1
|
Fang Z, Marshall CB, Yin JC, Mazhab-Jafari MT, Gasmi-Seabrook GMC, Smith MJ, Nishikawa T, Xu Y, Neel BG, Ikura M. Biochemical Classification of Disease-associated Mutants of RAS-like Protein Expressed in Many Tissues (RIT1). J Biol Chem 2016; 291:15641-52. [PMID: 27226556 DOI: 10.1074/jbc.m116.714196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 01/09/2023] Open
Abstract
RAS-like protein expressed in many tissues 1 (RIT1) is a disease-associated RAS subfamily small guanosine triphosphatase (GTPase). Recent studies revealed that germ-line and somatic RIT1 mutations can cause Noonan syndrome (NS), and drive proliferation of lung adenocarcinomas, respectively, akin to RAS mutations in these diseases. However, the locations of these RIT1 mutations differ significantly from those found in RAS, and do not affect the three mutational "hot spots" of RAS. Moreover, few studies have characterized the GTPase cycle of RIT1 and its disease-associated mutants. Here we developed a real-time NMR-based GTPase assay for RIT1 and investigated the effect of disease-associated mutations on GTPase cycle. RIT1 exhibits an intrinsic GTP hydrolysis rate similar to that of H-RAS, but its intrinsic nucleotide exchange rate is ∼4-fold faster, likely as a result of divergent residues near the nucleotide binding site. All of the disease-associated mutations investigated increased the GTP-loaded, activated state of RIT1 in vitro, but they could be classified into two groups with different intrinsic GTPase properties. The S35T, A57G, and Y89H mutants exhibited more rapid nucleotide exchange, whereas F82V and T83P impaired GTP hydrolysis. A RAS-binding domain pulldown assay indicated that RIT1 A57G and Y89H were highly activated in HEK293T cells, whereas T83P and F82V exhibited more modest activation. All five mutations are associated with NS, whereas two (A57G and F82V) have also been identified in urinary tract cancers and myeloid malignancies. Characterization of the effects on the GTPase cycle of RIT1 disease-associated mutations should enable better understanding of their role in disease processes.
Collapse
Affiliation(s)
- Zhenhao Fang
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Christopher B Marshall
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Jiani C Yin
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Mohammad T Mazhab-Jafari
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Geneviève M C Gasmi-Seabrook
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Matthew J Smith
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Tadateru Nishikawa
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Yang Xu
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Benjamin G Neel
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Mitsuhiko Ikura
- From the Department of Medical Biophysics, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
2
|
Calvert RJ, Tepper S, Kammouni W, Anderson LM, Kritchevsky D. Elevated K-ras activity with cholestyramine and lovastatin, but not konjac mannan or niacin in lung--importance of mouse strain. Biochem Pharmacol 2006; 72:1749-55. [PMID: 17005160 PMCID: PMC1849957 DOI: 10.1016/j.bcp.2006.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/28/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
Our previous work established that hypocholesterolemic agents altered K-ras intracellular localization in lung. Here, we examined K-ras activity to define further its potential importance in lung carcinogenesis. K-ras activity in lungs from male A/J, Swiss and C57BL/6 mice was examined. For 3 weeks, mice consumed either 2 or 4% cholestyramine (CS), 1% niacin, 5% konjac mannan (KM), or were injected with lovastatin 25mg/kg three or five times weekly (Lov-3X and Lov-5X). A pair-fed (PF) group was fed the same quantity of diet consumed by the Lov-5X mice to control for lower body weights in Lov-5X mice. After 3 weeks, serum cholesterol was assayed with a commercial kit. Activated K-ras protein from lung was affinity precipitated with a Raf-1 ras binding domain-glutathione-S-transferase fusion protein bound to glutathione-agarose beads, followed by Western blotting, K-ras antibody treatment, and chemiluminescent detection. Only KM reduced serum cholesterol (in two of three mouse strains). In C56BL/6 mice treated with Lov-3X, lung K-ras activity increased 1.8-fold versus control (p=0.009). In normal lung with wild-type K-ras, this would be expected to be associated with maintenance of differentiation. In A/J mice fed 4% CS, K-ras activity increased 2.1-fold (p=0.02), which might be responsible for the reported enhancement of carcinogenesis in carcinogen-treated rats fed CS. KM feeding and PF treatment had no significant effects on K-ras activity. These data are consistent with the concept that K-ras in lung has an oncogenic function when mutated, but may act as a tumor suppressor when wild-type.
Collapse
Affiliation(s)
- Richard J Calvert
- Division of Research and Applied Technology, Office of Nutritional Products, Labeling, and Dietary Supplements, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA.
| | | | | | | | | |
Collapse
|
3
|
Paulucci-Holthauzen AA, O'Connor KL. Use of pseudosubstrate affinity to measure active protein kinase A. Anal Biochem 2006; 355:175-82. [PMID: 16842735 DOI: 10.1016/j.ab.2006.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Traditional cAMP-dependent protein kinase (also known as protein kinase A [PKA]) assays, which are based on substrate phosphorylation, often have high background activity from other kinases, thereby limiting sensitivity and making it difficult to detect low levels of active PKA in cell lysates. Therefore, a better technique that measures active PKA in crude cell lysates undoubtedly is necessary. We developed an efficient and sensitive assay to compare active PKA levels based on binding of the active PKA catalytic subunit to its pseudosubstrate domain inhibitor (PKI) fused with glutathione S-transferase (GST-PKI). This pseudosubstrate affinity assay can detect variations in the active PKA levels in the presence of common inducers of PKA activity such as forskolin and prostaglandins. It has resolution to detect a concentration-dependent curve of active PKA in a linear range, and it also has sensitivity to detect up to 2.5 ng of active enzyme. An observed change in the binding affinity between PKA and PKI in the presence of the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89) shows that this assay can be successfully used to measure how active PKA is affected by specific inhibitors. We conclude that this method is a simple, inexpensive, and nonhazardous method to compare active PKA levels with high sensitivity and specificity with negligible background.
Collapse
Affiliation(s)
- Adriana A Paulucci-Holthauzen
- Department of Surgery and Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|