bacterial Fe(II)/2-oxoglutarate-dependent dioxygenases. Significantly, this method can be used to investigate both the productive turnover reactions and the nonproductive "uncoupled" decarboxylation reactions of this enzyme family, as demonstrated by using wild-type and variant forms of 2-oxoglutarate-dependent taurine dioxygenase. This assay is amenable to miniaturization and easily adapted to a format suitable for high-throughput screening; thus, it will be a valuable tool to study Fe(II)/2-oxoglutarate-dependent dioxygenases.
Collapse
Affiliation(s)
- Lusong Luo
- Department of Enzymology and Mechanistic Pharmacology, MMPD CEDD, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Cho H, Park H, Yang EG. A fluorescence polarization-based interaction assay for hypoxia-inducible factor prolyl hydroxylases. Biochem Biophys Res Commun 2005; 337:275-80. [PMID: 16182243 DOI: 10.1016/j.bbrc.2005.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/07/2005] [Indexed: 11/28/2022]
Abstract
Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor 1alpha (HIF-1alpha) plays a central role in regulating transcriptional responses to hypoxia. This process requires hydroxylation of specific prolines in HIF-1alpha by HIF prolyl hydroxylase domain (PHD)-containing enzymes, leading to its specific interactions with von Hippel-Lindau protein-Elongin B-Elongin C (VBC). Here we describe a straightforward approach to apply these interactions to measure PHD activities. Employing fluorescently labeled HIF-1alpha peptides containing hydroxyproline, we developed a quantitative method based on fluorescence polarization for a systematic evaluation of binding of hydroxylated HIF-1alpha to recombinant VBC. The method was then successfully utilized for measuring the activity of the truncated, purified PHD2. The applicability of the assay was further demonstrated by examining effects of various cofactors and inhibitors for PHD2. The developed homogeneous assay would provide a convenient way of probing the biochemical properties of the HIF-1alpha-VBC interaction and PHDs, and of screening modulators for the interaction as well as the enzyme.
Collapse
Affiliation(s)
- Hyunju Cho
- Life Sciences Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | | | | |
Collapse
|