1
|
Sawayama R, Minoda M, Kojima H, Okabe T, Isayama Y, Kato K, Nishimasu H, Urano Y, Komatsu T. Application of Intramolecular O-to-N Phosphoryl Transfer Reaction to Design Fluorogenic Probes to Detect Activities of Enzymes That Metabolize Short Peptides and Acylamino Acids. ACS Sens 2025; 10:664-670. [PMID: 39903855 DOI: 10.1021/acssensors.4c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
We propose the design strategy of fluorogenic probes of proteases/peptidases and acylamino acid hydrolases utilizing an intramolecular O-to-N phosphoryl transfer reaction, in which the main chain of peptides or amino acids is retained from the natural substrate but the side chain was designed to attach the fluorophore. The strategy is useful to design fluorogenic probes for peptidases/proteases that do not prefer the main chain modification and acylamino acid hydrolases. We have developed the fluorogenic substrates for GGT5, GGCT, and PM20D1 and have performed the screening of PM20D1 inhibitors/activators to characterize the compounds that modify the activity of PM20D1.
Collapse
Affiliation(s)
- Risako Sawayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mayano Minoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukari Isayama
- Mechanistic Immunology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazuki Kato
- Mechanistic Immunology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Kabeiseman E, Paulsen RT, Burrell BD. Characterization of a Fatty Acid Amide Hydrolase (FAAH) in Hirudo Verbana. Neurochem Res 2024; 49:3015-3029. [PMID: 39093361 PMCID: PMC11450075 DOI: 10.1007/s11064-024-04216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
The endocannabinoid system plays a critical role in modulating both peripheral and central nervous system function. Despite being present throughout the animal kingdom, there has been relatively little investigation of the endocannabinoid system beyond traditional animal models. In this study, we report on the identification and characterization of a putative fatty acid amide hydrolase (FAAH) in the medicinal leech, Hirudo verbana. FAAH is the primary enzyme responsible for metabolizing the endocannabinoid signaling molecule arachidonoyl ethanolamide (anandamide or AEA) and therefore plays a critical role in regulating AEA levels in the nervous system. mRNA encoding Hirudo FAAH (HirFAAH) is expressed in the leech central nervous system (CNS) and sequence analysis suggests that this is an orthologue of FAAH-2 observed in vertebrates. Functionally, HirFAAH has serine hydrolase activity based on activity-based protein profiling (ABPP) studies using the fluorophosphonate probe TAMRA-FP. HirFAAH also hydrolyzes arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a substrate specific to FAAH. Hydrolase activity during both the ABPP and AAMCA assays was eliminated by a mutation at a conserved catalytic serine. Activity was also blocked by the known FAAH inhibitor, URB597. Treatment of Hirudo ganglia with URB597 potentiated synapses made by the pressure-sensitive mechanosensory neuron (P cell), mimicking the effects of exogenously applied AEA. The Hirudo CNS has been a useful system in which to study properties of endocannabinoid modulation of nociception relevant to vertebrates. Therefore, this characterization of HirFAAH is an important contribution to comparative studies of the endocannabinoid system.
Collapse
Affiliation(s)
- Emily Kabeiseman
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Riley T Paulsen
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
3
|
Ciuffreda P, Xynomilakis O, Casati S, Ottria R. Fluorescence-Based Enzyme Activity Assay: Ascertaining the Activity and Inhibition of Endocannabinoid Hydrolytic Enzymes. Int J Mol Sci 2024; 25:7693. [PMID: 39062935 PMCID: PMC11276806 DOI: 10.3390/ijms25147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/β-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.
Collapse
Affiliation(s)
| | | | | | - Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (P.C.); (O.X.); (S.C.)
| |
Collapse
|
4
|
Kabeiseman E, Paulsen RT, Burrell BD. Characterization of a Fatty Acid Amide Hydrolase (FAAH) in Hirudo verbana. RESEARCH SQUARE 2024:rs.3.rs-4271305. [PMID: 38699363 PMCID: PMC11065068 DOI: 10.21203/rs.3.rs-4271305/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The endocannabinoid system plays a critical role in modulating both peripheral and central nervous system function. Despite being present throughout the animal kingdom, there has been relatively little investigation of the endocannabinoid system beyond the traditional animal model systems. In this study, we report on the identification and characterization of a fatty acid aminohydrolase (FAAH) in the medicinal leech, Hirudo verbana. FAAH is the primary enzyme responsible for metabolizing the endocannabinoid signaling molecule arachidonoyl ethanolamide (anandamide or AEA) and therefore plays a critical role in regulating AEA levels in the nervous system. This Hirudo FAAH (HirFAAH) is expressed in the leech central nervous system (CNS) and is an orthologue of FAAH-2 observed in vertebrates. Functionally, HirFAAH has serine hydrolase activity based on activity-based protein profiling (ABPP) studies using the fluorophosphonate probe TAMRA-FP. HirFAAH also hydrolyzes arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a substrate specific to FAAH. Hydrolase activity during both the ABPP and AAMCA assays was eliminated by mutation at a conserved activity-binding site. Activity was also blocked by the known FAAH inhibitor, URB597. Treatment of Hirudo ganglia with URB597 potentiated synapses made by the pressure-sensitive mechanosensory neuron (P cell), mimicking the effects of exogenously applied AEA. The Hirudo CNS has been a useful system in which to study properties of endocannabinoid modulation of nociception relevant to vertebrates. Therefore, this characterization of HirFAAH is an important contribution to comparative studies of the endocannabinoid system.
Collapse
|
5
|
Casasampere M, Ung J, Iñáñez A, Dufau C, Tsuboi K, Casas J, Tan SF, Feith DJ, Andrieu-Abadie N, Segui B, Loughran TP, Abad JL, Fabrias G. A fluorogenic substrate for the detection of lipid amidases in intact cells. J Lipid Res 2024; 65:100520. [PMID: 38369184 PMCID: PMC10956054 DOI: 10.1016/j.jlr.2024.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 μM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 μM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 μM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.
Collapse
Affiliation(s)
- Mireia Casasampere
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Johnson Ung
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alejandro Iñáñez
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Carine Dufau
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Josefina Casas
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Su-Fern Tan
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David J Feith
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nathalie Andrieu-Abadie
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Bruno Segui
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France; Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Thomas P Loughran
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - José Luis Abad
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Gemma Fabrias
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; CIBEREHD, Madrid, Spain; Spanish National Research Council (CSIC)'s Cancer Hub, Madrid, Spain.
| |
Collapse
|
6
|
Malamas MS, Lamani M, Farah SI, Mohammad KA, Miyabe CY, Rajarshi G, Wu S, Zvonok N, Chandrashekhar H, Wood JT, Makriyannis A. Design and Synthesis of Highly Potent and Specific ABHD6 Inhibitors. ChemMedChem 2023; 18:e202100406. [PMID: 34486233 PMCID: PMC8898323 DOI: 10.1002/cmdc.202100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Indexed: 01/15/2023]
Abstract
Fine-tuning than complete disruption of 2-arachidonoylglycerol (2-AG) metabolism in the brain represents a promising pharmacological approach to limit potential untoward effects associated with complete blockade of monoacylglycerol lipase (MGL), the primary hydrolase of 2-AG. This could be achieved through a/b-hydrolase domain containing 6 (ABHD6) inhibition, which will provide a smaller and safer contribution to 2-AG regulation in the brain. Pharmacological studies with ABHD6 inhibitors have recently been reported, where modulation of ABHD6 activity either through CB1R-dependent or CB1R-independent processes showed promise in preclinical models of epilepsy, neuropathic pain and inflammation. Furthermore in the periphery, ABHD6 modulates 2-AG and other fatty acid monoacylglycerols (MAGs) and is implicated in Type-2 diabetes, metabolic syndrome and potentially other diseases. Herein, we report the discovery of single-digit nanomolar potent and highly specific ABHD6 inhibitors with >1000-fold selectivity against MGL and FAAH. The new ABHD6 inhibitors provide early leads to develop therapeutics for neuroprotection and the treatment of inflammation and diabetes.
Collapse
Affiliation(s)
- Michael S. Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Manjunath Lamani
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shrouq I. Farah
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Khadijah A. Mohammad
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christina Yume Miyabe
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Simiao Wu
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Zvonok
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - JodiAnne T. Wood
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Deng T, Jovanovic VM, Tristan CA, Weber C, Chu PH, Inman J, Ryu S, Jethmalani Y, Ferreira de Sousa J, Ormanoglu P, Twumasi P, Sen C, Shim J, Jayakar S, Bear Zhang HX, Jo S, Yu W, Voss TC, Simeonov A, Bean BP, Woolf CJ, Singeç I. Scalable generation of sensory neurons from human pluripotent stem cells. Stem Cell Reports 2023; 18:1030-1047. [PMID: 37044067 PMCID: PMC10147831 DOI: 10.1016/j.stemcr.2023.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Development of new non-addictive analgesics requires advanced strategies to differentiate human pluripotent stem cells (hPSCs) into relevant cell types. Following principles of developmental biology and translational applicability, here we developed an efficient stepwise differentiation method for peptidergic and non-peptidergic nociceptors. By modulating specific cell signaling pathways, hPSCs were first converted into SOX10+ neural crest, followed by differentiation into sensory neurons. Detailed characterization, including ultrastructural analysis, confirmed that the hPSC-derived nociceptors displayed cellular and molecular features comparable to native dorsal root ganglion (DRG) neurons, and expressed high-threshold primary sensory neuron markers, transcription factors, neuropeptides, and over 150 ion channels and receptors relevant for pain research and axonal growth/regeneration studies (e.g., TRPV1, NAV1.7, NAV1.8, TAC1, CALCA, GAP43, DPYSL2, NMNAT2). Moreover, after confirming robust functional activities and differential response to noxious stimuli and specific drugs, a robotic cell culture system was employed to produce large quantities of human sensory neurons, which can be used to develop nociceptor-selective analgesics.
Collapse
Affiliation(s)
- Tao Deng
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Vukasin M Jovanovic
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Carlos A Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Claire Weber
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Jason Inman
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Seungmi Ryu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Yogita Jethmalani
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Juliana Ferreira de Sousa
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Prisca Twumasi
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Chaitali Sen
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Weifeng Yu
- Sophion Bioscience, North Brunswick, NJ 08902, USA
| | - Ty C Voss
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA.
| |
Collapse
|
8
|
High-throughput optical assays for sensing serine hydrolases in living systems and their applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
|
10
|
Bajaj S, Jain S, Vyas P, Bawa S, Vohora D. The role of endocannabinoid pathway in the neuropathology of Alzheimer's disease: Can the inhibitors of MAGL and FAAH prove to be potential therapeutic targets against the cognitive impairment associated with Alzheimer's disease? Brain Res Bull 2021; 174:305-322. [PMID: 34217798 DOI: 10.1016/j.brainresbull.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by progressive decline of cognitive function in combination with neuronal death. Current approved treatment target single dysregulated pathway instead of multiple mechanism, resulting in lack of efficacy in slowing down disease progression. The proclivity of endocannabinoid system to exert neuroprotective action and mitigate symptoms of neurodegeneration condition has received substantial interest. Growing evidence suggest the endocannabinoids (eCB) system, viz. anadamide (AEA) and arachidonoyl glycerol (2-AG), as potential therapeutic targets with the ability to modify Alzheimer's pathology by targeting the inflammatory, neurodegenerative and cognitive aspects of the disease. In order to modulate endocannabinoid system, number of agents have been reported amongst which are inhibitors of the monoacylglycerol (MAGL) and fatty acid amide hydrolase (FAAH), the enzymes that hydrolyses 2-AG and AEA respectively. However, little is known regarding the exact mechanistic signalling and their effects on pathophysiology and cognitive decline associated with Alzheimer's disease. Both MAGL and FAAH inhibitors possess fascinating properties that may offer a multi-faceted approach for the treatment of Alzheimer's disease such as potential to protect neurons from deleterious effect of amyloid-β, reducing phosphorylation of tau, reducing amyloid-β induced oxidative stress, stimulating neurotrophin to support brain intrinsic repair mechanism etc. Based on empirical evidence, MAGL and FAAH inhibitors might have potential for therapeutic efficacy against cognitive impairment associated with Alzheimer's disease. The aim of this review is to summarize the experimental studies demonstrating the polyvalent properties of MAGL or FAAH inhibitor compounds for the treatment of Alzheimer's disease, and also effect of these on learning and types of memories, which together encourage to study these compounds over other therapeutics targets. Further research in this direction would enhance the molecular mechanisms and development of applicable interventions for the treatment of Alzheimer's disease, which nevertheless stay as the primary unmet need.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
11
|
Yaghootfam C, Gehrig B, Sylvester M, Gieselmann V, Matzner U. Deletion of fatty acid amide hydrolase reduces lyso-sulfatide levels but exacerbates metachromatic leukodystrophy in mice. J Biol Chem 2021; 297:101064. [PMID: 34375644 PMCID: PMC8435702 DOI: 10.1016/j.jbc.2021.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
An inherited deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy (MLD) characterized by massive intralysosomal storage of the acidic glycosphingolipid sulfatide and progressive demyelination. Lyso-sulfatide, which differs from sulfatide by the lack of the N-linked fatty acid also accumulates in MLD and is considered a key driver of pathology although its concentrations are far below sulfatide levels. However, the metabolic origin of lyso-sulfatide is unknown. We show here that ASA-deficient murine macrophages and microglial cells express an endo-N-deacylase that cleaves the N-linked fatty acid from sulfatide. An ASA-deficient astrocytoma cell line devoid of this activity was used to identify the enzyme by overexpressing 13 deacylases with potentially matching substrate specificities. Hydrolysis of sulfatide was detected only in cells overexpressing the enzyme fatty acid amide hydrolase (FAAH). A cell-free assay with recombinant FAAH confirmed the novel role of this enzyme in sulfatide hydrolysis. Consistent with the in vitro data, deletion of FAAH lowered lyso-sulfatide levels in a mouse model of MLD. Regardless of the established cytotoxicity of lyso-sulfatide and the anti-inflammatory effects of FAAH inhibition seen in mouse models of several neurological diseases, genetic inactivation of FAAH did not mitigate, but rather exacerbated the disease phenotype of MLD mice. This unexpected finding was reflected by worsening of rotarod performance, increase of anxiety-related exploratory activity, aggravation of peripheral neuropathy and reduced life expectancy. Thus, we conclude that FAAH has a protective function in MLD and may represent a novel therapeutic target for treatment of this fatal condition.
Collapse
Affiliation(s)
- Claudia Yaghootfam
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Bernd Gehrig
- Medical Faculty, Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Marc Sylvester
- Medical Faculty, Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Volkmar Gieselmann
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Ulrich Matzner
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
12
|
Wiley MB, Perez PA, Argueta DA, Avalos B, Wood CP, DiPatrizio NV. UPLC-MS/MS Method for Analysis of Endocannabinoid and Related Lipid Metabolism in Mouse Mucosal Tissue. Front Physiol 2021; 12:699712. [PMID: 34335305 PMCID: PMC8317065 DOI: 10.3389/fphys.2021.699712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system is expressed in cells throughout the body and controls a variety of physiological and pathophysiological functions. We describe robust and reproducible UPLC-MS/MS-based methods for analyzing metabolism of the endocannabinoids, 2-arachidonoyl-sn-glycerol and arachidonoyl ethanolamide, and related monoacylglycerols (MAGs) and fatty acid ethanolamides (FAEs), respectively, in mouse mucosal tissues (i.e., intestine and lung). These methods are optimized for analysis of activity of the MAG biosynthetic enzyme, diacylglycerol lipase (DGL), and MAG degradative enzymes, monoacylglycerol lipase (MGL) and alpha/beta hydrolase domain containing-6 (ABHD6). Moreover, we describe a novel UPLC-MS/MS-based method for analyzing activity of the FAE degradative enzyme, fatty acid amide hydrolase (FAAH), that does not require use of radioactive substrates. In addition, we describe in vivo pharmacological methods to inhibit MAG biosynthesis selectively in the mouse small-intestinal epithelium. These methods will be useful for profiling endocannabinoid metabolism in rodent mucosal tissues in health and disease.
Collapse
Affiliation(s)
- Mark B Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Donovan A Argueta
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Courtney P Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
13
|
WITHDRAWN: Design and synthesis of highly potent dual ABHD6/MGL inhibitors. Bioorg Med Chem 2021. [DOI: 10.1016/j.bmc.2021.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Malamas MS, Pavlopoulos S, Alapafuja SO, Farah SI, Zvonok A, Mohammad KA, West J, Perry NT, Pelekoudas DN, Rajarshi G, Shields C, Chandrashekhar H, Wood J, Makriyannis A. Design and Structure-Activity Relationships of Isothiocyanates as Potent and Selective N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibitors. J Med Chem 2021; 64:5956-5972. [PMID: 33900772 DOI: 10.1021/acs.jmedchem.1c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acylethanolamines are signaling lipid molecules implicated in pathophysiological conditions associated with inflammation and pain. N-Acylethanolamine acid amidase (NAAA) favorably hydrolyzes lipid palmitoylethanolamide, which plays a key role in the regulation of inflammatory and pain processes. The synthesis and structure-activity relationship studies encompassing the isothiocyanate pharmacophore have produced potent low nanomolar inhibitors for hNAAA, while exhibiting high selectivity (>100-fold) against other serine hydrolases and cysteine peptidases. We have followed a target-based structure-activity relationship approach, supported by computational methods and known cocrystals of hNAAA. We have identified systemically active inhibitors with good plasma stability (t1/2 > 2 h) and microsomal stability (t1/2 ∼ 15-30 min) as pharmacological tools to investigate the role of NAAA in inflammation, pain, and drug addiction.
Collapse
Affiliation(s)
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shakiru O Alapafuja
- MAK Scientific LLC, 151 South Bedford Street, Burlington, Massachusetts 01803, United States
| | - Shrouq I Farah
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexander Zvonok
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Khadijah A Mohammad
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jay West
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christina Shields
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jodi Wood
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Kokona D, Spyridakos D, Tzatzarakis M, Papadogkonaki S, Filidou E, Arvanitidis KI, Kolios G, Lamani M, Makriyannis A, Malamas MS, Thermos K. The endocannabinoid 2-arachidonoylglycerol and dual ABHD6/MAGL enzyme inhibitors display neuroprotective and anti-inflammatory actions in the in vivo retinal model of AMPA excitotoxicity. Neuropharmacology 2021; 185:108450. [PMID: 33450278 DOI: 10.1016/j.neuropharm.2021.108450] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/17/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
The endocannabinoid system has been shown to be a putative therapeutic target for retinal disease. Here, we aimed to investigate the ability of the endocannabinoid 2-arachidonoylglycerol (2-AG) and novel inhibitors of its metabolic enzymes, α/β-hydrolase domain-containing 6 (ABHD6) and monoacylglycerol lipase (MAGL), a) to protect the retina against excitotoxicity and b) the mechanisms involved in the neuroprotection. Sprague-Dawley rats, wild type and Akt2-/- C57BL/6 mice were intravitreally administered with phosphate-buffered saline or (RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA). 2-AG was intravitreally co-administered with AMPA in the absence and presence of AM251 or AM630 (cannabinoid 1 and 2 receptor antagonists, respectively) or Wortmannin [Phosphoinositide 3-Kinase (PI3K)/Akt inhibitor]. Inhibitors of ABHD6 and dual ABHD6/MAGL (AM12100 and AM11920, respectively) were co-administered with AMPA intravitreally in rats. Immunohistochemistry was performed using antibodies raised against retinal neuronal markers (bNOS), microglia (Iba1) and macroglia (GFAP). TUNEL assay and real-time PCR were also employed. The CB2 receptor was expressed in rat retina (approx. 62% of CB1 expression). 2-AG attenuated the AMPA-induced increase in TUNEL+ cells. 2-AG activation of both CB1 and CB2 receptors and the PI3K/Akt downstream signaling pathway, as substantiated by the use of Akt2-/- mice, afforded neuroprotection against AMPA excitotoxicity. AM12100 and AM11920 attenuated the AMPA-induced glia activation and produced a dose-dependent partial neuroprotection, with the dual inhibitor AM11920 being more efficacious. These results show that 2-AG has the pharmacological profile of a putative therapeutic for retinal diseases characterized by neurodegeneration and neuroinflammation, when administered exogenously or by the inhibition of its metabolic enzymes.
Collapse
Affiliation(s)
- Despina Kokona
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Manolis Tzatzarakis
- Department of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Sofia Papadogkonaki
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Eirini Filidou
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece.
| | - Konstantinos I Arvanitidis
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece.
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece.
| | - Manjunath Lamani
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Michael S Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| |
Collapse
|
16
|
Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y. Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnol Adv 2020; 43:107574. [PMID: 32512219 DOI: 10.1016/j.biotechadv.2020.107574] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Amidases (EC 3. 5. 1. X) are versatile biocatalysts for synthesis of chiral carboxylic acids, α-amino acids and amides due to their hydrolytic and acyl transfer activity towards the C-N linkages. They have been extensively exploited and studied during the past years for their high specific activity and excellent enantioselectivity involved in various biotechnological applications in pharmaceutical and agrochemical industries. Additionally, they have attracted considerable attentions in biodegradation and bioremediation owing to environmental pressures. Motivated by industrial demands, crystallographic investigations and catalytic mechanisms of amidases based on structural biology have witnessed a dramatic promotion in the last two decades. The protein structures showed that different types of amidases have their typical stuctural elements, such as the conserved AS domains in signature amidases and the typical architecture of metal-associated active sites in acetamidase/formamidase family amidases. This review provides an overview of recent research advances in various amidases, with a focus on their structural basis of phylogenetics, substrate specificities and catalytic mechanisms as well as their biotechnological applications. As more crystal structures of amidases are determined, the structure/function relationships of these enzymes will also be further elucidated, which will facilitate molecular engineering and design of amidases to meet industrial requirements.
Collapse
Affiliation(s)
- Zheming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Changfeng Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhaoyu Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
17
|
Jacobs JA, Sehgal A. Anandamide Metabolites Protect against Seizures through the TRP Channel Water Witch in Drosophila melanogaster. Cell Rep 2020; 31:107710. [PMID: 32492422 PMCID: PMC9161705 DOI: 10.1016/j.celrep.2020.107710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/26/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Endocannabinoids protect against seizures, but their mechanism of action is still unclear, as they can have effects independent of known cannabinoid receptors. Using Drosophila melanogaster, which lacks canonical cannabinoid receptors, we report that the endocannabinoids anandamide and 2-arachidonoylglycerol protect against seizures in multiple fly seizure models. Surprisingly, inhibition of anandamide catabolism renders flies insensitive to protection by anandamide, indicating that anandamide metabolites are responsible for seizure protection. Consistent with this finding, arachidonic acid, a direct metabolite of anandamide, protects against seizures. To identify downstream effectors, we test for a role of transient receptor potential (TRP) channels and find that the TRPV1 antagonist capsazepine blocks the protective effect of anandamide. Also, a targeted genetic screen of TRP channels identifies water witch as a mediator of protection by anandamide. Using a Drosophila model, we reveal the role of arachidonic acid in seizure protection and identify a cannabinoid-receptor-1/2-independent mechanism of endocannabinoid seizure protection.
Collapse
Affiliation(s)
- Jack A Jacobs
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Tian X, Liu T, Li L, Shao B, Yao D, Feng L, Cui J, James TD, Ma X. Visual High-Throughput Screening for Developing a Fatty Acid Amide Hydrolase Natural Inhibitor Based on an Enzyme-Activated Fluorescent Probe. Anal Chem 2020; 92:9493-9500. [DOI: 10.1021/acs.analchem.9b05826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiangge Tian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lu Li
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Bo Shao
- Zhendong Pharmaceutical Research Institute Co. Ltd., Changzhi, Shanxi 047100, China
| | - Dahong Yao
- Department of Pharmacology, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lei Feng
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xiaochi Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
19
|
Endo T, Takeuchi T, Maehara S. Pharmacological characterization of a novel, potent, selective, and orally active fatty acid amide hydrolase inhibitor, PKM-833 [(R)-N-(pyridazin-3-yl)-4-(7-(trifluoromethyl)chroman-4-yl)piperazine-1-carboxamide] in rats: Potential for the treatment of inflammatory pain. Pharmacol Res Perspect 2020; 8:e00569. [PMID: 32101384 PMCID: PMC7043261 DOI: 10.1002/prp2.569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/01/2023] Open
Abstract
Recently, we identified a novel fatty acid amide hydrolase (FAAH) inhibitor, PKM-833 [(R)-N-(pyridazin-3-yl)-4-(7-(trifluoromethyl)chroman-4-yl)piperazine-1-carboxamide]. The aim of the present study is to characterize the pharmacological profile of PKM-833 in vitro and in vivo. PKM-833 showed potent inhibitory activities against human and rat FAAH with IC50 values of 8.8 and 10 nmol/L, respectively, 200-fold more selectivity against other 137 molecular targets, and irreversible mode of action. In pharmacokinetic and pharmacodynamic studies, PKM-833 showed excellent brain penetration and good oral bioavailability, and elevated anandamide (AEA) concentrations in the rat brain. These data indicate that PKM-833 is a potent, selective, orally active, and brain-penetrable FAAH inhibitor. In behavioral studies using rat models, PKM-833 significantly attenuated formalin-induced pain responses (3 mg/kg) and improved mechanical allodynia in complete freund's adjuvant (CFA)-induced inflammatory pain (0.3-3 mg/kg). On the other hand, PKM-833 did not show the analgesic effects against mechanical allodynia in chronic constriction injury (CCI)-induced neuropathic pain up to 30 mg/kg. Regarding side effects, PKM-833 had no significant effects on catalepsy and motor coordination up to 30 mg/kg. These results indicate that PKM-833 is a useful pharmacological agent that can be used to investigate the role of FAAH and may have therapeutic potential for the treatment of inflammatory pain without undesirable side effects.
Collapse
Affiliation(s)
- Toshiya Endo
- Biology LaboratoryDiscovery ResearchMochida Pharmaceutical Co., Ltd.GotembaShizuokaJapan
| | - Takashi Takeuchi
- Biology LaboratoryDiscovery ResearchMochida Pharmaceutical Co., Ltd.GotembaShizuokaJapan
| | - Shunsuke Maehara
- Biology LaboratoryDiscovery ResearchMochida Pharmaceutical Co., Ltd.GotembaShizuokaJapan
| |
Collapse
|
20
|
Dainese E, Oddi S, Simonetti M, Sabatucci A, Angelucci CB, Ballone A, Dufrusine B, Fezza F, De Fabritiis G, Maccarrone M. The endocannabinoid hydrolase FAAH is an allosteric enzyme. Sci Rep 2020; 10:2292. [PMID: 32041998 PMCID: PMC7010751 DOI: 10.1038/s41598-020-59120-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids. Parallel orientation of FAAH monomers likely allows both subunits to simultaneously recruit and cleave substrates. Here, we show full inhibition of human and rat FAAH by means of enzyme inhibitors used at a homodimer:inhibitor stoichiometric ratio of 1:1, implying that occupation of only one of the two active sites of FAAH is enough to fully block catalysis. Single W445Y substitution in rat FAAH displayed the same activity as the wild-type, but failed to show full inhibition at the homodimer:inhibitor 1:1 ratio. Instead, F432A mutant exhibited reduced specific activity but was fully inhibited at the homodimer:inhibitor 1:1 ratio. Kinetic analysis of AEA hydrolysis by rat FAAH and its F432A mutant demonstrated a Hill coefficient of ~1.6, that instead was ~1.0 in the W445Y mutant. Of note, also human FAAH catalysed an allosteric hydrolysis of AEA, showing a Hill coefficient of ~1.9. Taken together, this study demonstrates an unprecedented allosterism of FAAH, and represents a case of communication between two enzyme subunits seemingly controlled by a single amino acid (W445) at the dimer interface. In the light of extensive attempts and subsequent failures over the last decade to develop effective drugs for human therapy, these findings pave the way to the rationale design of new molecules that, by acting as positive or negative heterotropic effectors of FAAH, may control more efficiently its activity.
Collapse
Affiliation(s)
- Enrico Dainese
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Sergio Oddi
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Monica Simonetti
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalaura Sabatucci
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alice Ballone
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Beatrice Dufrusine
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Gianni De Fabritiis
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy.
- Department of Medicine - Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
21
|
Malamas MS, Farah SI, Lamani M, Pelekoudas DN, Perry NT, Rajarshi G, Miyabe CY, Chandrashekhar H, West J, Pavlopoulos S, Makriyannis A. Design and synthesis of cyanamides as potent and selective N-acylethanolamine acid amidase inhibitors. Bioorg Med Chem 2019; 28:115195. [PMID: 31761726 DOI: 10.1016/j.bmc.2019.115195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds. Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Additionally, we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory molecular pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by molecular modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacological tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.
Collapse
Affiliation(s)
- Michael S Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States.
| | - Shrouq I Farah
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Manjunath Lamani
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Christina Yume Miyabe
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Jay West
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Spiro Pavlopoulos
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
22
|
Lamani M, Malamas MS, Farah SI, Shukla VG, Almeida MF, Weerts CM, Anderson J, Wood JT, Farizatto KLG, Bahr BA, Makriyannis A. Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology. Bioorg Med Chem 2019; 27:115096. [PMID: 31629610 DOI: 10.1016/j.bmc.2019.115096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/30/2022]
Abstract
FAAH inhibitors offer safety advantages by augmenting the anandamide levels "on demand" to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed "precovalent" FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.
Collapse
Affiliation(s)
- Manjunath Lamani
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Michael S Malamas
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA.
| | - Shrouq I Farah
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Vidyanand G Shukla
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Catherine M Weerts
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Joseph Anderson
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - JodiAnne T Wood
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| |
Collapse
|
23
|
Alapafuja SO, Malamas MS, Shukla V, Zvonok A, Miller S, Daily L, Rajarshi G, Miyabe CY, Chandrashekhar H, Wood J, Tyukhtenko S, Straiker A, Makriyannis A. Synthesis and evaluation of potent and selective MGL inhibitors as a glaucoma treatment. Bioorg Med Chem 2019; 27:55-64. [PMID: 30446439 DOI: 10.1016/j.bmc.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/22/2022]
Abstract
Monoacylglycerol lipase (MGL) inhibition provides a potential treatment approach to glaucoma through the regulation of ocular 2-arachidonoylglycerol (2-AG) levels and the activation of CB1 receptors. Herein, we report the discovery of new series of carbamates as highly potent and selective MGL inhibitors. The new inhibitors showed potent nanomolar inhibitory activity against recombinant human and purified rat MGL, were selective (>1000-fold) against serine hydrolases FAAH and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Protein-based 1H NMR experiments indicated that inhibitor 2 rapidly formed a covalent adduct with MGL with a residence time of about 6 h. This interconversion process "intrinsic reversibility" was exploited by modifications of the ligand's size (length and bulkiness) to generate analogs with "tunable' adduct residence time (τ). Inhibitor 2 was evaluated in a normotensive murine model for assessing intraocular pressure (IOP), which could lead to glaucoma, a major cause of blindness. Inhibitor 2 was found to decrease ocular pressure by ∼4.5 mmHg in a sustained manner for at least 12 h after a single ocular application, underscoring the potential for topically-administered MGL inhibitors as a novel therapeutic target for the treatment of glaucoma.
Collapse
Affiliation(s)
| | - Michael S Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Vidyanand Shukla
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alexander Zvonok
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Sally Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Laura Daily
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Christina Yume Miyabe
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Honrao Chandrashekhar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - JodiAnne Wood
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Sergiy Tyukhtenko
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alex Straiker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
24
|
McIntosh AL, Huang H, Landrock D, Martin GG, Li S, Kier AB, Schroeder F. Impact of Fabp1 Gene Ablation on Uptake and Degradation of Endocannabinoids in Mouse Hepatocytes. Lipids 2018; 53:561-580. [PMID: 30203570 DOI: 10.1002/lipd.12071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022]
Abstract
Liver fatty-acid-binding protein (FABP1, L-FABP) is the major cytosolic binding/chaperone protein for both precursor arachidonic acid (ARA) and the endocannabinoid (EC) products N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Although FABP1 regulates hepatic uptake and metabolism of ARA, almost nothing is known regarding FABP1's impact on AEA and 2-AG uptake, intracellular distribution, and targeting of AEA and 2-AG to degradative hepatic enzymes. In vitro assays revealed that FABP1 considerably enhanced monoacylglycerol lipase hydrolysis of 2-AG but only modestly enhanced AEA hydrolysis by fatty-acid amide hydrolase. Conversely, liquid chromatography-mass spectrometry of lipids from Fabp1 gene-ablated (LKO) hepatocytes confirmed that loss of FABP1 markedly diminished hydrolysis of 2-AG. Furthermore, the real-time imaging of novel fluorescent NBD-labeled probes (NBD-AEA, NBD-2-AG, and NBD-ARA) resolved FABP1's impact on uptake vs intracellular targeting/hydrolysis. FABP1 bound NBD-ARA with 2:1 stoichiometry analogous to ARA, but bound NBD-2-AG and NBD-AEA with 1:1 stoichiometry-apparently at different sites in FABP1's binding cavity. All three probes were taken up, but NBD-2-AG and NBD-AEA were targeted to lipid droplets. LKO reduced the uptake of NBD-ARA as expected, significantly enhanced that of NBD-AEA, but had little effect on NBD-2-AG. These data indicated that FABP1 impacts hepatocyte EC levels by binding EC and differentially impacts their intracellular hydrolysis (2-AG) and uptake (AEA).
Collapse
Affiliation(s)
- Avery L McIntosh
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Huan Huang
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Danilo Landrock
- Departments of Pathobiology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4467 TAMU, College Station, TX 77843-4467, USA
| | - Gregory G Martin
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Drive, Alabaster, AL 35007-9105, USA
| | - Ann B Kier
- Departments of Pathobiology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4467 TAMU, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
25
|
Lauria S, Perrotta C, Casati S, Di Renzo I, Ottria R, Eberini I, Palazzolo L, Parravicini C, Ciuffreda P. Design, synthesis, molecular modelling and in vitro cytotoxicity analysis of novel carbamate derivatives as inhibitors of Monoacylglycerol lipase. Bioorg Med Chem 2018; 26:2561-2572. [DOI: 10.1016/j.bmc.2018.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 02/02/2023]
|
26
|
Dato FM, Maaßen A, Goldfuß B, Pietsch M. Characterization of fatty acid amide hydrolase activity by a fluorescence-based assay. Anal Biochem 2018; 546:50-57. [PMID: 29408178 DOI: 10.1016/j.ab.2018.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/19/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is involved in many human diseases, particularly cancer, pain and inflammation as well as neurological, metabolic and cardiovascular disorders. Therefore, FAAH is an attractive target for the development of low-molecular-weight inhibitors as therapeutics, which requires robust assays that can be used for high-throughput screening (HTS) of compound libraries. Here, we report the development of a fluorometric assay based on FAAH's ability to effectively hydrolyze medium-chain fatty acid amides, introducing N-decanoyl-substituted 5-amino-2-methoxypyridine (D-MAP) as new amide substrate. D-MAP is cleaved by FAAH with an 8-fold larger specificity constant than the previously reported octanoyl-analog Oc-MAP (Vmax/Km of 1.09 and 0.134 mL min-1 mg-1, respectively), with both MAP derivatives possessing superior substrate properties and much increased aqueous solubility compared to the respective p-nitroaniline compounds D-pNA and Oc-pNA. The new assay with D-MAP as substrate is highly sensitive using a lower enzyme concentration (1 μg mL-1) than literature-reported fluorimetric FAAH assays. In addition, D-MAP was validated in comparison to the substrate Oc-MAP for the characterization of FAAH inhibitors by means of the reference compounds URB597 and TC-F2 and was shown to be highly suitable for HTS in both kinetic and endpoint assays (Z' factors of 0.81 and 0.78, respectively).
Collapse
Affiliation(s)
- Florian M Dato
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931 Cologne, Germany; Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstr. 4, D-50939 Cologne, Germany
| | - Andreas Maaßen
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931 Cologne, Germany; Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstr. 4, D-50939 Cologne, Germany
| | - Bernd Goldfuß
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstr. 4, D-50939 Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931 Cologne, Germany.
| |
Collapse
|
27
|
Chen HJC, Spiers JG, Sernia C, Lavidis NA. Inhibition of Fatty Acid Amide Hydrolase by PF-3845 Alleviates the Nitrergic and Proinflammatory Response in Rat Hippocampus Following Acute Stress. Int J Neuropsychopharmacol 2018; 21:786-795. [PMID: 29579222 PMCID: PMC6070085 DOI: 10.1093/ijnp/pyy033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long-term exposure to stress has been demonstrated to cause neuroinflammation through a sustained overproduction of free radicals, including nitric oxide, via an increased inducible nitric oxide synthase activity. We previously demonstrated that inducible nitric oxide synthase activity and mRNA are significantly upregulated in the rat hippocampus following just 4 hours of restraint stress. Similar to nitric oxide, endocannabinoids are synthesized on demand, with preclinical observations suggesting that cannabinoid receptor agonists and endocannabinoid enhancers inhibit nitrergic activity. Specifically, previous work has shown that enhancement of endocannabinoids via inhibition of fatty acid amide hydrolase with PF-3845 reduced inducible nitric oxide synthase-expressing microglia following traumatic brain injury. However, this describes cannabinoid modulation following physical injury, and therefore the present study aimed to examine the effects of PF-3845 in the modulation of nitrergic and inflammatory-related genes within the hippocampus after acute stress exposure. METHODS Following vehicle or PF-3845 injections (5 mg/kg; i.p.), male Wistar rats were exposed to 0 (control), 60, 240, or 360 minutes of restraint stress after which plasma and dorsal hippocampus were isolated for further biochemical and gene expression analysis. RESULTS The results demonstrate that pretreatment with PF-3845 rapidly ameliorates plasma corticosterone release at 60 minutes of stress. An increase in endocannabinoid signalling also induces an overall attenuation in inducible nitric oxide synthase, tumor necrosis factor-alpha convertase, interleukin-6, cyclooxygenase-2, peroxisome proliferator-activated receptor gamma mRNA, and the transactivation potential of nuclear factor kappa-light-chain-enhancer of activated B cells in the hippocampus. CONCLUSIONS These results suggest that enhanced endocannabinoid levels in the dorsal hippocampus have an overall antinitrosative and antiinflammatory effect following acute stress exposure.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia,Correspondence: Hsiao-Jou Cortina Chen, PhD, School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Australia ()
| | - Jereme G Spiers
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
28
|
Zhang X, Thayer SA. Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling. Neuropharmacology 2018; 128:269-281. [PMID: 29061509 PMCID: PMC5752128 DOI: 10.1016/j.neuropharm.2017.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
Abstract
Monoacylglycerol lipase (MGL) hydrolyzes 2-arachidonoylglycerol to arachidonic acid and glycerol. Inhibition of MGL may attenuate neuroinflammation by enhancing endocannabinoid signaling and decreasing prostaglandin (PG) production. Almost half of HIV infected individuals are afflicted with HIV-associated neurocognitive disorder (HAND), a neuroinflammatory disease in which cognitive decline correlates with synapse loss. HIV infected cells shed the envelope protein gp120 which is a potent neurotoxin that induces synapse loss. Here, we tested whether inhibition of MGL, using the selective inhibitor JZL184, would prevent synapse loss induced by gp120. The number of synapses between rat hippocampal neurons in culture was quantified by imaging clusters of a GFP-tagged antibody-like protein that selectively binds to the postsynaptic scaffolding protein, PSD95. JZL184 completely blocked gp120-induced synapse loss. Inhibition of MGL decreased gp120-induced interleukin-1β (IL-1β) production and subsequent potentiation of NMDA receptor-mediated calcium influx. JZL184-mediated protection of synapses was reversed by a selective cannabinoid type 2 receptor (CB2R) inverse agonist/antagonist. JZL184 also reduced gp120-induced prostaglandin E2 (PGE2) production; PG signaling was required for gp120-induced IL-1β expression and synapse loss. Inhibition of MGL prevented gp120-induced synapse loss by activating CB2R resulting in decreased production of the inflammatory cytokine IL-1β. Because PG signaling was required for gp120-induced synapse loss, JZL184-induced decreases in PGE2 levels may also protect synapses. MGL presents a promising target for preventing synapse loss in neuroinflammatory conditions such as HAND.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Parker LA, Limebeer CL, Rock EM, Sticht MA, Ward J, Turvey G, Benchama O, Rajarshi G, Wood JT, Alapafuja SO, Makriyannis A. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models. Psychopharmacology (Berl) 2016; 233:2265-75. [PMID: 27048155 PMCID: PMC5531749 DOI: 10.1007/s00213-016-4277-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
RATIONALE Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. OBJECTIVE This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. MATERIALS AND METHODS AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. RESULTS Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. CONCLUSIONS Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea.
Collapse
Affiliation(s)
- Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada.
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Martin A Sticht
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Jordan Ward
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Greig Turvey
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Othman Benchama
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Girija Rajarshi
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - JodiAnne T Wood
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Shakiru O Alapafuja
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- MAK Scientific LLC, Northeastern University, 432 Mugar Building, Boston, MA, USA
| |
Collapse
|
30
|
Wohlman IM, Composto GM, Heck DE, Heindel ND, Lacey CJ, Guillon CD, Casillas RP, Croutch CR, Gerecke DR, Laskin DL, Joseph LB, Laskin JD. Mustard vesicants alter expression of the endocannabinoid system in mouse skin. Toxicol Appl Pharmacol 2016; 303:30-44. [PMID: 27125198 DOI: 10.1016/j.taap.2016.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
Abstract
Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants.
Collapse
Affiliation(s)
- Irene M Wohlman
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Gabriella M Composto
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Diane E Heck
- Environmental Health Science, New York Medical College, Valhalla, NY, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - C Jeffrey Lacey
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | | | | | | | - Donald R Gerecke
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Jeffrey D Laskin
- Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ, United States.
| |
Collapse
|
31
|
Mofford DM, Adams ST, Reddy GSKK, Reddy GR, Miller SC. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity. J Am Chem Soc 2015; 137:8684-7. [PMID: 26120870 PMCID: PMC4507478 DOI: 10.1021/jacs.5b04357] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Firefly luciferase is homologous
to fatty acyl-CoA synthetases.
We hypothesized that the firefly luciferase substrate d-luciferin
and its analogs are fatty acid mimics that are ideally suited to probe
the chemistry of enzymes that release fatty acid products. Here, we
synthesized luciferin amides and found that these molecules are hydrolyzed
to substrates for firefly luciferase by the enzyme fatty acid amide
hydrolase (FAAH). In the presence of luciferase, these molecules enable
highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The
potency and tissue distribution of FAAH inhibitors can be imaged in
live mice, and luciferin amides serve as exemplary reagents for greatly
improved bioluminescence imaging in FAAH-expressing tissues such as
the brain.
Collapse
Affiliation(s)
- David M Mofford
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Spencer T Adams
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - G S Kiran Kumar Reddy
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Gadarla Randheer Reddy
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Stephen C Miller
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
32
|
Ogawa S, Kunugi H. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants. Curr Neuropharmacol 2015; 13:760-75. [PMID: 26630956 PMCID: PMC4759315 DOI: 10.2174/1570159x13666150612225212] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/27/2022] Open
Abstract
Cannabis and analogs of Δ<sup>9</sup>-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted.
Collapse
Affiliation(s)
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
33
|
(4-Phenoxyphenyl)tetrazolecarboxamides and related compounds as dual inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Eur J Med Chem 2013; 63:64-75. [DOI: 10.1016/j.ejmech.2013.01.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 01/19/2023]
|
34
|
Prostaglandin ethanolamides attenuate damage in a human explant colitis model. Prostaglandins Other Lipid Mediat 2013; 100-101:22-9. [DOI: 10.1016/j.prostaglandins.2013.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/11/2013] [Accepted: 01/24/2013] [Indexed: 01/18/2023]
|
35
|
Alapafuja SO, Nikas SP, Bharathan IT, Shukla VG, Nasr ML, Bowman AL, Zvonok N, Li J, Shi X, Engen JR, Makriyannis A. Sulfonyl fluoride inhibitors of fatty acid amide hydrolase. J Med Chem 2012; 55:10074-89. [PMID: 23083016 DOI: 10.1021/jm301205j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfonyl fluorides are known to inhibit esterases. Early work from our laboratory has identified hexadecyl sulfonylfluoride (AM374) as a potent in vitro and in vivo inhibitor of fatty acid amide hydrolase (FAAH). We now report on later generation sulfonyl fluoride analogs that exhibit potent and selective inhibition of FAAH. Using recombinant rat and human FAAH, we show that 5-(4-hydroxyphenyl)pentanesulfonyl fluoride (AM3506) has similar inhibitory activity for both the rat and the human enzyme, while rapid dilution assays and mass spectrometry analysis suggest that the compound is a covalent modifier for FAAH and inhibits its action in an irreversible manner. Our SAR results are highlighted by molecular docking of key analogs.
Collapse
Affiliation(s)
- Shakiru O Alapafuja
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Naidoo V, Karanian DA, Vadivel SK, Locklear JR, Wood JT, Nasr M, Quizon PMP, Graves EE, Shukla V, Makriyannis A, Bahr BA. Equipotent inhibition of fatty acid amide hydrolase and monoacylglycerol lipase - dual targets of the endocannabinoid system to protect against seizure pathology. Neurotherapeutics 2012; 9:801-13. [PMID: 22270809 PMCID: PMC3480564 DOI: 10.1007/s13311-011-0100-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Advances in the understanding of the endogenous cannabinoid system have led to several therapeutic indications for new classes of compounds that enhance cannabinergic responses. Endocannabinoid levels are elevated during pathogenic conditions, and inhibitors of endocannabinoid inactivation promote such on-demand responses. The endocannabinoids anandamide and 2-arachidonoyl glycerol have been implicated in protective signaling against excitotoxic episodes, including seizures. To better understand modulatory pathways that can exploit such responses, we used the new generation compound AM6701 that blocks both the anandamide-deactivating enzyme fatty acid amide hydrolase (FAAH) and the 2-arachidonoyl glycerol-deactivating enzyme monoacylglycerol lipase (MAGL) with equal potency. Also studied was the structural isomer AM6702 which is 44-fold more potent for inhibiting FAAH versus MAGL. When applied before and during kainic acid (KA) exposure to cultured hippocampal slices, AM6701 protected against the resulting excitotoxic events of calpain-mediated cytoskeletal damage, loss of presynaptic and postsynaptic proteins, and pyknotic changes in neurons. The equipotent inhibitor was more effective than its close relative AM6702 at protecting against the neurodegenerative cascade assessed in the slice model. In vivo, AM6701 was also the more effective compound for reducing the severity of KA-induced seizures and protecting against behavioral deficits linked to seizure damage. Corresponding with the behavioral improvements, cytoskeletal and synaptic protection was elicited by AM6701, as found in the KA-treated hippocampal slice model. It is proposed that the influence of AM6701 on FAAH and MAGL exerts a synergistic action on the endocannabinoid system, thereby promoting the protective nature of cannabinergic signaling to offset excitotoxic brain injury.
Collapse
Affiliation(s)
- Vinogran Naidoo
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
- Department of Biology, University of North Carolina Pembroke, Pembroke, North Carolina USA
| | - David A. Karanian
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, Connecticut USA
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts USA
| | | | - Johnathan R. Locklear
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
| | - JodiAnne T. Wood
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts USA
| | - Mahmoud Nasr
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts USA
| | - Pamela Marie P. Quizon
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
| | - Emily E. Graves
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
| | - Vidyanand Shukla
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts USA
| | | | - Ben A. Bahr
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
- Department of Biology, University of North Carolina Pembroke, Pembroke, North Carolina USA
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, Connecticut USA
| |
Collapse
|
37
|
Biochemical and mass spectrometric characterization of human N-acylethanolamine-hydrolyzing acid amidase inhibition. PLoS One 2012; 7:e43877. [PMID: 22952796 PMCID: PMC3432061 DOI: 10.1371/journal.pone.0043877] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022] Open
Abstract
The mechanism of inactivation of human enzyme N-acylethanolamine-hydrolyzing acid amidase (hNAAA), with selected inhibitors identified in a novel fluorescent based assay developed for characterization of both reversible and irreversible inhibitors, was investigated kinetically and using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). 1-Isothiocyanatopentadecane (AM9023) was found to be a potent, selective and reversible hNAAA inhibitor, while two others, 5-((biphenyl-4-yl)methyl)-N,N-dimethyl-2H-tetrazole-2-carboxamide (AM6701) and N-Benzyloxycarbonyl-L-serine β-lactone (N-Cbz-serine β-lactone), inhibited hNAAA in a covalent and irreversible manner. MS analysis of the hNAAA/covalent inhibitor complexes identified modification only of the N-terminal cysteine (Cys126) of the β-subunit, confirming a suggested mechanism of hNAAA inactivation by the β-lactone containing inhibitors. These experiments provide direct evidence of the key role of Cys126 in hNAAA inactivation by different classes of covalent inhibitors, confirming the essential role of cysteine for catalysis and inhibition in this cysteine N-terminal nucleophile hydrolase enzyme. They also provide a methodology for the rapid screening and characterization of large libraries of compounds as potential inhibitors of NAAA, and subsequent characterization or their mechanism through MALDI-TOF MS based bottom up-proteomics.
Collapse
|
38
|
Johnston M, Bhatt SR, Sikka S, Mercier RW, West JM, Makriyannis A, Gatley SJ, Duclos RI. Assay and inhibition of diacylglycerol lipase activity. Bioorg Med Chem Lett 2012; 22:4585-92. [PMID: 22738638 DOI: 10.1016/j.bmcl.2012.05.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 11/25/2022]
Abstract
A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-(14)C]1-stearoyl-2-arachidonoyl-sn-glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-(14)C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-(14)C]arachidonic acid.
Collapse
Affiliation(s)
- Meghan Johnston
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Clemente JC, Nulton E, Nelen M, Todd MJ, Maguire D, Schalk-Hihi C, Kuo LC, Zhang SP, Flores CM, Kranz JK. Screening and characterization of human monoglyceride lipase active site inhibitors using orthogonal binding and functional assays. ACTA ACUST UNITED AC 2012; 17:629-40. [PMID: 22496098 DOI: 10.1177/1087057112441012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endocannabinoids such as 2-arachidonylglycerol (2-AG) are ligands for cannabinoid receptors that contribute to the transmission and modulation of pain signals. The antinociceptive effect of exogenous 2-AG suggests that inhibition of monoglyceride lipase (MGLL), the enzyme responsible for degrading 2-AG and arresting signaling, may be a target for pain modulation. Here we describe the characterization of MGLL ligands following a high-throughput screening campaign. Ligands were discovered using ThermoFluor, a label-free affinity-based screening tool that measures ligand binding via modulation of protein thermal stability. A kinetic fluorescent assay using the substrate 4-methylcoumarin butyrate was used to counterscreen confirmed HTS positives. A comparison of results from binding and inhibition assays allowed elucidation of compound mechanism of action. We demonstrate the limit of each technology and the benefits of using orthogonal assay techniques in profiling compounds.
Collapse
Affiliation(s)
- José C Clemente
- GlaxoSmithKline, Oncology Research & Development, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
West JM, Zvonok N, Whitten KM, Wood JT, Makriyannis A. Mass spectrometric characterization of human N-acylethanolamine-hydrolyzing acid amidase. J Proteome Res 2012; 11:972-81. [PMID: 22040171 DOI: 10.1021/pr200735a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme that primarily degrades palmitoylethanolamine (PEA), a lipid amide that inhibits inflammatory responses. We developed a HEK293 cell line stably expressing the NAAA pro-enzyme (zymogen) and a single step chromatographic purification of the protein from the media. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry MALDI-TOF MS analysis of the zymogen (47.7 kDa) treated with peptide-N-glycosidase F (PNGase F) identified 4 glycosylation sites, and acid cleavage of the zymogen into α- and β-subunits (14.6 and 33.3 kDa) activated the enzyme. Size exclusion chromatography estimated the mass of the active enzyme as 45 ± 3 kDa, suggesting formation of an α/β heterodimer. MALDI-TOF MS fingerprinting covered more than 80% of the amino acid sequence, including the N-terminal peptides, and evidence for the lack of a disulfide bond between subunits. The significance of the cysteine residues was established by their selective alkylation resulting in almost complete loss of activity. The purified enzyme was kinetically characterized with PEA and a novel fluorogenic substrate, N-(4-methyl coumarin) palmitamide (PAMCA). The production of sufficient quantities of NAAA and a high throughput assay could be useful in discovering novel inhibitors and determining the structure and function of this enzyme.
Collapse
Affiliation(s)
- Jay M West
- Center for Drug Discovery, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | | | | | |
Collapse
|
41
|
Gowlugari S, DeFalco J, Nguyen MT, Kaub C, Chi C, Duncton MAJ, Emerling DE, Kelly MG, Kincaid J, Vincent F. Discovery of potent, non-carbonyl inhibitors of fatty acid amide hydrolase (FAAH). MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20146a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Fatty acid amide hydrolase inhibitors. 3: Tetra-substituted azetidine ureas with in vivo activity. Bioorg Med Chem Lett 2012; 22:901-6. [DOI: 10.1016/j.bmcl.2011.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/22/2022]
|
43
|
Rakers C, Zoerner AA, Engeli S, Batkai S, Jordan J, Tsikas D. Stable isotope liquid chromatography-tandem mass spectrometry assay for fatty acid amide hydrolase activity. Anal Biochem 2011; 421:699-705. [PMID: 22146559 DOI: 10.1016/j.ab.2011.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/15/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is the main enzyme responsible for the hydrolysis of the endocannabinoid anandamide (arachidonoyl ethanolamide, AEA) to arachidonic acid (AA) and ethanolamine (EA). Published FAAH activity assays mostly employ radiolabeled anandamide or synthetic fluorogenic substrates. We report a stable isotope liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for specific, sensitive, and high-throughput capable FAAH activity measurements. The assay uses AEA labeled with deuterium on the EA moiety (d₄-AEA) as substrate and measures the specific reaction product tetradeutero-EA (d₄-EA) and the internal standard ¹³C₂-EA. Selected reaction monitoring of m/z 66→m/z 48 (d₄-EA) and m/z 64→m/z 46 (¹³C₂-EA) in the positive electrospray ionization mode after liquid chromatographic separation on a HILIC (hydrophilic interaction liquid chromatography) column is performed. The assay was developed and thoroughly validated using recombinant human FAAH (rhFAAH) and then was applied to human blood and dog liver samples. rhFAAH-catalyzed d₄-AEA hydrolysis obeyed Michaelis-Menten kinetics (K(M)=12.3 μM, V(max)=27.6 nmol/min mg). Oleoyl oxazolopyridine (oloxa) was a potent, partial noncompetitive inhibitor of rhFAAH (IC₅₀=24.3 nM). Substrate specificity of other fatty acid ethanolamides decreased with decreasing length, number of double bonds, and lipophilicity of the fatty acid skeleton. In human whole blood, we detected FAAH activity that was inhibited by oloxa.
Collapse
Affiliation(s)
- Christin Rakers
- Institute of Clinical Pharmacology, Hannover Medical School, 30623 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Rahn EJ, Thakur GA, Wood JAT, Zvonok AM, Makriyannis A, Hohmann AG. Pharmacological characterization of AM1710, a putative cannabinoid CB2 agonist from the cannabilactone class: antinociception without central nervous system side-effects. Pharmacol Biochem Behav 2011; 98:493-502. [PMID: 21382397 PMCID: PMC3089437 DOI: 10.1016/j.pbb.2011.02.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 11/27/2022]
Abstract
Cannabinoid CB(2) agonists produce antinociception without central nervous system (CNS) side-effects. This study was designed to characterize the pharmacological and antinociceptive profile of AM1710, a CB(2) agonist from the cannabilactone class of cannabinoids. AM1710 did not exhibit off-target activity at 63 sites evaluated. AM1710 also exhibited limited blood brain barrier penetration. AM1710 was evaluated in tests of antinociception and CNS activity. CNS side-effects were evaluated in a modified tetrad (tail flick, rectal temperature, locomotor activity and rota-rod). Pharmacological specificity was established using CB(1) (SR141716) and CB(2) (SR144528) antagonists. AM1710 (0.1-10mg/kg i.p.) produced antinociception to thermal but not mechanical stimulation of the hindpaw. AM1710 (5mg/kg i.p.) produced a longer duration of antinociceptive action than the aminoalkylindole CB(2) agonist (R,S)-AM1241 (1mg/kg i.p.) at maximally antinociceptive doses. Antinociception produced by the low (0.1mg/kg i.p.) dose of AM1710 was blocked selectively by the CB(2) antagonist SR144528 (6mg/kg i.p.), whereas antinociception produced by the high dose of AM1710 (5mg/kg i.p.) was blocked by either SR144528 (6mg/kg i.p.) or SR141716 (6mg/kg i.p.). AM1710 did not produce hypoactivity, hypothermia, tail flick antinociception, or motor ataxia when evaluated in the tetrad at any dose. In conclusion, AM1710, a CB(2)-preferring cannabilactone, produced antinociception in the absence of CNS side-effects. Thus, any CB(1)-mediated antinociceptive effects of this compound may be attributable to peripheral CB(1) activity. The observed pattern of pharmacological specificity produced by AM1710 is consistent with limited blood brain barrier penetration of this compound and absence of CNS side-effects.
Collapse
MESH Headings
- Analgesics/pharmacokinetics
- Analgesics/pharmacology
- Analgesics/toxicity
- Animals
- Behavior, Animal/drug effects
- Binding, Competitive
- Blood-Brain Barrier
- Camphanes/pharmacology
- Cannabinoids/pharmacokinetics
- Cannabinoids/pharmacology
- Cannabinoids/toxicity
- Central Nervous System/drug effects
- Chromones/pharmacokinetics
- Chromones/pharmacology
- Chromones/toxicity
- HEK293 Cells
- Humans
- Male
- Mice
- Pain Threshold/drug effects
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Recombinant Proteins/agonists
- Recombinant Proteins/genetics
- Rimonabant
Collapse
Affiliation(s)
- Elizabeth J Rahn
- Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States.
| | | | | | | | | | | |
Collapse
|
45
|
Naidoo V, Nikas SP, Karanian DA, Hwang J, Zhao J, Wood JT, Alapafuja SO, Vadivel SK, Butler D, Makriyannis A, Bahr BA. A new generation fatty acid amide hydrolase inhibitor protects against kainate-induced excitotoxicity. J Mol Neurosci 2011; 43:493-502. [PMID: 21069475 PMCID: PMC4124033 DOI: 10.1007/s12031-010-9472-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/28/2010] [Indexed: 02/02/2023]
Abstract
Endocannabinoids, including anandamide (AEA), have been implicated in neuroprotective on-demand responses. Related to such a response to injury, an excitotoxic kainic acid (KA) injection (i.p.) was found to increase AEA levels in the brain. To modulate the endocannabinoid response during events of excitotoxicity in vitro and in vivo, we utilized a new generation compound (AM5206) that selectively inhibits the AEA deactivating enzyme fatty acid amide hydrolase (FAAH). KA caused calpain-mediated spectrin breakdown, declines in synaptic markers, and disruption of neuronal integrity in cultured hippocampal slices. FAAH inhibition with AM5206 protected against the neurodegenerative cascade assessed in the slice model 24 h postinsult. In vivo, KA administration induced seizures and the same neurodegenerative events exhibited in vitro. When AM5206 was injected immediately after KA in rats, the seizure scores were markedly reduced as were levels of cytoskeletal damage and synaptic protein decline. The pre- and postsynaptic proteins were protected by the FAAH inhibitor to levels comparable to those found in healthy control brains. These data support the idea that endocannabinoids are released and converge on pro-survival pathways that prevent excitotoxic progression.
Collapse
Affiliation(s)
- Vinogran Naidoo
- Biotechnology Research and Training Center, University of North Carolina Pembroke, 115 Livermore Drive, Pembroke, NC 28372-1510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang Y, Jones P. A scintillation proximity assay for fatty acid amide hydrolase compatible with inhibitor screening. Methods Mol Biol 2010; 572:247-59. [PMID: 20694697 DOI: 10.1007/978-1-60761-244-5_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Scintillation proximity assay (SPA) is a homogenous and versatile technology for the simple and sensitive detection of the interaction of protein targets with their ligands. Herein, we described a SPA assay developed to identify compounds that bind to human fatty acid amide hydrolase (FAAH). This SPA assay utilizes the specific binding of [(3)H]-R(+)-methanandamide ((3)H-MAEA), a competitive nonhydrolyzed FAAH inhibitor, to FAAH expressing microsomes and evaluates its displacement by FAAH inhibitors. In contrast to the classical SPA radioligand binding assay which detects bound ligand, in our assay the released radiolabel is detected through its interaction with the SPA beads. This novel SPA assay has been validated and demonstrated to be simple, sensitive, and amenable to high-throughput screening.
Collapse
Affiliation(s)
- Yuren Wang
- Neuroscience Discovery Research, Wyeth Research, Princeton, NJ, USA
| | | |
Collapse
|
47
|
Vincent F, Nguyen MT, Emerling DE, Kelly MG, Duncton MA. Mining biologically-active molecules for inhibitors of fatty acid amide hydrolase (FAAH): Identification of phenmedipham and amperozide as FAAH inhibitors. Bioorg Med Chem Lett 2009; 19:6793-6. [DOI: 10.1016/j.bmcl.2009.09.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/18/2009] [Accepted: 09/22/2009] [Indexed: 01/09/2023]
|
48
|
High-performance liquid chromatographic assay with fluorescence detection for the evaluation of inhibitors against fatty acid amide hydrolase. Anal Bioanal Chem 2009; 394:1679-85. [DOI: 10.1007/s00216-009-2850-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/12/2009] [Indexed: 11/26/2022]
|
49
|
Wang Y, Chanda P, Jones PG, Kennedy JD. A Fluorescence-Based Assay for Monoacylglycerol Lipase Compatible with Inhibitor Screening. Assay Drug Dev Technol 2008; 6:387-93. [DOI: 10.1089/adt.2007.122] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yuren Wang
- Neuroscience Department, Wyeth Research, Monmouth Junction, NJ
| | - Pranab Chanda
- Neuroscience Department, Wyeth Research, Monmouth Junction, NJ
| | - Philip G. Jones
- Neuroscience Department, Wyeth Research, Monmouth Junction, NJ
| | | |
Collapse
|
50
|
Zvonok N, Williams J, Johnston M, Pandarinathan L, Janero DR, Li J, Krishnan SC, Makriyannis A. Full mass spectrometric characterization of human monoacylglycerol lipase generated by large-scale expression and single-step purification. J Proteome Res 2008; 7:2158-64. [PMID: 18452279 PMCID: PMC3689545 DOI: 10.1021/pr700839z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The serine hydrolase monoacylglycerol lipase (MGL) modulates endocannabinoid signaling in vivo by inactivating 2-arachidonoylglycerol (2-AG), the main endogenous agonist for central CB1 and peripheral CB2 cannabinoid receptors. To characterize this key endocannabinoid enzyme by mass spectrometry-based proteomics, we first overexpressed recombinant hexa-histidine-tagged human MGL (hMGL) in Escherichia coli and purified it in a single chromatographic step with high yield (approximately 30 mg/L). With 2-AG as substrate, hMGL displayed an apparent V max of 25 micromol/(microg min) and K m of 19.7 microM, an affinity for 2-AG similar to that of native rat-brain MGL (rMGL) (Km=33.6 microM). hMGL also demonstrated a comparable affinity (Km approximately 8-9 microM) for the novel fluorogenic substrate, arachidonoyl, 7-hydroxy-6-methoxy-4-methylcoumarin ester (AHMMCE), in a sensitive, high-throughput fluorometric MGL assay. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) unequivocably demonstrated the mass (34,126 Da) and purity of this hMGL preparation. After in-solution tryptic digestion, hMGL full proteomic characterization was carried out, which showed (1) an absence of intramolecular disulfide bridges in the functional, recombinant enzyme and (2) the post-translational removal of the enzyme's N-terminal methionine. Availability of sufficient quantities of pure, well-characterized hMGL will enable further molecular and structural profiling of this key endocannabinoid-system enzyme.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexandros Makriyannis
- To whom correspondence should be addressed: Alexandros Makriyannis, Ph.D., Northeastern University Center for Drug Discovery, 116 Mugar Hall, 360 Huntington Avenue, Boston, MA 02115. Tel.: 617-373-4200. Fax: 617-373-7493.
| |
Collapse
|