1
|
Castro-Hinojosa C, Del Sol-Fernández S, Moreno-Antolín E, Martín-Gracia B, Ovejero JG, de la Fuente JM, Grazú V, Fratila RM, Moros M. A Simple and Versatile Strategy for Oriented Immobilization of His-Tagged Proteins on Magnetic Nanoparticles. Bioconjug Chem 2023; 34:2275-2292. [PMID: 37882455 PMCID: PMC10739578 DOI: 10.1021/acs.bioconjchem.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Oriented and covalent immobilization of proteins on magnetic nanoparticles (MNPs) is particularly challenging as it requires both the functionality of the protein and the colloidal stability of the MNPs to be preserved. Here, we describe a simple, straightforward, and efficient strategy for MNP functionalization with proteins using metal affinity binding. Our method involves a single-step process where MNPs are functionalized using a preformed, ready-to-use nitrilotriacetic acid-divalent metal cation (NTA-M2+) complex and polyethylene glycol (PEG) molecules. As a proof-of-concept, we demonstrate the oriented immobilization of a recombinant cadherin fragment engineered with a hexahistidine tag (6His-tag) onto the MNPs. Our developed methodology is simple and direct, enabling the oriented bioconjugation of His-tagged cadherins to MNPs while preserving protein functionality and the colloidal stability of the MNPs, and could be extended to other proteins expressing a polyhistidine tag. When compared to the traditional method where NTA is first conjugated to the MNPs and afterward free metal ions are added to form the complex, this novel strategy results in a higher functionalization efficiency while avoiding MNP aggregation. Additionally, our method allows for covalent bonding of the cadherin fragments to the MNP surface while preserving functionality, making it highly versatile. Finally, our strategy not only ensures the correct orientation of the protein fragments on the MNPs but also allows for the precise control of their density. This feature enables the selective targeting of E-cadherin-expressing cells only when MNPs are decorated with a high density of cadherin fragments.
Collapse
Affiliation(s)
- Christian Castro-Hinojosa
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Susel Del Sol-Fernández
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Eduardo Moreno-Antolín
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Beatriz Martín-Gracia
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Jesús G. Ovejero
- Instituto
de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
- Department
of Dosimetry and Radioprotection, General
University Hospital Gregorio Marañón, Dr Esquerdo 46, Madrid 28007, Spain
| | - Jesús Martínez de la Fuente
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Valeria Grazú
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Raluca M. Fratila
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - María Moros
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
2
|
Nakagawa F, Kikkawa M, Chen S, Miyashita Y, Hamaguchi-Suzuki N, Shibuya M, Yamashita S, Nagase L, Yasuda S, Shiroishi M, Senda T, Ito K, Murata T, Ogasawara S. Anti-nanodisc antibodies specifically capture nanodiscs and facilitate molecular interaction kinetics studies for membrane protein. Sci Rep 2023; 13:11627. [PMID: 37468499 DOI: 10.1038/s41598-023-38547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Nanodisc technology has dramatically advanced the analysis of molecular interactions for membrane proteins. A nanodisc is designed as a vehicle for membrane proteins that provide a native-like phospholipid environment and better thermostability in a detergent-free buffer. This enables the determination of the thermodynamic and kinetic parameters of small molecule binding by surface plasmon resonance. In this study, we generated a nanodisc specific anti-MSP (membrane scaffold protein) monoclonal antibody biND5 for molecular interaction analysis of nanodiscs. The antibody, biND5 bound to various types of nanodiscs with sub-nanomolar to nanomolar affinity. Epitope mapping analysis revealed specific recognition of 8 amino acid residues in the exposed helix-4 structure of MSP. Further, we performed kinetics binding analysis between adenosine A2a receptor reconstituted nanodiscs and small molecule antagonist ZM241385 using biND5 immobilized sensor chips. These results show that biND5 facilitates the molecular interaction kinetics analysis of membrane proteins substituted in nanodiscs.
Collapse
Affiliation(s)
- Fuhito Nakagawa
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Marin Kikkawa
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Sisi Chen
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
- Membrane Protein Research Center, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Yasuomi Miyashita
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Norie Hamaguchi-Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Minami Shibuya
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Soichi Yamashita
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Lisa Nagase
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
- Membrane Protein Research Center, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-Ku, Tokyo, 125-8585, Japan
| | - Toshiya Senda
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-Dai), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Membrane Protein Research Center, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Membrane Protein Research Center, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
| |
Collapse
|
3
|
Zhu L, Chang Y, Li Y, Qiao M, Liu L. Biosensors Based on the Binding Events of Nitrilotriacetic Acid-Metal Complexes. BIOSENSORS 2023; 13:bios13050507. [PMID: 37232868 DOI: 10.3390/bios13050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Molecular immobilization and recognition are two key events for the development of biosensors. The general ways for the immobilization and recognition of biomolecules include covalent coupling reactions and non-covalent interactions of antigen-antibody, aptamer-target, glycan-lectin, avidin-biotin and boronic acid-diol. Tetradentate nitrilotriacetic acid (NTA) is one of the most common commercial ligands for chelating metal ions. The NTA-metal complexes show high and specific affinity toward hexahistidine tags. Such metal complexes have been widely utilized in protein separation and immobilization for diagnostic applications since most of commercialized proteins have been integrated with hexahistidine tags by synthetic or recombinant techniques. This review focused on the development of biosensors with NTA-metal complexes as the binding units, mainly including surface plasmon resonance, electrochemistry, fluorescence, colorimetry, surface-enhanced Raman scattering spectroscopy, chemiluminescence and so on.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
4
|
Gold nanoparticle enhanced multiplexed biosensing on a fiber optic surface plasmon resonance probe. Biosens Bioelectron 2021; 192:113549. [PMID: 34391067 DOI: 10.1016/j.bios.2021.113549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
We present an innovative multiplexing concept on a fiber optic surface plasmon resonance (FO-SPR) platform and demonstrate for the first time the simultaneous detection of two targets using the same FO sensor probe. Co(III)-NTA chemistry was used for oriented and stable co-immobilization of two different His6-tagged bioreceptors. T2C2 and MDTCS (i.e. fragments of the ADAMTS13 metalloprotease linked to the thrombotic thrombocytopenic purpura disorder) served as model system bioreceptors together with their respective targets (4B9 and II-1 antibodies). Gold nanoparticles were used here in an original way for discriminating the two targets in the same sample, in addition to their traditional signal amplification-role. After verifying the specificity of the selected model system, we studied the bioreceptor surface density and immobilization order. Innovative approach to lower the bioreceptor concentration below surface saturation resulted in an optimal detection of both targets, whereas the order of immobilization of the two bioreceptors did not give any significant difference. By sequentially immobilizing the T2C2 and MDTC bioreceptors, we established calibration curves in buffer and 100-fold diluted human blood plasma. This resulted in calculated limits of detection of 3.38 and 2.31 ng/mL in diluted plasma for 4B9 and II-1, respectively, indicating almost the same sensitivity as in buffer. Importantly, we also proved the applicability of the established calibration curves for quantifying the targets at random and more realistic ratios, directed by the design of experiments. This multiplexing study further expands the repertoire of applications on the FO-SPR biosensing platform, which together with its intrinsic features opens up great opportunities for diagnostics and life sciences.
Collapse
|
5
|
Zschätzsch M, Ritter P, Henseleit A, Wiehler K, Malik S, Bley T, Walther T, Boschke E. Monitoring bioactive and total antibody concentrations for continuous process control by surface plasmon resonance spectroscopy. Eng Life Sci 2020; 19:681-690. [PMID: 32624961 DOI: 10.1002/elsc.201900014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
Monoclonal antibodies have become an increasingly important part of fundamental research and medical applications. To meet the high market demand for monoclonal antibodies in the biopharmaceutical sector, industrial manufacturing needs to be achieved by large scale, highly productive and consistent production processes. These are subject to international guidelines and have to be monitored intensely due to high safety standards for medical applications. Surface plasmon resonance spectroscopy - a fast, real-time, and label-free bio-sensing method - represents an interesting alternative to the quantification of monoclonal antibody concentrations by enzyme-linked immunosorbent assay during monoclonal antibody production. For the application of monitoring bioactive and total monoclonal antibody concentrations in cell culture samples, a surface plasmon resonance assay using a target-monoclonal antibody model system was developed. In order to ensure the subsequent detection of bioactive monoclonal antibody concentrations, suitable immobilization strategies of the target were identified. A significant decrease of the limit of detection was achieved by using an adapted affinity method compared to the commonly used amine coupling. Furthermore, the system showed limit of detection in the low ng/mL range similar to control quantifications by enzyme-linked immunosorbent assay. Moreover, the comparison of total to bioactive monoclonal antibody concentrations allows analysis of antibody production efficiency. The development of an alternative quantification system to monitor monoclonal antibody production was accomplished using surface plasmon resonance with the advantage of low analyte volume, shorter assay time, and biosensor reusability by target-layer regeneration. The established method provides the basis for the technical development of a surface plasmon resonance-based system for continuous process monitoring.
Collapse
Affiliation(s)
- Marlen Zschätzsch
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | | | - Anja Henseleit
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | | | | | - Thomas Bley
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Thomas Walther
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Elke Boschke
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| |
Collapse
|
6
|
Qu JH, Horta S, Delport F, Sillen M, Geukens N, Sun DW, Vanhoorelbeke K, Declerck P, Lammertyn J, Spasic D. Expanding a Portfolio of (FO-) SPR Surface Chemistries with the Co(III)-NTA Oriented Immobilization of His 6-Tagged Bioreceptors for Applications in Complex Matrices. ACS Sens 2020; 5:960-969. [PMID: 32216277 DOI: 10.1021/acssensors.9b02227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cobalt-nitrilotriacetic acid (Co(III)-NTA) chemistry is a recognized approach for oriented patterning of His6-tagged bioreceptors. We have applied the matching strategy for the first time on a surface plasmon resonance (SPR) platform, namely, the commercialized fiber optic (FO)-SPR. To accomplish this, His6-tagged bioreceptor (scFv-33H1F7) and its target PAI-1 were used as a model system, after scrutinizing the specificity of their interaction. When benchmarked to traditional carboxyl-based self-assembled monolayers (SAM), NTA allowed (1) more efficient FO-SPR surface coverage with bioreceptors compared with the former and (2) realization of thus far difficult-to-attain label-free bioassays on the FO-SPR platform in both buffer and 20-fold diluted human plasma. Moreover, Co(III)-NTA surface proved to be compatible with traditional gold nanoparticle-mediated signal amplification in the buffer as well as in 10-fold diluted human plasma, thus expanding the dynamic detection range to low ng/mL. Both types of bioassays revealed that scFv-33H1F7 immobilized on the FO-SPR surface using different concentrations (20, 10, or 5 μg/mL) had no impact on the bioassay sensitivity, accuracy, or reproducibility despite the lowest concentration effectively resulting in close to 20% fewer bioreceptors. Collectively, these results highlight the importance of Co(III)-NTA promoting the oriented patterning of bioreceptors on the FO-SPR sensor surface for securing robust and sensitive bioassays in complex matrices, both in label-free and labeled formats.
Collapse
Affiliation(s)
- Jia-Huan Qu
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Filip Delport
- FOx Biosystems, Bioville, Agoralaan Abis, 3590 Diepenbeek, Belgium
| | - Machteld Sillen
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - Nick Geukens
- PharmAbs, KU Leuven, Herestraat 49,
Box 820, B 3000 Leuven, Belgium
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, 510641 Guangzhou, China
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Paul Declerck
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
7
|
A New Method for Immobilization of His-Tagged Proteins with the Application of Low-Frequency AC Electric Field. SENSORS 2018; 18:s18030784. [PMID: 29510585 PMCID: PMC5876589 DOI: 10.3390/s18030784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/09/2023]
Abstract
Continued advancement of protein array, bioelectrode, and biosensor technologies is necessary to develop methods for higher amount and highly oriented immobilization activity of proteins. In pursuit of these goals, we developed a new immobilization method by combining electrostatic transport and subsequent molecular diffusion of protein molecules. Our developed immobilization method is based on a model that transports proteins toward the substrate surface due to steep concentration gradient generated by low-frequency AC electric field. The immobilization of the maximum amounts can be obtained by the application of the AC voltage of 80 Vpp, 20 Hz both for His-tagged Green Fluorescent Protein (GFP) and Discosoma sp. Red Fluorescent Protein (DsRed), used as model proteins. The amounts of the immobilized His-tagged GFP and DsRed were approximately seven-fold higher than that in the absence of the application of low-frequency AC electric field. Furthermore, the positively and negatively charged His-tagged GFP at acidic and alkaline pH were immobilized by applying of low-frequency AC electric field, whereas the non-charged His-tagged GFP at the pH corresponding to its isoelectric point (pI) was not immobilized. Therefore, unless the pH is equal to pI, the immobilization of electrically charged proteins was strongly enhanced through electrostatic transport and subsequent molecular diffusion.
Collapse
|
8
|
Wegner SV, Schenk FC, Spatz JP. Cobalt(III)-Mediated Permanent and Stable Immobilization of Histidine-Tagged Proteins on NTA-Functionalized Surfaces. Chemistry 2016; 22:3156-62. [PMID: 26809102 DOI: 10.1002/chem.201504465] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 01/16/2023]
Abstract
We present the cobalt(III)-mediated interaction between polyhistidine (His)-tagged proteins and nitrilotriacetic acid (NTA)-modified surfaces as a general approach for a permanent, oriented, and specific protein immobilization. In this approach, we first form the well-established Co(2+) -mediated interaction between NTA and His-tagged proteins and subsequently oxidize the Co(2+) center in the complex to Co(3+) . Unlike conventionally used Ni(2+) - or Co(2+) -mediated immobilization, the resulting Co(3+) -mediated immobilization is resistant toward strong ligands, such as imidazole and ethylenediaminetetraacetic acid (EDTA), and washing off over time because of the high thermodynamic and kinetic stability of the Co(3+) complex. This immobilization method is compatible with a wide variety of surface coatings, including silane self-assembled monolayers (SAMs) on glass, thiol SAMs on gold surfaces, and supported lipid bilayers. Furthermore, once the cobalt center has been oxidized, it becomes inert toward reducing agents, specific and unspecific interactions, so that it can be used to orthogonally functionalize surfaces with multiple proteins. Overall, the large number of available His-tagged proteins and materials with NTA groups make the Co(3+) -mediated interaction an attractive and widely applicable platform for protein immobilization.
Collapse
Affiliation(s)
- Seraphine V Wegner
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany. .,Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany. .,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Franziska C Schenk
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Hagen S, Drepper F, Fischer S, Fodor K, Passon D, Platta HW, Zenn M, Schliebs W, Girzalsky W, Wilmanns M, Warscheid B, Erdmann R. Structural insights into cargo recognition by the yeast PTS1 receptor. J Biol Chem 2015; 290:26610-26. [PMID: 26359497 DOI: 10.1074/jbc.m115.657973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 11/06/2022] Open
Abstract
The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo.
Collapse
Affiliation(s)
- Stefanie Hagen
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Friedel Drepper
- the Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sven Fischer
- the Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Krisztian Fodor
- the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Daniel Passon
- the European Molecular Biology Laboratory at Hamburg, D-22607 Hamburg, Germany
| | - Harald W Platta
- the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Biochemistry of Intracellular Transport Mechanism, Ruhr-University Bochum, D-44781 Bochum, Germany, and
| | - Michael Zenn
- the Biaffin GmbH and Co., KG, D-34132 Kassel, Germany
| | - Wolfgang Schliebs
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Girzalsky
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Matthias Wilmanns
- the European Molecular Biology Laboratory at Hamburg, D-22607 Hamburg, Germany
| | - Bettina Warscheid
- the Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Ralf Erdmann
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany,
| |
Collapse
|
10
|
Karnaukhova E, Rutardottir S, Rajabi M, Wester Rosenlöf L, Alayash AI, Åkerström B. Characterization of heme binding to recombinant α1-microglobulin. Front Physiol 2014; 5:465. [PMID: 25538624 PMCID: PMC4255499 DOI: 10.3389/fphys.2014.00465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
Background: Alpha-1-microglobulin (A1M), a small lipocalin protein found in plasma and tissues, has been identified as a heme1 and radical scavenger that may participate in the mitigation of toxicities caused by degradation of hemoglobin. The objective of this work was to investigate heme interactions with A1M in vitro using various analytical techniques and to optimize analytical methodology suitable for rapid evaluation of the ligand binding properties of recombinant A1M versions. Methods: To examine heme binding properties of A1M we utilized UV/Vis absorption spectroscopy, visible circular dichroism (CD), catalase-like activity, migration shift electrophoresis, and surface plasmon resonance (SPR), which was specifically developed for the assessment of His-tagged A1M. Results: The results of this study confirm that A1M is a heme binding protein that can accommodate heme at more than one binding site and/or in coordination with different amino acid residues depending upon heme concentration and ligand-to-protein molar ratio. UV/Vis titration of A1M with heme revealed an unusually large bathochromic shift, up to 38 nm, observed for heme binding to a primary binding site. UV/Vis spectroscopy, visible CD and catalase-like activity suggested that heme is accommodated inside His-tagged (tgA1M) and tagless A1M (ntA1M) in a rather similar fashion although the His-tag is very likely involved into coordination with iron of the heme molecule. SPR data indicated kinetic rate constants and equilibrium binding constants with KD values in a μM range. Conclusions: This study provided experimental evidence of the A1M heme binding properties by aid of different techniques and suggested an analytical methodology for a rapid evaluation of ligand-binding properties of recombinant A1M versions, also suitable for other His-tagged proteins.
Collapse
Affiliation(s)
- Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Sigurbjörg Rutardottir
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University Lund, Sweden
| | - Mohsen Rajabi
- Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Lena Wester Rosenlöf
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University Lund, Sweden
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University Lund, Sweden
| |
Collapse
|
11
|
Ericsson EM, Enander K, Bui L, Lundström I, Konradsson P, Liedberg B. Site-specific and covalent attachment of his-tagged proteins by chelation assisted photoimmobilization: a strategy for microarraying of protein ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11687-11694. [PMID: 24007525 DOI: 10.1021/la4011778] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel strategy for site-specific and covalent attachment of proteins has been developed, intended for robust and controllable immobilization of histidine (His)-tagged ligands in protein microarrays. The method is termed chelation assisted photoimmobilization (CAP) and was demonstrated using human IgG-Fc modified with C-terminal hexahistidines (His-IgGFc) as the ligand and protein A as the analyte. Alkanethiols terminated with either nitrilotriacetic acid (NTA), benzophenone (BP), or oligo(ethylene glycol) were synthesized and mixed self-assembled monolayers (SAMs) were prepared on gold and thoroughly characterized by infrared reflection absorption spectroscopy (IRAS), ellipsometry, and contact angle goniometry. In the process of CAP, NTA chelates Ni(2+) and the complex coordinates the His-tagged ligand in an oriented assembly. The ligand is then photoimmobilized via BP, which forms covalent bonds upon UV light activation. In the development of affinity biosensors and protein microarrays, site-specific attachment of ligands in a fashion where analyte binding sites are available is often preferred to random coupling. Analyte binding performance of ligands immobilized either by CAP or by standard amine coupling was characterized by surface plasmon resonance in combination with IRAS. The relative analyte response with randomly coupled ligand was 2.5 times higher than when site-specific attachment was used. This is a reminder that also when immobilizing ligands via residues far from the binding site, there are many other factors influencing availability and activity. Still, CAP provides a valuable expansion of protein immobilization techniques since it offers attractive microarraying possibilities amenable to applications within proteomics.
Collapse
Affiliation(s)
- Emma M Ericsson
- Division of Molecular Physics, ‡Division of Organic Chemistry, and §Division of Applied Physics; Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Nishikimi A, Uruno T, Duan X, Cao Q, Okamura Y, Saitoh T, Saito N, Sakaoka S, Du Y, Suenaga A, Kukimoto-Niino M, Miyano K, Gotoh K, Okabe T, Sanematsu F, Tanaka Y, Sumimoto H, Honma T, Yokoyama S, Nagano T, Kohda D, Kanai M, Fukui Y. Blockade of Inflammatory Responses by a Small-Molecule Inhibitor of the Rac Activator DOCK2. ACTA ACUST UNITED AC 2012; 19:488-97. [DOI: 10.1016/j.chembiol.2012.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/17/2012] [Accepted: 03/01/2012] [Indexed: 01/08/2023]
|
13
|
Vashist SK, Dixit CK, MacCraith BD, O'Kennedy R. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst 2011; 136:4431-6. [DOI: 10.1039/c1an15325k] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Koehnke J, Katsamba PS, Ahlsen G, Bahna F, Vendome J, Honig B, Shapiro L, Jin X. Splice form dependence of beta-neurexin/neuroligin binding interactions. Neuron 2010; 67:61-74. [PMID: 20624592 PMCID: PMC2910870 DOI: 10.1016/j.neuron.2010.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2010] [Indexed: 11/25/2022]
Abstract
Alternatively spliced beta-neurexins (beta-NRXs) and neuroligins (NLs) are thought to have distinct extracellular binding affinities, potentially providing a beta-NRX/NL synaptic recognition code. We utilized surface plasmon resonance to measure binding affinities between all combinations of alternatively spliced beta-NRX 1-3 and NL 1-3 ectodomains. Binding was observed for all beta-NRX/NL pairs. The presence of the NL1 B splice insertion lowers beta-NRX binding affinity by approximately 2-fold, while beta-NRX splice insertion 4 has small effects that do not synergize with NL splicing. New structures of glycosylated beta-NRXs 1 and 2 containing splice insertion 4 reveal that the insertion forms a new beta strand that replaces the beta10 strand, leaving the NL binding site intact. This helps to explain the limited effect of splice insert 4 on NRX/NL binding affinities. These results provide new structural insights and quantitative binding information to help determine whether and how splice isoform choice plays a role in beta-NRX/NL-mediated synaptic recognition.
Collapse
Affiliation(s)
- Jesko Koehnke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Phinikoula S. Katsamba
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032 USA
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Fabiana Bahna
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032 USA
| | - Jeremie Vendome
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032 USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032 USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032 USA
| | - Xiangshu Jin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032 USA
| |
Collapse
|
15
|
Zielinski T, Kimple AJ, Hutsell SQ, Koeff MD, Siderovski DP, Lowery RG. Two Galpha(i1) rate-modifying mutations act in concert to allow receptor-independent, steady-state measurements of RGS protein activity. ACTA ACUST UNITED AC 2010; 14:1195-206. [PMID: 19820068 DOI: 10.1177/1087057109347473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RGS proteins are critical modulators of G-protein-coupled receptor (GPCR) signaling given their ability to deactivate Galpha subunits via GTPase-accelerating protein (GAP) activity. Their selectivity for specific GPCRs makes them attractive therapeutic targets. However, measuring GAP activity is complicated by slow guanosine diphosphate (GDP) release from Galpha and lack of solution phase assays for detecting free GDP in the presence of excess guanosine triphosphate (GTP). To overcome these hurdles, the authors developed a Galpha(i1) mutant with increased GDP dissociation and decreased GTP hydrolysis rates, enabling detection of GAP activity using steady-state GTP hydrolysis. Galpha(i1)(R178M/A326S) GTPase activity was stimulated 6- to 12-fold by RGS proteins known to act on Galpha(i) subunits and not affected by those unable to act on Galpha(i), demonstrating that the Galpha/RGS domain interaction selectivity was not altered by mutation. The selectivity and affinity of Galpha( i1)(R178M/A326S) interaction with RGS proteins was confirmed by molecular binding studies. To enable nonradioactive, homogeneous detection of RGS protein effects on Galpha(i1)(R178M/A326S), the authors developed a Transcreener fluorescence polarization immunoassay based on a monoclonal antibody that recognizes GDP with greater than 100-fold selectivity over GTP. Combining Galpha(i1)(R178M/A326S) with a homogeneous, fluorescence-based GDP detection assay provides a facile means to explore the targeting of RGS proteins as a new approach for selective modulation of GPCR signaling.
Collapse
|
16
|
Hutsell SQ, Kimple RJ, Siderovski DP, Willard FS, Kimple AJ. High-affinity immobilization of proteins using biotin- and GST-based coupling strategies. Methods Mol Biol 2010; 627:75-90. [PMID: 20217614 PMCID: PMC3025018 DOI: 10.1007/978-1-60761-670-2_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Surface plasmon resonance (SPR) is a highly sensitive method for the detection of molecular interactions. One interacting partner is immobilized on the sensor chip surface while the other is injected across the sensor surface. This chapter focuses on high-affinity immobilization of protein substrates for affinity and kinetic analyses using biotin/streptavidin interaction and GST/anti-GST-antibody interaction.
Collapse
Affiliation(s)
- Stephanie Q. Hutsell
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
| | - Randall J. Kimple
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
| | - David P. Siderovski
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
| | - Francis S. Willard
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
| | - Adam J. Kimple
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
| |
Collapse
|
17
|
Kontermann R, Dübel S. Anti-Histidine Antibodies as Tools for Reversible Capturing of His-Tagged Fusion Proteins for Subsequent Binding Analysis. ANTIBODY ENGINEERING 2010. [PMCID: PMC7115108 DOI: 10.1007/978-3-642-01144-3_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hexahistidine tag is one of most commonly used fusion tags in affinity purification of recombinantly expressed proteins. Real-time binding analysis using Biacore technology allows in-depth characterization of respective association and dissociation patterns of potential binders. Here we tested four commercially available anti-His antibodies for reversible capturing of His-tagged proteins as a basis for a subsequent interaction analysis with non-His-tagged proteins. Anti-penta-, anti-hexa- and anti-RGS-(His)4 antibodies from different distributors were covalently coupled to Biacore sensor chips. Parallel binding studies of 12 heterogeneously sized RGS-(His)6-tagged (Arg-Gly-Ser-(His)6) proteins revealed that the slowest dissociation rate was obtained when using an anti-RGS-(His)4 antibody. Thus in a sandwich binding assay the anti-RGS-(His)4 antibody can be utilized as an appropriate tool for stable yet reversible capturing of RGS-(His)6-tagged proteins with a non-His-tagged protein.
Collapse
Affiliation(s)
- Roland Kontermann
- (Biomedical Engineering) Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Spielmannstraße 7, 38106 Braunschweig Germany
| |
Collapse
|
18
|
Kimple AJ, Muller RE, Siderovski DP, Willard FS. A capture coupling method for the covalent immobilization of hexahistidine tagged proteins for surface plasmon resonance. Methods Mol Biol 2010; 627:91-100. [PMID: 20217615 PMCID: PMC3031178 DOI: 10.1007/978-1-60761-670-2_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Surface plasmon resonance (SPR) is a robust method to detect and quantify macromolecular interactions; however, to measure binding interactions, one component must be immobilized on a sensor surface. This is typically achieved using covalent immobilization via free amines or thiols, or noncovalent immobilization using high-affinity interactions such as biotin/streptavidin or antibody/antigen. In this chapter we describe a robust method to covalently immobilize His(6) fusion proteins on the sensor surface for SPR analysis.
Collapse
Affiliation(s)
- Adam J. Kimple
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
| | - Robin E. Muller
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
| | - David P. Siderovski
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
- UNC Neuroscience Center and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
| | - Francis S. Willard
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365 USA
| |
Collapse
|
19
|
Kimple AJ, Soundararajan M, Hutsell SQ, Roos AK, Urban DJ, Setola V, Temple BRS, Roth BL, Knapp S, Willard FS, Siderovski DP. Structural determinants of G-protein alpha subunit selectivity by regulator of G-protein signaling 2 (RGS2). J Biol Chem 2009; 284:19402-11. [PMID: 19478087 PMCID: PMC2740565 DOI: 10.1074/jbc.m109.024711] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/24/2009] [Indexed: 01/19/2023] Open
Abstract
"Regulator of G-protein signaling" (RGS) proteins facilitate the termination of G protein-coupled receptor (GPCR) signaling via their ability to increase the intrinsic GTP hydrolysis rate of Galpha subunits (known as GTPase-accelerating protein or "GAP" activity). RGS2 is unique in its in vitro potency and selectivity as a GAP for Galpha(q) subunits. As many vasoconstrictive hormones signal via G(q) heterotrimer-coupled receptors, it is perhaps not surprising that RGS2-deficient mice exhibit constitutive hypertension. However, to date the particular structural features within RGS2 determining its selectivity for Galpha(q) over Galpha(i/o) substrates have not been completely characterized. Here, we examine a trio of point mutations to RGS2 that elicits Galpha(i)-directed binding and GAP activities without perturbing its association with Galpha(q). Using x-ray crystallography, we determined a model of the triple mutant RGS2 in complex with a transition state mimetic form of Galpha(i) at 2.8-A resolution. Structural comparison with unliganded, wild type RGS2 and of other RGS domain/Galpha complexes highlighted the roles of these residues in wild type RGS2 that weaken Galpha(i) subunit association. Moreover, these three amino acids are seen to be evolutionarily conserved among organisms with modern cardiovascular systems, suggesting that RGS2 arose from the R4-subfamily of RGS proteins to have specialized activity as a potent and selective Galpha(q) GAP that modulates cardiovascular function.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincent Setola
- From the Departments of Pharmacology and
- National Institute of Mental Health Psychoactive Drug Screening Program
| | - Brenda R. S. Temple
- Biochemistry and Biophysics
- R.L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599 and
| | - Bryan L. Roth
- From the Departments of Pharmacology and
- National Institute of Mental Health Psychoactive Drug Screening Program
| | - Stefan Knapp
- the Structural Genomics Consortium and
- Department of Clinical Pharmacology, Oxford University, Oxford OX3 7DQ, United Kingdom
| | | | - David P. Siderovski
- From the Departments of Pharmacology and
- Lineberger Comprehensive Cancer Center, and
| |
Collapse
|
20
|
Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proc Natl Acad Sci U S A 2008; 105:6457-62. [PMID: 18434541 DOI: 10.1073/pnas.0801508105] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits and thus facilitate termination of signaling initiated by G protein-coupled receptors (GPCRs). RGS proteins hold great promise as disease intervention points, given their signature role as negative regulators of GPCRs-receptors to which the largest fraction of approved medications are currently directed. RGS proteins share a hallmark RGS domain that interacts most avidly with Galpha when in its transition state for GTP hydrolysis; by binding and stabilizing switch regions I and II of Galpha, RGS domain binding consequently accelerates Galpha-mediated GTP hydrolysis. The human genome encodes more than three dozen RGS domain-containing proteins with varied Galpha substrate specificities. To facilitate their exploitation as drug-discovery targets, we have taken a systematic structural biology approach toward cataloging the structural diversity present among RGS domains and identifying molecular determinants of their differential Galpha selectivities. Here, we determined 14 structures derived from NMR and x-ray crystallography of members of the R4, R7, R12, and RZ subfamilies of RGS proteins, including 10 uncomplexed RGS domains and 4 RGS domain/Galpha complexes. Heterogeneity observed in the structural architecture of the RGS domain, as well as in engagement of switch III and the all-helical domain of the Galpha substrate, suggests that unique structural determinants specific to particular RGS protein/Galpha pairings exist and could be used to achieve selective inhibition by small molecules.
Collapse
|
21
|
Koehnke J, Jin X, Trbovic N, Katsamba PS, Brasch J, Ahlsen G, Scheiffele P, Honig B, Palmer A, Shapiro L. Crystal structures of beta-neurexin 1 and beta-neurexin 2 ectodomains and dynamics of splice insertion sequence 4. Structure 2008; 16:410-21. [PMID: 18334216 PMCID: PMC2750865 DOI: 10.1016/j.str.2007.12.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/18/2007] [Accepted: 12/18/2007] [Indexed: 11/28/2022]
Abstract
Presynaptic neurexins (NRXs) bind to postsynaptic neuroligins (NLs) to form Ca(2+)-dependent complexes that bridge neural synapses. beta-NRXs bind NLs through their LNS domains, which contain a single site of alternative splicing (splice site 4) giving rise to two isoforms: +4 and Delta. We present crystal structures of the Delta isoforms of the LNS domains from beta-NRX1 and beta-NRX2, crystallized in the presence of Ca(2+) ions. The Ca(2+)-binding site is disordered in the beta-NRX2 structure, but the 1.7 A beta-NRX1 structure reveals a single Ca(2+) ion, approximately 12 A from the splice insertion site, with one coordinating ligand donated by a glutamic acid from an adjacent beta-NRX1 molecule. NMR studies of beta-NRX1+4 show that the insertion sequence is unstructured, and remains at least partially disordered in complex with NL. These results raise the possibility that beta-NRX insertion sequence 4 may function in roles independent of neuroligin binding.
Collapse
Affiliation(s)
- Jesko Koehnke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Xiangshu Jin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Nikola Trbovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Phinikoula S. Katsamba
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute
| | - Julia Brasch
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Peter Scheiffele
- Department of Physiology and Cellular Biophysics and Department of Neuroscience, Columbia University, New York, NY 10032 USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute
| | - Arthur Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032 USA
| |
Collapse
|
22
|
Jomain JB, Tallet E, Broutin I, Hoos S, van Agthoven J, Ducruix A, Kelly PA, Kragelund BB, England P, Goffin V. Structural and Thermodynamic Bases for the Design of Pure Prolactin Receptor Antagonists. J Biol Chem 2007; 282:33118-31. [PMID: 17785459 DOI: 10.1074/jbc.m704364200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Competitive antagonists of the human prolactin (hPRL) receptor are a novel class of molecules of potential therapeutic interest in the context of cancer. We recently developed the pure antagonist Del1-9-G129R-hPRL by deleting the nine N-terminal residues of G129R-hPRL, a first generation partial antagonist. We determined the crystallographic structure of Del1-9-G129R-hPRL, which revealed no major change compared with wild type hPRL, indicating that its pure antagonistic properties are intrinsically due to the mutations. To decipher the molecular bases of pure antagonism, we compared the biological, physicochemical, and structural properties of numerous hPRL variants harboring N-terminal or Gly(129) mutations, alone or combined. The pure versus partial antagonistic properties of the multiple hPRL variants could not be correlated to differences in their affinities toward the hPRL receptor, especially at site 2 as determined by surface plasmon resonance. On the contrary, residual agonism of the hPRL variants was found to be inversely correlated to their thermodynamic stability, which was altered by all the Gly(129) mutations but not by those involving the N terminus. We therefore propose that residual agonism can be abolished either by further disrupting hormone site 2-receptor contacts by N-terminal deletion, as in Del1-9-G129R-hPRL, or by stabilizing hPRL and constraining its intrinsic flexibility, as in G129V-hPRL.
Collapse
Affiliation(s)
- Jean-Baptiste Jomain
- INSERM U845, Centre de Recherche Croissance et Signalisation, Equipe PRL, GH et Tumeurs, Faculté de Médecine Necker, 156 Rue de Vaugirard, Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Diskar M, Zenn HM, Kaupisch A, Prinz A, Herberg FW. Molecular basis for isoform-specific autoregulation of protein kinase A. Cell Signal 2007; 19:2024-34. [PMID: 17614255 DOI: 10.1016/j.cellsig.2007.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Protein kinase A (PKA) isozymes are distinguishable by the inhibitory pattern of their regulatory (R) subunits with RI subunits containing a pseudophosphorylation P(0)-site and RII subunits being a substrate. Under physiological conditions, RII does not inhibit PrKX, the human X chromosome encoded PKA catalytic (C) subunit. Using a live cell Bioluminescence Resonance Energy Transfer (BRET) assay, Surface Plasmon Resonance (SPR) and kinase activity assays, we identified the P(0)-position of the R subunits as the determinant of PrKX autoinhibition. Holoenzyme formation only takes place with an alanine at position P(0), whereas RI subunits containing serine, phosphoserine or aspartate do not bind PrKX. Surprisingly, PrKX reversibly associates with RII when changing P(0) from serine to alanine. In contrast, PKA-Calpha forms holoenzyme complexes with all wildtype and mutant R subunits; however, holoenzyme re-activation by cAMP is severely affected. Only PKA type II or mutant PKA type I holoenzymes (P(0): Ser or Asp) are able to dissociate fully upon maximally elevated intracellular cAMP. The data are of particular significance for understanding PKA isoform-specific activation patterns in living cells.
Collapse
Affiliation(s)
- Mandy Diskar
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany.
| | | | | | | | | |
Collapse
|
24
|
Phillips KS, Cheng Q. Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 2007; 387:1831-40. [PMID: 17203259 DOI: 10.1007/s00216-006-1052-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/22/2006] [Accepted: 11/28/2006] [Indexed: 02/06/2023]
Abstract
Surface plasmon resonance (SPR) is a powerful and versatile spectroscopic method for biomolecular interaction analysis (BIA) and has been well reviewed in previous years. This updated 2006 review of SPR, SPR spectroscopy, and SPR imaging explores cutting-edge technology with a focus on material, method, and instrument development. A number of recent SPR developments and interesting applications for bioanalysis are provided. Three focus topics are discussed in more detail to exemplify recent progress. They include surface plasmon fluorescence spectroscopy, nanoscale glassification of SPR substrates, and enzymatic amplification in SPR imaging. Through these examples it is clear to us that the development of SPR-based methods continues to grow, while the applications continue to diversify. Major trends appear to be present in the development of combined techniques, use of new materials, and development of new methodologies. Together, these works constitute a major thrust that could eventually make SPR a common tool for surface interaction analysis and biosensing. The future outlook for SPR and SPR-associated BIA studies, in our opinion, is very bright. Surface plasmon resonance (SPR) is a powerful and versatile spectroscopic method for biomolecular interaction analysis (BIA) and has been well reviewed in previous years. This updated 2006 review of SPR, SPR spectroscopy, and SPR imaging explores cutting-edge technology with a focus on material, method, and instrument development. A number of recent SPR developments and interesting applications for bioanalysis are provided. Three focus topics are discussed in more detail to exemplify recent progress. They include surface plasmon fluorescence spectroscopy, nanoscale glassification of SPR substrates, and enzymatic amplification in SPR imaging. Through these examples it is clear to us that the development of SPR-based methods continues to grow, while the applications continue to diversify. Major trends appear to be present in the development of combined techniques, use of new materials, and development of new methodologies. Together, these works constitute a major thrust that could eventually make SPR a common tool for surface interaction analysis and biosensing. The future outlook for SPR and SPR-associated BIA studies, in our opinion, is very bright.
Collapse
Affiliation(s)
- K Scott Phillips
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
25
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|