1
|
Sadler C, Creamer A, Giang KA, Darmawan KK, Shamsabadi A, Richards DA, Nilvebrant J, Wojciechowski JP, Charchar P, Burdis R, Smith F, Yarovsky I, Nygren PÅ, Stevens MM. Adding a Twist to Lateral Flow Immunoassays: A Direct Replacement of Antibodies with Helical Affibodies, from Selection to Application. J Am Chem Soc 2025; 147:11925-11940. [PMID: 40135773 PMCID: PMC11987028 DOI: 10.1021/jacs.4c17452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Immunoreagents, most commonly antibodies, are integral components of lateral flow immunoassays. However, the use of antibodies comes with limitations, particularly relating to their reproducible production, and poor thermal and chemical stability. Here, we employ phage display to develop affibodies, a class of nonimmunoglobulin affinity proteins based on a small three-helix bundle scaffold, against SARS-CoV-2 Spike protein. Subsequently, we demonstrate the utility and viability of affibodies to directly replace antibodies in lateral flow immunoassays. In addition, we highlight several physiochemical advantages of affibodies, including their ability to withstand exposure to high temperature and humidity while maintaining superior performance compared to their antibody counterparts. Furthermore, we investigate the adsorption mechanism of affibodies to the surface of gold nanoparticle probes via a His6-tag, introduced to also facilitate recombinant purification. Through molecular dynamics simulations, we elucidate the structural and physical characteristics of affibody dimers which result in high-performing detection probes when immobilized on nanoparticle surfaces. This work demonstrates that affibodies can be used as direct replacements to antibodies in immunoassays and should be further considered as alternatives owing to their improved physiochemical properties and modular design.
Collapse
Affiliation(s)
- Christy
J. Sadler
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| | - Adam Creamer
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| | - Kim Anh Giang
- Department
of Protein Science, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm SE-114 21, Sweden
| | | | - André Shamsabadi
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| | - Daniel A. Richards
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Institute
for Chemical and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
| | - Johan Nilvebrant
- Department
of Protein Science, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm SE-114 21, Sweden
| | - Jonathan P. Wojciechowski
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| | - Patrick Charchar
- School
of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Ross Burdis
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
| | - Francesca Smith
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
| | - Irene Yarovsky
- School
of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Per-Åke Nygren
- Department
of Protein Science, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm SE-114 21, Sweden
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
2
|
Cell immunocapture microfluidic chip based on high-affinity recombinant protein binders. Biosens Bioelectron 2021; 172:112784. [PMID: 33161292 DOI: 10.1016/j.bios.2020.112784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
Abstract
Cell immunocapture microfluidic devices represent a rapidly developing field with many potential applications in medical diagnostics. The core of such approach lies in the cell binding to antibody coated surfaces through their surface receptors. Here we show, that the small recombinant protein binders (PBs) can be used for this purpose as well, with the advantage of their constructional flexibility, possibility of fusion with range of tags and cheap mass production. For this purpose, two different PBs derived from Albumin Binding Domain (ABDwt) of streptococcal protein G, so called REX and ARS ligands with proved high affinity and selectivity to the human interleukin-23 (IL-23R) and IL-17 receptor A were used. Four PBs variants recognizing two different epitopes on two different receptors and two PBs variants binding to the same epitope on one receptor but having different peptide spacer with Avitag sequence necessary for their immobilization on sensor surface were tested for cell-capture efficiency. The glass microfluidic Y-system with planar immunocapture channel working in so-called stop-flow dynamic regime was designed. Up to 60-74% immunocapture efficiency of model THP-1 cells on REX/ARS surfaces and practically no cell binding on control ABDwt surfaces was achieved. Moreover, the specific immunocapture of THP-1 cells from mixture with IL-17RA negative DU-145 cells was demonstrated. We discuss the role of the epitope, affinity and immobilization spacer of PBs as well as the influence of stop-flow dynamic regime on the effectivity of THP-1 cell immunocapture. Results can be further exploited in design of microfluidic devices for rare cells immunocapture.
Collapse
|
3
|
Barozzi A, Lavoie RA, Day KN, Prodromou R, Menegatti S. Affibody-Binding Ligands. Int J Mol Sci 2020; 21:ijms21113769. [PMID: 32471034 PMCID: PMC7312911 DOI: 10.3390/ijms21113769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/03/2023] Open
Abstract
While antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts. This work presents the development of affibody-binding peptides to be utilized as ligands for their purification from bacterial lysates. Affibody-binding candidates were identified by screening a peptide library simultaneously against two model affibodies (anti-immunoglobulin G (IgG) and anti-albumin) with the aim of selecting peptides targeting the conserved domain of affibodies. An ensemble of homologous sequences identified from screening was synthesized on Toyopearl® resin and evaluated via binding studies to select sequences that afford high product binding and recovery. The affibody-peptide interaction was also evaluated by in silico docking, which corroborated the targeting of the conserved domain. Ligand IGKQRI was validated through purification of an anti-ErbB2 affibody from an Escherichia coli lysate. The values of binding capacity (~5 mg affibody per mL of resin), affinity (KD ~1 μM), recovery and purity (64-71% and 86-91%), and resin lifetime (100 cycles) demonstrate that IGKQRI can be employed as ligand in affibody purification processes.
Collapse
Affiliation(s)
- Annalisa Barozzi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - R. Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Kevin N. Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
- Correspondence: ; Tel.: +1-919-753-3276
| |
Collapse
|
4
|
Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Abstract
Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms.
Collapse
|
6
|
|
7
|
Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 2015; 33:408-18. [DOI: 10.1016/j.tibtech.2015.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
|
8
|
|
9
|
Wammes AEM, Fischer MJE, de Mol NJ, van Eldijk MB, Rutjes FPJT, van Hest JCM, van Delft FL. Site-specific peptide and protein immobilization on surface plasmon resonance chips via strain-promoted cycloaddition. LAB ON A CHIP 2013; 13:1863-1867. [PMID: 23552823 DOI: 10.1039/c3lc41338a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface plasmon resonance (SPR) is a powerful label-free diagnostic tool to study biomolecular interactions. However, one of the drawbacks of SPR is the lack of controlled immobilization of ligands on the sensor surface. We have developed a modular platform for the fast, reagent-free and site-specific immobilization of azide-containing ligands by strain-promoted cycloaddition onto a cyclooctyne-modified SPR sensor surface. The usefulness of the concept was shown in a study with a papain model system, and up to 150 experiments were performed without loss of surface quality. Furthermore, azide-containing green fluorescent protein (GFP) was also effectively immobilized. Taken together, cyclooctyne-modified SPR chips enable smooth and site-selective immobilization of ligands and prove to be more robust than traditionally functionalized systems.
Collapse
Affiliation(s)
- Angelique E M Wammes
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Lindgren J, Ekblad C, Abrahmsén L, Eriksson Karlström A. A Native Chemical Ligation Approach for Combinatorial Assembly of Affibody Molecules. Chembiochem 2012; 13:1024-31. [DOI: 10.1002/cbic.201200052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
|
12
|
Short peptides as biosensor transducers. Anal Bioanal Chem 2011; 402:3055-70. [DOI: 10.1007/s00216-011-5589-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/25/2011] [Accepted: 11/20/2011] [Indexed: 12/27/2022]
|
13
|
Lindgren J, Wahlström A, Danielsson J, Markova N, Ekblad C, Gräslund A, Abrahmsén L, Karlström AE, Wärmländer SKTS. N-terminal engineering of amyloid-β-binding Affibody molecules yields improved chemical synthesis and higher binding affinity. Protein Sci 2011; 19:2319-29. [PMID: 20886513 DOI: 10.1002/pro.511] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aggregation of amyloid-β (Aβ) peptides is believed to be a major factor in the onset and progression of Alzheimer's disease. Molecules binding with high affinity and selectivity to Aβ-peptides are important tools for investigating the aggregation process. An Aβ-binding Affibody molecule, ZAβ3 , has earlier been selected by phage display and shown to bind Aβ(1-40) with nanomolar affinity and to inhibit Aβ-peptide aggregation. In this study, we create truncated functional versions of the ZAβ3 Affibody molecule better suited for chemical synthesis production. Engineered Affibody molecules of different length were produced by solid phase peptide synthesis and allowed to form covalently linked homodimers by S-S-bridges. The N-terminally truncated Affibody molecules ZAβ3 (12-58), ZAβ3 (15-58), and ZAβ3 (18-58) were produced in considerably higher synthetic yield than the corresponding full-length molecule ZAβ3 (1-58). Circular dichroism spectroscopy and surface plasmon resonance-based biosensor analysis showed that the shortest Affibody molecule, ZAβ3 (18-58), exhibited complete loss of binding to the Aβ(1-40)-peptide, while the ZAβ3 (12-58) and ZAβ3 (15-58) Affibody molecules both displayed approximately one order of magnitude higher binding affinity to the Aβ(1-40)-peptide compared to the full-length Affibody molecule. Nuclear magnetic resonance spectroscopy showed that the structure of Aβ(1-40) in complex with the truncated Affibody dimers is very similar to the previously published solution structure of the Aβ(1-40)-peptide in complex with the full-length ZAβ3 Affibody molecule. This indicates that the N-terminally truncated Affibody molecules ZAβ3 (12-58) and ZAβ3 (15-58) are highly promising for further engineering and future use as binding agents to monomeric Aβ(1-40).
Collapse
Affiliation(s)
- Joel Lindgren
- Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Affinity proteomics, mainly represented by antibody microarrays, has in recent years been established as a powerful tool for high-throughput (disease) proteomics. The technology can be used to generate detailed protein expression profiles, or protein maps, of focused set of proteins in crude proteomes and potentially even high-resolution portraits of entire proteomes. The technology provides unique opportunities, for example biomarker discovery, disease diagnostics, patient stratification and monitoring of disease, and taking the next steps toward personalized medicine. However, the process of designing high-performing, high-density antibody micro- and nanoarrays has proven to be challenging, requiring truly cross-disciplinary efforts to be adopted. In this mini-review, we address one of these key technological issues, namely, the choice of probe format, and focus on the use of recombinant antibodies vs. polyclonal and monoclonal antibodies for the generation of antibody arrays.
Collapse
|
15
|
Ibii T, Kaieda M, Hatakeyama S, Shiotsuka H, Watanabe H, Umetsu M, Kumagai I, Imamura T. Direct immobilization of gold-binding antibody fragments for immunosensor applications. Anal Chem 2010; 82:4229-35. [PMID: 20415430 DOI: 10.1021/ac100557k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel method that enables antibody fragments to be immobilized on a sensor substrate with a high binding capability using molecular recognition has been developed. Using genetic engineering, we fabricated bispecific recombinant antibody fragments, which consist of two kinds of antibody fragments: a gold antibody fragment and a target molecule antibody fragment. Surface plasmon resonance (SPR) analysis indicated that these gold-binding bispecific antibody fragments bind directly to the gold substrate with high affinity (K(D) approximately 10(-9) M). About 70% of the bispecific antibody fragments immobilized on the gold substrate retained their target protein-binding efficiency. The Sips isotherm was used to assess the heterogeneity in antibody affinity for the bispecific antibody fragments. The results showed that the immobilized bispecific antibody fragments exhibited an increased homogeneity of affinity (K(D)) to target molecules when compared with monospecific antibody fragments immobilized by conventional methods. The use of bispecific antibody fragments to directly immobilize antibody fragments on a solid-phase substrate offers a useful platform for immunosensor applications.
Collapse
Affiliation(s)
- Takahisa Ibii
- Corporate R&D Headquarters, Frontier Research Center, Canon Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Skottrup PD. Small biomolecular scaffolds for improved biosensor performance. Anal Biochem 2010; 406:1-7. [PMID: 20599637 DOI: 10.1016/j.ab.2010.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/18/2010] [Accepted: 06/26/2010] [Indexed: 12/18/2022]
|
17
|
Engineering and characterization of a bispecific HER2 x EGFR-binding affibody molecule. Biotechnol Appl Biochem 2009; 54:121-31. [PMID: 19492986 DOI: 10.1042/ba20090096] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
HER2 (human epidermal-growth-factor receptor-2; ErbB2) and EGFR (epidermal-growth-factor receptor) are overexpressed in various forms of cancer, and the co-expression of both HER2 and EGFR has been reported in a number of studies. The simultaneous targeting of HER2 and EGFR has been discussed as a strategy with which to potentially increase efficiency and selectivity in molecular imaging and therapy of certain cancers. In an effort to generate a molecule capable of bispecifically targeting HER2 and EGFR, a gene fragment encoding a bivalent HER2-binding affibody molecule was genetically fused in-frame with a bivalent EGFR-binding affibody molecule via a (G4S)3 [(Gly4-Ser)3]-encoding gene fragment. The encoded 30 kDa affibody construct (ZHER2)2-(G4S)3-(ZEGFR)2, with potential for bs (bispecific) binding to HER2 and EGFR, was expressed in Escherichia coli and characterized in terms of its binding capabilities. The retained ability to bind HER2 and EGFR separately was demonstrated using both biosensor technology and flow-cytometric analysis, the latter using HER2- and EGFR-overexpressing cells. Furthermore, simultaneous binding to HER2 and EGFR was demonstrated in: (i) a sandwich format employing real-time biospecific interaction analysis where the bs affibody molecule bound immobilized EGFR and soluble HER2; (ii) immunofluorescence microscopy, where the bs affibody molecule bound EGFR-overexpressing cells and soluble HER2; and (iii) a cell-cell interaction analysis where the bs affibody molecule bound HER2-overexpressing SKBR-3 cells and EGFR-overexpressing A-431 cells. This is, to our knowledge, the first reported bs affinity protein with potential ability for the simultaneous targeting of HER2 and EGFR. The potential future use of this and similar constructs, capable of bs targeting of receptors to increase the efficacy and selectivity in imaging and therapy, is discussed.
Collapse
|
18
|
Ekblad T, Tolmachev V, Orlova A, Lendel C, Abrahmsén L, Karlström AE. Synthesis and chemoselective intramolecular crosslinking of a HER2-binding affibody. Biopolymers 2009; 92:116-23. [PMID: 19140162 DOI: 10.1002/bip.21142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The human epidermal growth factor receptor HER2 has emerged as an important target for molecular imaging of breast cancer. This article presents the design and synthesis of a HER2-targeting affibody molecule with improved stability and tumor targeting capacity, and with potential use as an imaging agent. The 58 aa three-helix bundle protein was assembled using solid-phase peptide synthesis, and a chemoselective ligation strategy was used to establish an intramolecular thioether bond between the side chain thiol group of a cysteine residue, positioned in the loop between helices I and II, and a chloroacetyl group on the side chain amino group of the C-terminal lysine residue. The tethered protein offered an increased thermal stability, with a melting temperature of 64 degrees C, compared to 54 degrees C for the linear control. The ligation did not have a major influence on the HER2 binding affinity, which was 320 and 380 pM for the crosslinked and linear molecules, respectively. Biodistribution studies were performed both in normal and tumor-bearing mice to evaluate the impact of the crosslinking on the in vivo behavior and on the tumor targeting performance. The distribution pattern was characterized by a low uptake in all organs except kidney, and rapid clearance from blood and normal tissue. Crosslinking of the protein resulted in a significantly increased tumor accumulation, rendering the tethered HER2-binding affibody molecule a valuable lead in the development of superior HER2 imaging agents.
Collapse
Affiliation(s)
- Torun Ekblad
- School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Renberg B, Sato K, Mawatari K, Idota N, Tsukahara T, Kitamori T. Serial DNA immobilization in micro- and extended nanospace channels. LAB ON A CHIP 2009; 9:1517-23. [PMID: 19458857 DOI: 10.1039/b823436a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
That focused arrays, even with a small set of ligands, provide more data than single point experiments is well established in the DNA microarray research field, but microarray technology has yet to be transferred to fused silica microchips. Fused silica microchips have several attractive features such as stability to pressure, solvents, acids and bases, and can be fabricated with minute dimensions, making them good candidates for nanofluidic research. However, due to harsh bonding conditions, DNA ligands must be immobilized after fabrication, thus preventing standard microarray spotting techniques from being used. In this paper, we provide tools for serial DNA immobilization in fused silica microchips using UV. We report the synthesis of a new UV-linker which was used to covalently couple functional DNA oligos to the inside of channels in fused silica microchips. With some simple modifications to our mask aligner, we were able to transfer OHP mask patterns, which allows the creation of basically any pattern in the channels. The functionality of the oligos was measured through the binding of fluorophore-labeled complementary target oligos. We examined parameters influencing DNA immobilization, and carry-over between spots after consecutive immobilizations inside the same channel. We also report the first successful multiple immobilizations of functional DNA oligos inside single channels of extended nanospace depth (460 nm).
Collapse
Affiliation(s)
- Björn Renberg
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Davis JJ, Tkac J, Humphreys R, Buxton AT, Lee TA, Ko Ferrigno P. Peptide Aptamers in Label-Free Protein Detection: 2. Chemical Optimization and Detection of Distinct Protein Isoforms. Anal Chem 2009; 81:3314-20. [DOI: 10.1021/ac802513n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason J. Davis
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, and Section of Experimental Therapeutics, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Beckett Street, Leeds LS9 7TF
| | - Jan Tkac
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, and Section of Experimental Therapeutics, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Beckett Street, Leeds LS9 7TF
| | - Rachel Humphreys
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, and Section of Experimental Therapeutics, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Beckett Street, Leeds LS9 7TF
| | - Anthony T. Buxton
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, and Section of Experimental Therapeutics, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Beckett Street, Leeds LS9 7TF
| | - Tracy A. Lee
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, and Section of Experimental Therapeutics, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Beckett Street, Leeds LS9 7TF
| | - Paul Ko Ferrigno
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, and Section of Experimental Therapeutics, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Beckett Street, Leeds LS9 7TF
| |
Collapse
|
21
|
Grönwall C, Ståhl S. Engineered affinity proteins—Generation and applications. J Biotechnol 2009; 140:254-69. [DOI: 10.1016/j.jbiotec.2009.01.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 12/05/2008] [Accepted: 01/26/2009] [Indexed: 12/11/2022]
|
22
|
Nygren PÅ. Alternative binding proteins: Affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 2008; 275:2668-76. [DOI: 10.1111/j.1742-4658.2008.06438.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Friedman M, Orlova A, Johansson E, Eriksson TLJ, Höidén-Guthenberg I, Tolmachev V, Nilsson FY, Ståhl S. Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule. J Mol Biol 2008; 376:1388-402. [PMID: 18207161 DOI: 10.1016/j.jmb.2007.12.060] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 12/20/2022]
Abstract
The epidermal growth factor receptor 1 (EGFR) is overexpressed in various malignancies and is associated with a poor patient prognosis. A small, receptor-specific, high-affinity imaging agent would be a useful tool in diagnosing malignant tumors and in deciding upon treatment and assessing the response to treatment. We describe here the affinity maturation procedure for the generation of Affibody molecules binding with high affinity and specificity to EGFR. A library for affinity maturation was constructed by rerandomization of selected positions after the alignment of first-generation binding variants. New binders were selected with phage display technology, using a single oligonucleotide in a single-library effort, and the best second-generation binders had an approximately 30-fold improvement in affinity (K(d)=5-10 nM) for the soluble extracellular domain of EGFR in biospecific interaction analysis using Biacore. The dissociation equilibrium constant, K(d), was also determined for the Affibody with highest affinity using EGFR-expressing A431 cells in flow cytometric analysis (K(d)=2.8 nM). A retained high specificity for EGFR was verified by a dot blot assay showing staining only of EGFR proteins among a panel of serum proteins and other EGFR family member proteins (HER2, HER3, and HER4). The EGFR-binding Affibody molecules were radiolabeled with indium-111, showing specific binding to EGFR-expressing A431 cells and successful targeting of the A431 tumor xenografts with 4-6% injected activity per gram accumulated in the tumor 4 h postinjection.
Collapse
Affiliation(s)
- Mikaela Friedman
- Department of Molecular Biotechnology, AlbaNova University Center, Kungl Tekniska Högskolan (KTH), SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Feng J, Wong KY, Lynch GC, Gao X, Pettitt BM. Peptide conformations for a microarray surface-tethered epitope of the tumor suppressor p53. J Phys Chem B 2007; 111:13797-806. [PMID: 18004834 PMCID: PMC2538448 DOI: 10.1021/jp075051y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptides or proteins near surfaces exhibit different structural properties from those present in a homogeneous solution, and these differences give rise to varied biological activity. Therefore, understanding the detailed molecular structure of these molecules tethered to a surface is important for interpreting the performance of the various microarrays based on the activities of the immobilized peptides or proteins. We performed molecular dynamics simulations of a pentapeptide, RHSVV, an epitope of the tumor suppressor protein p53, tethered via a spacer on a functionalized silica surface and free in solution, to study their structural and conformational differences. These calculations allowed analyses of the peptide-surface interactions, the sequence orientations, and the translational motions of the peptide on the surface to be performed. Conformational similarities are found among dominant structures of the tethered and free peptide. In the peptide microarray simulations, the peptide fluctuates between a parallel and tilted orientation driven in part by the hydrophobic interactions between the nonpolar peptide residues and the methyl-terminated silica surface. The perpendicular movement of the peptide relative to the surface is also restricted due to the hydrophobic nature of the microarray surface. With regard to structures available for recognition and binding, we find that similar conformations to those found in solution are available to the peptide tethered to the surface, but with a shifted equilibrium constant. Comparisons with experimental results show important implications of this for peptide microarray design and assays.
Collapse
Affiliation(s)
- Jun Feng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Ka-Yiu Wong
- Department of Chemistry and Institute for Molecular Design, University of Houston, Houston, TX 77204-5003, USA
| | - Gillian C. Lynch
- Department of Chemistry and Institute for Molecular Design, University of Houston, Houston, TX 77204-5003, USA
| | - Xiaolian Gao
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
- Department of Chemistry and Institute for Molecular Design, University of Houston, Houston, TX 77204-5003, USA
| | - B. Montgomery Pettitt
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
- Department of Chemistry and Institute for Molecular Design, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
25
|
Renberg B, Nordin J, Merca A, Uhlén M, Feldwisch J, Nygren PA, Karlström AE. Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. J Proteome Res 2007; 6:171-9. [PMID: 17203961 DOI: 10.1021/pr060316r] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of the ligand presentation format for the production of protein capture microarrays was evaluated using different Affibody molecules, produced either as single 6 kDa monomers or genetically linked head-to-tail multimers containing up to four domains. The performances in terms of selectivity and sensitivity of the monomeric and the multidomain Affibody molecules were compared by immobilization of the ligands on microarray slides, followed by incubation with fluorescent-labeled target protein. An increase in signal intensities for the multimers was demonstrated, with the most pronounced difference observed between monomers and dimers. A protein microarray containing six different dimeric Affibody ligands with specificity for IgA, IgE, IgG, TNF-alpha, insulin, or Taq DNA polymerase was characterized for direct detection of fluorescent-labeled analytes. No cross-reactivity was observed and the limits of detection were 600 fM for IgA, 20 pM for IgE, 70 fM for IgG, 20 pM for TNF-alpha, 60 pM for insulin, and 10 pM for Taq DNA polymerase. Also, different sandwich formats for detection of unlabeled protein were evaluated and used for selective detection of IgA or TNF-alpha in human serum or plasma samples, respectively. Finally, the presence of IgA was determined using detection of directly Cy5-labeled normal or IgA-deficient serum samples.
Collapse
Affiliation(s)
- Björn Renberg
- School of Biotechnology, Division of Molecular Biotechnology, Royal Institute of Technology, AlbaNova University Center, SE - 106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Friedman M, Nordberg E, Höidén-Guthenberg I, Brismar H, Adams GP, Nilsson FY, Carlsson J, Ståhl S. Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor. Protein Eng Des Sel 2007; 20:189-99. [PMID: 17452435 DOI: 10.1093/protein/gzm011] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Affibody molecules specific for the epidermal growth factor receptor (EGFR) have been selected by phage display technology from a combinatorial protein library based on the 58-residue, protein A-derived Z domain. EGFR is overexpressed in various malignancies and is frequently associated with poor patient prognosis, and the information provided by targeting this receptor could facilitate both patient diagnostics and treatment. Three selected Affibody variants were shown to selectively bind to the extracellular domain of EGFR (EGFR-ECD). Kinetic biosensor analysis revealed that the three monomeric Affibody molecules bound with similar affinity, ranging from 130 to 185 nM. Head-to-tail dimers of the Affibody molecules were compared for their binding to recombinant EGFR-ECD in biosensor analysis and in human epithelial cancer A431 cells. Although the dimeric Affibody variants were found to bind in a range of 25-50 nM affinities in biosensor analysis, they were found to be low nanomolar binders in the cellular assays. Competition assays using radiolabeled Affibody dimers confirmed specific EGFR-binding and demonstrated that the three Affibody molecules competed for the same epitope. Immunofluorescence microscopy demonstrated that the selected Affibody dimers were initially binding to EGFR at the cell surface of A431, and confocal microscopy analysis showed that the Affibody dimers could thereafter be internalized. The potential use of the described Affibody molecules as targeting agents for radionuclide based imaging applications in various carcinomas is discussed.
Collapse
Affiliation(s)
- M Friedman
- Department of Molecular Biotechnology, AlbaNova University Center, Kungl Tekniska Högskolan, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Davis JJ, Tkac J, Laurenson S, Ko Ferrigno P. Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold. Anal Chem 2007; 79:1089-96. [PMID: 17263340 DOI: 10.1021/ac061863z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein microarray development is absolutely dependent upon the ability to construct interfaces capable of specific, stable, sensitive, and designable recognition of specific proteins. Peptide aptamers, being peptide recognition moieties presented and constrained by a robust scaffold protein, offer one possible solution. The relative uniformity of a scaffold protein across potentially many thousands of arrayed peptide aptamers is predicted to simplify the production of microarrays. This paper describes the generation and assaying characteristics of a scaffold protein adlayer. Orientational control of the scaffold protein STM, a triply mutated form of the stable intracellular protein inhibitor stefin A is achieved with a surface cysteine residue, which leads to the presentation of the scaffold recognition surface to solution. Operational stability of the system is excellent, with only a minor decrease in detection sensitivity over time (less than 1% h-1). We use this system to establish a surface plasmon resonance assay offering a limit of detection of 1 nM (150 ng mL-1) and determine the affinity constant of interaction of STM for a cognate antibody to be KD = 1.47 +/- 0.23 nM. Thus, we have established a solid foundation for the future creation of highly multiplexed peptide aptamer microarrays that will be compatible with a broad range of label-free detection technologies.
Collapse
Affiliation(s)
- Jason J Davis
- Central Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK. jason.davis@ chem.ox.ac.uk
| | | | | | | |
Collapse
|
28
|
Wingren C, Borrebaeck CAK. Antibody microarrays: current status and key technological advances. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 10:411-27. [PMID: 17069517 DOI: 10.1089/omi.2006.10.411] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antibody-based microarrays are among the novel classes of rapidly evolving proteomic technologies that holds great promise in biomedicine. Miniaturized microarrays (< 1 cm2) can be printed with thousands of individual antibodies carrying the desired specificities, and with biological sample (e.g., an entire proteome) added, virtually any specifically bound analytes can be detected. While consuming only minute amounts (< microL scale) of reagents, ultra- sensitive assays (zeptomol range) can readily be performed in a highly multiplexed manner. The microarray patterns generated can then be transformed into proteomic maps, or detailed molecular fingerprints, revealing the composition of the proteome. Thus, protein expression profiling and global proteome analysis using this tool will offer new opportunities for drug target and biomarker discovery, disease diagnostics, and insights into disease biology. Adopting the antibody microarray technology platform, several biomedical applications, ranging from focused assays to proteome-scale analysis will be rapidly emerging in the coming years. This review will discuss the current status of the antibody microarray technology focusing on recent technological advances and key issues in the process of evolving the methodology into a high-performing proteomic research tool.
Collapse
|
29
|
Heuer JG, Cummins DJ, Edmonds BT. Multiplex proteomic approaches to sepsis research: case studies employing new technologies. Expert Rev Proteomics 2006; 2:669-80. [PMID: 16209647 DOI: 10.1586/14789450.2.5.669] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sepsis is a multifactorial disease that provides unique challenges to the critical care physician. Diagnosis is hampered by the lack of a quantitative in vitro diagnostic test, instead, it relies on a series of clinical measures. The complex nature of the disease, with involvement of several physiologic systems, suggests a need to simultaneously monitor many clinical parameters. Novel proteomic technologies now exist that enable the multiplex measurement of multiple protein analytes from the same sample. Integration of these analytical measures with patient clinical data may provide the foundation for a better understanding of disease diagnosis, disease progression and the selection of optimal therapeutic regimen. The future challenge is the translation of these multiplex approaches from investigative research to clinical diagnostics for the greatest impact on patient treatment decisions.
Collapse
Affiliation(s)
- Josef G Heuer
- Lilly Research Laboratories, Biotherapeutic Discovery Research, IN 46285, USA.
| | | | | |
Collapse
|
30
|
Engfeldt T, Orlova A, Tran T, Bruskin A, Widström C, Karlström AE, Tolmachev V. Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 2006; 34:722-733. [PMID: 17146656 DOI: 10.1007/s00259-006-0266-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 08/10/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE Expression of human epidermal growth factor receptor type 2 (HER2) in malignant tumours possesses well-documented prognostic and predictive value. Non-invasive imaging of expression can provide valuable diagnostic information, thereby influencing patient management. Previously, we reported a phage display selection of a small (about 7 kDa) protein, the Affibody molecule Z(HER2:342), which binds HER2 with subnanomolar affinity, and demonstrated the feasibility of targeting of HER2-expressing xenografts using radioiodinated Z(HER2:342). The goal of this study was to develop a method for (99m)Tc labelling of Z(HER2:342) using the MAG3 chelator, which was incorporated into Z(HER2:342) using peptide synthesis, and evaluate the targeting properties of the labelled conjugate. METHODS MAG3-Z(HER2:342) was assembled using Fmoc/tBu solid phase peptide synthesis. Biochemical characterisation of the agent was performed using RP-HPLC, ESI-MS, biosensor studies and circular dichroism. A procedure for (99m)Tc labelling in the presence of sodium/potassium tartrate was established. Tumour targeting was evaluated by biodistribution study and gamma camera imaging in xenograft-bearing mice. Biodistribution of (99m)Tc-MAG3-Z(HER2:342) and (125)I-para-iodobenzoate -Z(HER2:342) was compared 6 h p.i. RESULTS Synthetic MAG3-Z(HER2:342) possessed an affinity of 0.2 nM for HER2 receptors. The peptide was labelled with (99m)Tc with an efficiency of about 75-80%. Labelled (99m)Tc-MAG3-Z(HER2:342) retained capacity to bind specifically HER2-expressing SKOV-3 cells in vitro. (99m)Tc-MAG3-Z(HER2:342) showed specific tumour targeting with a contrast similar to a radioiodinated analogue in mice bearing LS174T xenografts. Gamma camera imaging demonstrated clear and specific visualisation of HER2 expression. CONCLUSION Incorporation of a mercaptoacetyl-containing chelating sequence during chemical synthesis enabled site-specific (99m)Tc labelling of the Z(HER2:342) Affibody molecule with preserved targeting capacity.
Collapse
Affiliation(s)
- Torun Engfeldt
- School of Biotechnology, Division of Molecular Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Affibody AB, Bromma, Sweden
| | - Thuy Tran
- Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexander Bruskin
- Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Charles Widström
- Department of Hospital Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Amelie Eriksson Karlström
- School of Biotechnology, Division of Molecular Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
- Affibody AB, Bromma, Sweden.
| |
Collapse
|
31
|
Lundberg E, Höidén-Guthenberg I, Larsson B, Uhlén M, Gräslund T. Site-specifically conjugated anti-HER2 Affibody molecules as one-step reagents for target expression analyses on cells and xenograft samples. J Immunol Methods 2006; 319:53-63. [PMID: 17196217 DOI: 10.1016/j.jim.2006.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 10/13/2006] [Accepted: 10/21/2006] [Indexed: 01/21/2023]
Abstract
Affibody molecules are a class of small and robust affinity proteins that can be generated to interact with a variety of antigens, thus having the potential to provide useful tools for biotechnological research and diagnostic applications. In this study, we have investigated Affibody-based reagents interacting specifically with the tyrosine kinase receptor HER2. A head-to-tail dimeric construct was site-specifically conjugated with different fluorescent and enzymatic groups resulting in reagents that were used for detection and quantification. The amount of cell surface expressed HER2 on eleven (11) well characterized cell lines was quantified relative to each other by flow cytometry and shown to correlate well with results from parallel analyses of HER2 mRNA levels measured by real-time PCR. Further, immunofluorescence microscopy studies of the cell lines and immunohistochemical analyses of cryosections of HER2 expressing SKOV-3 xenografts showed strong staining of the plasma membrane of tumor cells with little background staining. Full-length HER2 protein could also be efficiently recovered from a cell extract by an immunoprecipitation procedure, using an Affibody ligand-based resin. These novel non-IgG derived reagents could be used to detect and quantify HER2 expression. By adapting the methods for use with Affibody molecules binding to other cell surface receptors, it is anticipated that also these receptors can be detected and quantified in a similar manner.
Collapse
Affiliation(s)
- Emma Lundberg
- Department of Biotechnology, Albanova University Center, Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
32
|
Abstract
Display technologies are fundamental to the isolation of specific high-affinity binding proteins for diagnostic and therapeutic applications in cancer, neurodegenerative, and infectious diseases as well as autoimmune and inflammatory disorders. Applications extend into the broad field of antibody (Ab) engineering, synthetic enzymes, proteomics, and cell-free protein synthesis. Recently, in vitro display technologies have come to prominence due to the isolation of high-affinity human antibodies by phage display, the development of novel scaffolds for ribosome display, and the discovery of novel protein-protein interactions. In vitro display represents an emerging and innovative technology for the rapid isolation and evolution of high-affinity peptides and proteins. So far, only one clinical drug candidate produced by in vitro display technology has been approved by the FDA for use in humans, but several are in clinical or preclinical testing. This review highlights recent advances in various engineered biopharmaceutical products isolated by in vitro display with a focus on the commercial developments.
Collapse
Affiliation(s)
- Achim Rothe
- CSIRO Molecular and Health Technologies, Parkville, Victoria, Australia
| | | | | |
Collapse
|
33
|
Hosse RJ, Rothe A, Power BE. A new generation of protein display scaffolds for molecular recognition. Protein Sci 2006; 15:14-27. [PMID: 16373474 PMCID: PMC2242358 DOI: 10.1110/ps.051817606] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered antibodies and their fragments are invaluable tools for a vast range of biotechnological and pharmaceutical applications. However, they are facing increasing competition from a new generation of protein display scaffolds, specifically selected for binding virtually any target. Some of them have already entered clinical trials. Most of these nonimmunoglobulin proteins are involved in natural binding events and have amazingly diverse origins, frameworks, and functions, including even intrinsic enzyme activity. In many respects, they are superior over antibody-derived affinity molecules and offer an ever-extending arsenal of tools for, e.g., affinity purification, protein microarray technology, bioimaging, enzyme inhibition, and potential drug delivery. As excellent supporting frameworks for the presentation of polypeptide libraries, they can be subjected to powerful in vitro or in vivo selection and evolution strategies, enabling the isolation of high-affinity binding reagents. This article reviews the generation of these novel binding reagents, describing validated and advanced alternative scaffolds as well as the most recent nonimmunoglobulin libraries. Characteristics of these protein scaffolds in terms of structural stability, tolerance to multiple substitutions, ease of expression, and subsequent applications as specific targeting molecules are discussed. Furthermore, this review shows the close linkage between these novel protein tools and the constantly developing display, selection, and evolution strategies using phage display, ribosome display, mRNA display, cell surface display, or IVC (in vitro compartmentalization). Here, we predict the important role of these novel binding reagents as a toolkit for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Ralf J Hosse
- Preventative Health National Research Flagship, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
34
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
35
|
Carrigan SD, Tabrizian M. Reducing nonspecific adhesion on cross-linked hydrogel platforms for real-time immunoassay in serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:12320-6. [PMID: 16343009 DOI: 10.1021/la052046h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biointerfaces that limit nonspecific adhesion of serum proteins have been developed by relying solely on cross-linked hydrogels. In addition to being characterized for adhesion of serum proteins, immunoassay sensitivity was also investigated through a sandwich assay for rhIL-1ra. Among the compositions developed, the optimal surface is comprised of pre-cross-linked carboxymethylcellulose (CMC) and polyethyleneimine (PEI) overlaid on a cross-linked layer of poly(ethylene glycol) (PEG) and PEI and employs an anti-IgG Fc specific ligand for oriented antibody immobilization; viscoelastic modeling provides a thickness estimate of 5 nm for the hydrogel alone, rising to 33 nm after the deposition of antibodies. Alternate compositions employing a Protein A ligand and PEG at the exposed surface of the biointerface were disfavored due to an 8-fold increase in serum adhesion and retarded immobilization kinetics, respectively. Through the rapid deposition provided by hydrogels, construction of the entire biointerface, including receptor immobilization, can be completed in 1 h. Based on QCM-D measurements, estimated nonspecific serum adsorption using these compositions is as low as 1.1 ng/mm2. The immunoassay as developed requires 10 min, providing a detection limit of 500 ng/mL rhIL-1ra in 25% human serum using only 5 microg of the secondary antibody.
Collapse
Affiliation(s)
- Shawn D Carrigan
- McGill University, Biomedical Engineering Department, 3775 University St., Duff Medical Building, Room 316, Montreal, QC, Canada H3A 2B4
| | | |
Collapse
|