1
|
Micheloni E, Watson SS, Beuning PJ, Ondrechen MJ. Biochemical Characterization of Disease-Associated Variants of Human Ornithine Transcarbamylase. ACS Chem Biol 2025; 20:1059-1067. [PMID: 40059726 PMCID: PMC12090190 DOI: 10.1021/acschembio.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 05/17/2025]
Abstract
Human ornithine transcarbamylase deficiency (OTCD) is the most common ureagenesis disorder in the world. OTCD is an X-linked genetic deficiency in which patients experience hyperammonemia to varying degrees depending on the severity of the genetic mutation. More than two-thirds of the known mutations are caused by single nucleotide substitutions. In this paper, partial order optimum likelihood (POOL), a machine learning method, is used to analyze single nucleotide substitutions in OTC with varying disease phenotypes and predicted catalytic efficiencies. Specifically, we used a computed metric, μ4, a measure of the degree of coupling between an ionizable residue and its neighbors, calculated for the catalytic residues, to identify which protein variants were most likely to have impacted catalytic activities. From this analysis, 17 disease-associated variants were selected plus one additional variant, representing a range of μ4 values and POOL ranks. Then μ4 predictions were compared with established bioinformatics tools, SIFT, PolyPhen-2, Provean, FATHMM, MutPred2, and MutationTaster2. The bioinformatics tools predicted that most of these mutations are deleterious. The variants were biochemically characterized using kinetics assays, size exclusion chromatography, and differential scanning fluorimetry. POOL combined with μ4 analysis was able to predict correctly which variants were catalytically hindered in vitro for 17 out of 18 variants. Then by expressing a subset of these proteins in cell culture, mechanisms for disease were proposed. Analysis using μ4 is a complementary method to the sequence-based bioinformatics tools for predicting the effects of mutation on catalytic function.
Collapse
Affiliation(s)
- Emily Micheloni
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Samantha S. Watson
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mary Jo Ondrechen
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Ciulla DA, Dranchak PK, Aitha M, van Neer RHP, Shah D, Tharakan R, Wilson KM, Wang Y, Braisted JC, Inglese J. A general assay platform to study protein pharmacology using ligand-dependent structural dynamics. Nat Commun 2025; 16:4342. [PMID: 40346061 PMCID: PMC12064818 DOI: 10.1038/s41467-025-59658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
Drug design strategies represent a fundamental challenge in chemical biology that could benefit from the development of next-generation high-throughput assays. Here we demonstrate that structural dynamic changes induced by ligand binding can be transmitted to a sensor protein fused to a target protein terminus. Here, NanoLuc luciferase, used as the intact protein or its α-complementation peptide, was fused to seven proteins from distinct enzyme superfamilies resulting in sensitive ligand-dependent bioluminescent outputs. This finding allows a general non-competitive, function-independent, quantitative, isothermal gain-of-signal ligand binding readout. As applied to chemical library high throughput screening, we can observe multivariate pharmacologic outputs including cofactor-induced synergy in ligand binding, as well as an example of allosteric site binding. The structural dynamics response assay format described here can enable the investigation of proteins precluded from study due to cost-prohibitive, insensitive, or technically challenging assays, including from cell lysates containing endogenously expressed gene edited proteins.
Collapse
Affiliation(s)
- Daniel A Ciulla
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Patricia K Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Mahesh Aitha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Renier H P van Neer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Divia Shah
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Ravi Tharakan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Yuhong Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - John C Braisted
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA.
- Metabolic Medicine Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
3
|
Dashevskii D, Luginina A, Maslov I, Shevelyova M, Khorn P, Dmitrieva D, Kapranov I, Belousov A, Permyakov S, Cherezov V, Borshchevskiy V, Mishin A. Unlocking GPCR-ligand interactions: Measuring binding affinities with thermal shift assay. Protein Sci 2025; 34:e70120. [PMID: 40247825 PMCID: PMC12006757 DOI: 10.1002/pro.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest transmembrane protein superfamily, with over 800 representatives in the human genome. Recognized as pivotal targets in pharmacological research and drug discovery, these receptors play a crucial role in advancing therapeutics. Understanding the molecular mechanisms of receptor-ligand interactions is imperative for drug discovery applications. However, experimental procedures for measuring ligand binding are complicated by various factors, including the transmembrane nature of the receptors and the high cost associated with specialized instruments and consumables. Here we introduce an application of the thermal shift assay (TSA) to measuring ligand binding affinities for GPCRs. TSA is a cost-effective and user-friendly method that detects changes in protein stability induced by alterations in environmental conditions. Employing the human A2A adenosine receptor as a representative GPCR, we determined binding constants for four orthosteric ligands and allosteric sodium using three mathematical models for TSA data approximation and analysis. Models were additionally validated by two antagonists of cysteinyl leukotriene GPCR (CysLT1R), used as antiasthmatic drugs. Our results suggest that the TSA approach demonstrates a high degree of reproducibility and agreement with existing literature data, thereby affirming its suitability for investigating GPCR interactions with various types of ligands.
Collapse
Affiliation(s)
- Dmitrii Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyMoscowRussia
| | - Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyMoscowRussia
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyMoscowRussia
| | - Marina Shevelyova
- Pushchino Scientific Center for Biological Research of the Russian Academy of ScienceInstitute for Biological InstrumentationPushchinoRussia
| | - Polina Khorn
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyMoscowRussia
| | - Daria Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyMoscowRussia
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyMoscowRussia
| | - Anatolii Belousov
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyMoscowRussia
- Sao Carlos Institute of PhysicsUniversity of Sao PauloSao CarlosSão PaoloBrazil
| | - Sergei Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of ScienceInstitute for Biological InstrumentationPushchinoRussia
| | - Vadim Cherezov
- Bridge Institute, Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyMoscowRussia
- Frank Laboratory of Neutron PhysicsDubnaRussia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyMoscowRussia
| |
Collapse
|
4
|
Ko S, Jo M, Kyung M, Lee W, Ko WH, Na JH, Chun YS, Ko BJ, Jung ST. Engineering FcRn binding kinetics dramatically extends antibody serum half-life and enhances therapeutic potential. J Biol Eng 2025; 19:35. [PMID: 40251669 PMCID: PMC12007268 DOI: 10.1186/s13036-025-00506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Optimizing the IgG Fc domain for neonatal Fc receptor (FcRn) binding is crucial for enhancing antibody pharmacokinetics. The prolonged serum half-life of IgG antibody is governed by its pH-dependent interaction with FcRn, enabling efficient binding at acidic endosomal pH, intracellular trafficking, and release at neutral serum pH. However, a critical yet previously unrecognized challenge in Fc engineering for extending the serum half-life of therapeutic antibodies is the intense competition with endogenous IgG for FcRn binding during intracellular trafficking, which limits FcRn-mediated transport and reduces the serum persistence of therapeutic antibodies. To address this, we developed an Fc variant that precisely modulates pH-dependent FcRn binding kinetics, accelerates FcRn association at acidic pH, and promotes rapid dissociation at neutral pH, thereby enhancing FcRn-driven intracellular transport, outcompeting endogenous IgG, and achieving unprecedented improvement in the serum half-life of therapeutic antibodies. RESULTS Using comprehensive site-directed saturation mutagenesis coupled with functional screening, we generated a diverse panel of Fc variants and identified two with distinct FcRn binding kinetics: YML (L309Y/Q311M/M428L), which exhibited superior FcRn association at acidic pH and accelerated dissociation at neutral pH, and EML (L309E/Q311M/M428L), which displayed attenuated binding kinetics. In human FcRn transgenic mice, YML extended the serum half-life of clinically used trastuzumab with a wild-type Fc by 6.1-fold, demonstrating a remarkable improvement over previously reported Fc-engineered variants, including PFc29 (Q311R/M428L) and DHS (L309D/Q311H/N434S), which represent the most effective Fc modifications for prolonging serum persistence to date. This in vivo validation underscores the pivotal role of FcRn kinetic tuning in overcoming endogenous IgG competition and maximizing FcRn-mediated antibody transport. Additionally, YML exhibited potent complement-dependent cytotoxicity (CDC) while maintaining favorable physicochemical properties. CONCLUSION This study presents a rational Fc engineering framework to optimize FcRn binding kinetics, addressing a previously unconsidered challenge-endogenous IgG competition during intracellular trafficking of therapeutic antibodies. The distinct kinetic behaviors of YML and EML highlight the critical necessity of precise control over pH-dependent association and dissociation rates in FcRn binding. YML represents a next-generation Fc platform, offering enhanced pharmacokinetics and improved effector functions, thus providing a powerful strategy for developing biologics with superior serum persistence and therapeutic efficacy.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Graduate School, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Migyeong Jo
- Institute of Chemical Processes, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Munsu Kyung
- Department of Biomedical Sciences, Graduate School, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Wonju Lee
- Department of Biomedical Sciences, Graduate School, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Manufacturing Science & Technology Team, Manufacturing Science Group2, Samsung Bioepis, Incheon, Republic of Korea
| | - Woo Hyung Ko
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jung-Hyun Na
- School of Biopharmaceutical and Medical Science, Sungshin Women's University, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Youn Seo Chun
- School of Biopharmaceutical and Medical Science, Sungshin Women's University, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Science, Sungshin Women's University, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Sang Taek Jung
- Institute of Chemical Processes, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Markusson S, Raasakka A, Schröder M, Sograte‐Idrissi S, Rahimi AM, Asadpour O, Körner H, Lodygin D, Eichel‐Vogel MA, Chowdhury R, Sutinen A, Muruganandam G, Iyer M, Cooper MH, Weigel MK, Ambiel N, Werner HB, Zuchero JB, Opazo F, Kursula P. Nanobodies against the myelin enzyme CNPase as tools for structural and functional studies. J Neurochem 2025; 169:e16274. [PMID: 39655780 PMCID: PMC11629607 DOI: 10.1111/jnc.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, and its loss in mice and humans causes neurodegeneration. Additionally, CNPase is frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognising the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibres and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional studies on myelin formation, dynamics, and disease, including high-resolution imaging of nerve tissue.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of BiomedicineUniversity of BergenBergenNorway
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | | | - Shama Sograte‐Idrissi
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
| | - Amir Mohammad Rahimi
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
| | - Ommolbanin Asadpour
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
| | - Henrike Körner
- Department for Neuroimmunology and Multiple Sclerosis ResearchUniversity of Göttingen Medical CenterGöttingenGermany
| | - Dmitri Lodygin
- Department for Neuroimmunology and Multiple Sclerosis ResearchUniversity of Göttingen Medical CenterGöttingenGermany
| | - Maria A. Eichel‐Vogel
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Gopinath Muruganandam
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor BiotechnologieBrusselsBelgium
- Department of Bioengineering Sciences, Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Manasi Iyer
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Madeline H. Cooper
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Maya K. Weigel
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Nicholas Ambiel
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Hauke B. Werner
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - J. Bradley Zuchero
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
- Institute of Neuro‐ and Sensory PhysiologyUniversity Medical Center GöttingenGöttingenGermany
- NanoTag Biotechnologies GmbHGöttingenGermany
| | - Petri Kursula
- Department of BiomedicineUniversity of BergenBergenNorway
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
6
|
Bahun M, Poklar Ulrih N. A novel simple fluorometric protease assay for monitoring hydrolysis of proteins in real time. Anal Biochem 2025; 696:115688. [PMID: 39419197 DOI: 10.1016/j.ab.2024.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Measuring the activity of proteases is essential for investigating both the physiological functions and commercial applications of these enzymes. In contrast to the numerous protease assays that are based on chromogenic or fluorogenic peptide substrates, there is a lack of approaches to monitor degradation of proteins in real time. Here we report a protease assay where SYPRO Orange is employed as a fluorogenic probe to follow proteolysis. The functionality of the assay was demonstrated with the two subtilases of varying thermostability, using four different protein substrates. The assay is compatible with a real-time PCR instrument which allows continuous fluorescence measurements in low-volume samples even at high temperatures. This makes the assay especially suitable for high-throughput characterization of thermostable proteases.
Collapse
Affiliation(s)
- Miha Bahun
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova 39, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Starnes HM, Belcher SM. Protocol for evaluating protein-polyfluoroalkyl substances in vitro using differential scanning fluorimetry. STAR Protoc 2024; 5:103386. [PMID: 39412995 PMCID: PMC11530897 DOI: 10.1016/j.xpro.2024.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous synthetic chemicals that threaten public health, and serum albumin binding of PFAS represents one major variable influencing PFAS toxicokinetics. In this protocol, we describe a differential scanning fluorimetry (DSF) assay suitable for the rapid determination of the relative binding affinities of serum albumin proteins to different PFAS. Herein, we address common experimental challenges related to PFAS solubility constraints, the high background fluorescence of DSF with serum albumins, and the limitations of using DSF-derived dissociation constants (KD) to quantify PFAS-albumin interactions. For complete details on the use and execution of this protocol, please refer to Jackson et al.1.
Collapse
Affiliation(s)
- Hannah M Starnes
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Scott M Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
8
|
Škerlová J, Brynda J, Šobotník J, Zákopčaník M, Novák P, Bourguignon T, Sillam-Dussès D, Řezáčová P. Crystal structure of blue laccase BP76, a unique termite suicidal defense weapon. Structure 2024; 32:1581-1585.e5. [PMID: 39151418 DOI: 10.1016/j.str.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Aging workers of the termite Neocapritermes taracua can defend their colony by sacrificing themselves by body rupture, mixing the externally stored blue laccase BP76 with hydroquinones to produce a sticky liquid rich in toxic benzoquinones. Here, we describe the crystal structure of BP76 isolated from N. taracua in its native form. The structure reveals several stabilization strategies, including compact folding, glycosylation, and flexible loops with disulfide bridges and tight dimer interface. The remarkable stability of BP76 maintains its catalytic activity in solid state during the lifespan of N. taracua workers, providing old workers with an efficient defensive weapon to protect their colony.
Collapse
Affiliation(s)
- Jana Škerlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, 165 00 Prague, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Marek Zákopčaník
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Petr Novák
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology, UR 4443, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| |
Collapse
|
9
|
Bhattarai M, Javaid T, Venkataraghavan A, Faik A. In Vitro GT-array ( i-GT-ray), a Platform for Screening of Glycosyltransferase Activities and Protein-Protein Interactions. Bio Protoc 2024; 14:e5066. [PMID: 39346762 PMCID: PMC11427220 DOI: 10.21769/bioprotoc.5066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 10/01/2024] Open
Abstract
Progress in bioinformatics has facilitated the identification of a large number of putative glycosyltransferases (GTs) associated with many physiological processes. However, many of these GTs remain with unknown biochemical function due to numerous technical limitations. One of these limitations is the lack of innovative tools for large-scale screening of enzyme activity in vitro and testing protein-protein interactions (PPIs) between GT partners. Currently, testing the enzyme activity of a protein requires its production in a heterologous expression system and purification before enzyme assays, a process that is time-consuming and not amenable to high-throughput screening. To overcome this, we developed a platform called in vitro GT-array (i-GT-ray). In this platform, 96-well microplates are coated with plasmid DNA encoding for tagged GTs and a capture antibody. Tagged GTs are produced from plasmid DNA via a cell-free in vitro transcription/translation (IVTT) system and captured through the anti-tag capture antibody directly on microplates. After washing to remove IVTT components, the captured enzymes can be considered purified, and their activity can be tested directly on microplates. The whole process can be performed in less than two days, compared to several weeks for currently available screening methods. The i-GT-ray platform has also been adapted to investigate PPIs between GTs. Here, we provide a practical user guide for the preparation of GT-arrays coated with plasmid DNA and a capture antibody that can be used for monitoring enzyme activity and PPIs of GTs in a high-throughput manner. Key features • Synthesis of tagged proteins directly from plasmid DNA, which are captured by anti-tag antibody attached to microplates. • Captured tagged proteins can be considered as purified proteins ready for enzyme assays. • Our platform can be used for high-throughput screening of enzyme activity and protein-protein interactions in vitro in a short time. • Our platform can be used for biochemical characterization of difficult proteins such as membrane-integrated glycosyltransferases. • Our platform can be adapted to downstream analytical methods such as mass spectrometry (i.e., DPS-MS).
Collapse
Affiliation(s)
- Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology program, Ohio University, Athens, OH, USA
| | - Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | | | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology program, Ohio University, Athens, OH, USA
| |
Collapse
|
10
|
Spampinato A, Leone DL, Pohl R, Tarábek J, Šoltysová M, Polák M, Kádek A, Sýkorová V, Řezáčová P, Hocek M. ABNOH-Linked Nucleotides and DNA for Bioconjugation and Cross-linking with Tryptophan-Containing Peptides and Proteins. Chemistry 2024; 30:e202402151. [PMID: 38924659 DOI: 10.1002/chem.202402151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Reactive N-hydroxy-9-azabicyclo[3.3.1]nonane (ABNOH) linked 2'-deoxyuridine 5'-O-mono- and triphosphates were synthesized through a CuAAC reaction of ABNOH-PEG4-N3 with 5-ethynyl-dUMP or -dUTP. The modified triphosphate was used as substrate for enzymatic synthesis of modified DNA probes with KOD XL DNA polymerase. The keto-ABNO radical reacted with tryptophan (Trp) and Trp-containing peptides to form a stable tricyclic fused hexahydropyrrolo-indole conjugates. Similarly modified ABNOH-linked nucleotides reacted with Trp-containing peptides to form a stable conjugate in the presence but surprisingly even in the absence of NaNO2 (presumably through activation by O2). The reactive ABNOH-modified DNA probe was used for bioconjugations and crosslinking with Trp-containing peptides or proteins.
Collapse
Affiliation(s)
- Ambra Spampinato
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| | - Denise-Liu' Leone
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Markéta Šoltysová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Marek Polák
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Alan Kádek
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| |
Collapse
|
11
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024; 21:387-400. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
12
|
Catalano C, Lucier KW, To D, Senko S, Tran NL, Farwell AC, Silva SM, Dip PV, Poweleit N, Scapin G. The CryoEM structure of human serum albumin in complex with ligands. J Struct Biol 2024; 216:108105. [PMID: 38852682 DOI: 10.1016/j.jsb.2024.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human serum albumin (HSA) is the most prevalent plasma protein in the human body, accounting for 60 % of the total plasma protein. HSA plays a major pharmacokinetic function, serving as a facilitator in the distribution of endobiotics and xenobiotics within the organism. In this paper we report the cryoEM structures of HSA in the apo form and in complex with two ligands (salicylic acid and teniposide) at a resolution of 3.5, 3.7 and 3.4 Å, respectively. We expand upon previously published work and further demonstrate that sub-4 Å maps of ∼60 kDa proteins can be routinely obtained using a 200 kV microscope, employing standard workflows. Most importantly, these maps allowed for the identification of small molecule ligands, emphasizing the practical applicability of this methodology and providing a starting point for subsequent computational modeling and in silico optimization.
Collapse
Affiliation(s)
- Claudio Catalano
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| | - Kyle W Lucier
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Dennis To
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Skerdi Senko
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nhi L Tran
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Ashlyn C Farwell
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Sabrina M Silva
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Phat V Dip
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nicole Poweleit
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Giovanna Scapin
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| |
Collapse
|
13
|
Yue X, Li Y, Wei M, Duan Y, Yang L, Chen FE. Rational redesign of the loop dynamics of carbonyl reductase LfSDR1 to improve the stereoselectivity for asymmetric synthesis of bulky chiral alcohols. Int J Biol Macromol 2024; 274:133345. [PMID: 38944066 DOI: 10.1016/j.ijbiomac.2024.133345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Engineering biocatalysts with enhanced stereoselectivity is highly desirable, and active-site loop dynamics play an important role in its regulation. However, knowledge of their precise roles in catalysis and evolution is limited. Here, we used the strategy of Rosetta enzyme design combined molecular dynamic simulations (MDs) to reprogram the landscapes of the key active-site loop dynamics of the carbonyl reductase LfSDR1 to improve stereoselectivity. The key flexible loop in the active site showed the potential to regulate the catalytic properties. A library of virtual variants was produced using the Rosetta design and assessed dynamic effect of the loop with the aid of MDs. A potential candidate was obtained with significant stereoselectivity (ee > 99 %) compared to the wild-type (ee = 42 %) without loss of catalytic activity or thermostability. The molecular basis of the catalytic property enhancement was flanked by MDs, which revealed the role of the G92L mutation in regulating loop dynamics to stabilize the environment of the active site. Finally, a series of the challenge bulky substrate derivatives were assessed using the G92L variant, and all showed improved stereoselectivity ee > 99 %. This study provides novel insights for improving stereoselectivity through rational engineering of the loop dynamics of biocatalysts.
Collapse
Affiliation(s)
- Xiaoping Yue
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Fudan University, Shanghai 200433, China; School of Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yitong Li
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Fudan University, Shanghai 200433, China
| | - Mankun Wei
- School of life science, Jiangxi Normal University, Nanchang 330022, China
| | - Yu Duan
- School of life science, Jiangxi Normal University, Nanchang 330022, China
| | - Lin Yang
- School of Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Fudan University, Shanghai 200433, China; School of Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
14
|
Losada JC, Triana H, Vanegas E, Caro A, Rodríguez-López A, Espejo-Mojica AJ, Alméciga-Diaz CJ. Identification of Orthosteric and Allosteric Pharmacological Chaperones for Mucopolysaccharidosis Type IIIB. Chembiochem 2024; 25:e202400081. [PMID: 38830828 DOI: 10.1002/cbic.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal inherited disease caused by mutations in gene encoding the lysosomal enzyme N-acetyl-alpha-glucosaminidase (NAGLU). These mutations result in reduced NAGLU activity, preventing it from catalyzing the hydrolysis of the glycosaminoglycan heparan sulfate (HS). There are currently no approved treatments for MPS IIIB. A novel approach in the treatment of lysosomal storage diseases is the use of pharmacological chaperones (PC). In this study, we used a drug repurposing approach to identify and characterize novel potential PCs for NAGLU enzyme. We modeled the interaction of natural and artificial substrates within the active cavity of NAGLU (orthosteric site) and predicted potential allosteric sites. We performed a virtual screening for both the orthosteric and the predicted allosteric site against a curated database of human tested molecules. Considering the binding affinity and predicted blood-brain barrier permeability and gastrointestinal absorption, we selected atovaquone and piperaquine as orthosteric and allosteric PCs. The PCs were evaluated by their capacity to bind NAGLU and the ability to restore the enzymatic activity in human MPS IIIB fibroblasts These results represent novel PCs described for MPS IIIB and demonstrate the potential to develop novel therapeutic alternatives for this and other protein deficiency diseases.
Collapse
Affiliation(s)
- Juan Camilo Losada
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
| | - Heidy Triana
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
| | - Egdda Vanegas
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 52, Room 110 305 A., Bogotá D.C., 110231, Colombia
| | - Angela Caro
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 52, Room 110 305 A., Bogotá D.C., 110231, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
- Dogma Biotech, Cr 13 A No. 127 A-84, Bogotá D.C., 110111, Colombia
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
| | - Carlos Javier Alméciga-Diaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
| |
Collapse
|
15
|
Saridakis E, Donta K. Protein Thermodynamic Properties, Crystallisation, and the Hofmeister Series. Chempluschem 2024; 89:e202300733. [PMID: 38702291 DOI: 10.1002/cplu.202300733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The Hofmeister series is a series of ions ordered according to their ability to precipitate proteins. It has also been linked to a host of (bio)chemical phenomena. Several attempts over the years to correlate the series to the varying success of different salts in crystallising proteins have been largely inconclusive. A correlation, based on published data and crystallisation conditions for several proteins, is proposed here between some thermodynamic properties of proteins and the position in the Hofmeister series of the salts from which they preferentially crystallise. Namely, a high ratio between the entropic or enthalpic protein-solvent interactions contribution to thermodynamic stability and the total thermodynamic stability of a given protein, indicate the protein's high propensity to crystallise in solutions of highly kosmotropic salts. Low such ratios on the other hand, indicate that chaotropic salts can be equally successful, i. e. that the protein in question is rather indifferent to the Hofmeister character of the salt. Testing various model proteins for crystallisation against screens containing salts found at different points on the Hofmeister series, as well as further bibliographic analysis, have yielded results that appear to largely corroborate this hypothesis. These conclusions may conceivably be used as a crystallisation predictive tool.
Collapse
Affiliation(s)
- Emmanuel Saridakis
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research "Demokritos", Neapoleos 27, Ag. Paraskevi, Athens, 15341, Greece
| | - Katerina Donta
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research "Demokritos", Neapoleos 27, Ag. Paraskevi, Athens, 15341, Greece
- Department of Chemistry, University of Athens, Panepistimiopolis, Athens, 15771, Greece
| |
Collapse
|
16
|
Watson S, Micheloni E, Ngu L, Barnsley KK, Makowski L, Beuning PJ, Ondrechen MJ. Revisiting the Roles of Catalytic Residues in Human Ornithine Transcarbamylase. Biochemistry 2024; 63:1858-1875. [PMID: 38940639 PMCID: PMC11256359 DOI: 10.1021/acs.biochem.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Human ornithine transcarbamylase (hOTC) is a mitochondrial transferase protein involved in the urea cycle and is crucial for the conversion of toxic ammonia to urea. Structural analysis coupled with kinetic studies of Escherichia coli, rat, bovine, and other transferase proteins has identified residues that play key roles in substrate recognition and conformational changes but has not provided direct evidence for all of the active residues involved in OTC function. Here, computational methods were used to predict the likely active residues of hOTC; the function of these residues was then probed with site-directed mutagenesis and biochemical characterization. This process identified previously reported active residues, as well as distal residues that contribute to activity. Mutation of active site residue D263 resulted in a substantial loss of activity without a decrease in protein stability, suggesting a key catalytic role for this residue. Mutation of predicted second-layer residues H302, K307, and E310 resulted in significant decreases in enzymatic activity relative to that of wild-type (WT) hOTC with respect to l-ornithine. The mutation of fourth-layer residue H107 to produce the hOTC H107N variant resulted in a 66-fold decrease in catalytic efficiency relative to that of WT hOTC with respect to carbamoyl phosphate and a substantial loss of thermal stability. Further investigation identified H107 and to a lesser extent E98Q as key residues involved in maintaining the hOTC quaternary structure. This work biochemically demonstrates the importance of D263 in hOTC catalytic activity and shows that residues remote from the active site also play key roles in activity.
Collapse
Affiliation(s)
- Samantha
S. Watson
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Emily Micheloni
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Lisa Ngu
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Kelly K. Barnsley
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Lee Makowski
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mary Jo Ondrechen
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Šoltysová M, Škerlová J, Pachl P, Škubník K, Fábry M, Sieglová I, Farolfi M, Grishkovskaya I, Babiak M, Nováček J, Krásný L, Řezáčová P. Structural characterization of two prototypical repressors of SorC family reveals tetrameric assemblies on DNA and mechanism of function. Nucleic Acids Res 2024; 52:7305-7320. [PMID: 38842936 PMCID: PMC11229326 DOI: 10.1093/nar/gkae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Jana Škerlová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Petr Pachl
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Karel Škubník
- CryoElectron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, 601 77, Czechia
| | - Milan Fábry
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Irena Sieglová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Martina Farolfi
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czechia
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology, Campus-ViennaBiocenter 1, 1030 Vienna, Austria
| | - Michal Babiak
- CryoElectron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, 601 77, Czechia
| | - Jiří Nováček
- CryoElectron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, 601 77, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czechia
| | - Pavlína Řezáčová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| |
Collapse
|
18
|
Van Elzen R, Konijnenberg A, Van der Veken P, Edgeworth MJ, Scrivens JH, Fülöp V, Sobott F, Lambeir AM. Study of the Conformational Dynamics of Prolyl Oligopeptidase by Mass Spectrometry: Lessons Learned. J Med Chem 2024; 67:10436-10446. [PMID: 38783480 PMCID: PMC11215766 DOI: 10.1021/acs.jmedchem.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Ion mobility mass spectrometry (IM-MS) can be used to analyze native proteins according to their size and shape. By sampling individual molecules, it allows us to study mixtures of conformations, as long as they have different collision cross sections and maintain their native conformation after dehydration and vaporization in the mass spectrometer. Even though conformational heterogeneity of prolyl oligopeptidase has been demonstrated in solution, it is not detectable in IM-MS. Factors that affect the conformation in solution, binding of an active site ligand, the stabilizing Ser554Ala mutation, and acidification do not qualitatively affect the collision-induced unfolding pattern. However, measuring the protection of accessible cysteines upon ligand binding provides a principle for the development of MS-based ligand screening methods.
Collapse
Affiliation(s)
- Roos Van Elzen
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Albert Konijnenberg
- Laboratory
of Biomolecular & Analytical Mass Spectrometry, Department of
Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Pieter Van der Veken
- Laboratory
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Matthew J. Edgeworth
- Waters/Warwick
Centre for BioMedical Mass Spectrometry and Proteomics, School of
Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - James H. Scrivens
- Waters/Warwick
Centre for BioMedical Mass Spectrometry and Proteomics, School of
Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Vilmos Fülöp
- School
of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Institute
of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Frank Sobott
- Laboratory
of Biomolecular & Analytical Mass Spectrometry, Department of
Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Molecular and Cellular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Anne-Marie Lambeir
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
19
|
Miglioli F, Joel S, Tegoni M, Neira-Pelén P, Günther S, Carcelli M, Fisicaro E, Brancale A, Fernández-García Y, Rogolino D. Inhibitory interactions of the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold with Bunyavirales cap-snatching endonucleases expose relevant drug design features. Eur J Med Chem 2024; 272:116467. [PMID: 38735150 DOI: 10.1016/j.ejmech.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
The World Health Organization (WHO) identifies several bunyaviruses as significant threats to global public health security. Developing effective therapies against these viruses is crucial to combat future outbreaks and mitigate their impact on patient outcomes. Here, we report the synthesis of some isoindol-1-one derivatives and explore their inhibitory properties over an indispensable metal-dependent cap-snatching endonuclease (Cap-ENDO) shared among evolutionary divergent bunyaviruses. The compounds suppressed RNA hydrolysis by Cap-ENDOs, with IC50 values predominantly in the lower μM range. Molecular docking studies revealed the interactions with metal ions to be essential for the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold activity. Calorimetric analysis uncovered Mn2+ ions to have the highest affinity for sites within the targets, irrespective of aminoacidic variations influencing metal cofactor preferences. Interestingly, spectrophotometric findings unveiled sole dinuclear species formation between the scaffold and Mn2+. Moreover, the complexation of two Mn2+ ions within the viral enzymes appears to be favourable, as indicated by the binding of compound 11 to TOSV Cap-ENDO (Kd = 28 ± 3 μM). Additionally, the tendency of compound 11 to stabilize His+ more than His- Cap-ENDOs suggests exploitable differences in their catalytic pockets relevant to improving specificity. Collectively, our results underscore the isoindolinone scaffold's potential as a strategic starting point for the design of pan-antibunyavirus drugs.
Collapse
Affiliation(s)
- Francesca Miglioli
- Department of Chemistry, Life Sciences, Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Shindhuja Joel
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences, Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Pedro Neira-Pelén
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences, Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Emilia Fisicaro
- Department of Food and Drug, University of Parma, Viale delle Scienze 27/A, 43124, Parma, Italy
| | - Andrea Brancale
- Department of Organic Chemistry, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Yaiza Fernández-García
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences, Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.
| |
Collapse
|
20
|
Markusson S, Raasakka A, Schröder M, Sograte-Idrissi S, Rahimi AM, Asadpour O, Körner H, Lodygin D, Eichel-Vogel MA, Chowdhury R, Sutinen A, Muruganandam G, Iyer M, Cooper MH, Weigel MK, Ambiel N, Werner HB, Zuchero JB, Opazo F, Kursula P. Nanobodies against the myelin enzyme CNPase as tools for structural and functional studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595513. [PMID: 38826303 PMCID: PMC11142274 DOI: 10.1101/2024.05.25.595513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognizing the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibers and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional biology of myelination, including high-resolution imaging of nerve tissue.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcel Schröder
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shama Sograte-Idrissi
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Amir Mohammad Rahimi
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Ommolbanin Asadpour
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Henrike Körner
- Department for Neuroimmunology and Multiple Sclerosis Research, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Dmitri Lodygin
- Department for Neuroimmunology and Multiple Sclerosis Research, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Maria A. Eichel-Vogel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Göttingen, Germany
| | - Risha Chowdhury
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Manasi Iyer
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline H. Cooper
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Maya K. Weigel
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Ambiel
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Göttingen, Germany
| | - J. Bradley Zuchero
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079 Göttingen, Germany
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
21
|
Sadiki A, Liu S, Vaidya SR, Kercher EM, Lang RT, McIsaac J, Spring BQ, Auclair JR, Zhou ZS. Site-Specific Conjugation of Native Antibody: Transglutaminase-Mediated Modification of a Conserved Glutamine While Maintaining the Primary Sequence and Core Fc Glycan via Trimming with an Endoglycosidase. Bioconjug Chem 2024; 35:465-471. [PMID: 38499390 PMCID: PMC11036358 DOI: 10.1021/acs.bioconjchem.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
A versatile chemo-enzymatic tool to site-specifically modify native (nonengineered) antibodies is using transglutaminase (TGase, E.C. 2.3.2.13). With various amines as cosubstrates, this enzyme converts the unsubstituted side chain amide of glutamine (Gln or Q) in peptides and proteins into substituted amides (i.e., conjugates). A pleasant surprise is that only a single conserved glutamine (Gln295) in the Fc region of IgG is modified by microbial TGase (mTGase, EC 2.3.2.13), thereby providing a highly specific and generally applicable conjugation method. However, prior to the transamidation (access to the glutamine residue by mTGase), the steric hindrance from the nearby conserved N-glycan (Asn297 in IgG1) must be reduced. In previous approaches, amidase (PNGase F, EC 3.5.1.52) was used to completely remove the N-glycan. However, PNGase F also converts a net neutral asparagine (Asn297) to a negatively charged aspartic acid (Asp297). This charge alteration may markedly change the structure, function, and immunogenicity of an IgG antibody. In contrast, in our new method presented herein, the N-glycan is trimmed by an endoglycosidase (EndoS2, EC 3.2.1.96), hence retaining both the core N-acetylglucosamine (GlcNAc) moiety and the neutral asparaginyl amide. The trimmed glycan also reduces or abolishes Fc receptor-mediated functions, which results in better imaging agents by decreasing nonspecific binding to other cells (e.g., immune cells). Moreover, the remaining core glycan allows further derivatization such as glycan remodeling and dual conjugation. Practical and robust, our method generates conjugates in near quantitative yields, and both enzymes are commercially available.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shanshan Liu
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shefali R. Vaidya
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Eric M. Kercher
- Translational
Biophotonics Cluster, Department of Physics, Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ryan T. Lang
- Translational
Biophotonics Cluster, Department of Physics, Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - James McIsaac
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Bryan Q. Spring
- Translational
Biophotonics Cluster, Department of Physics, Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jared R. Auclair
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaohui Sunny Zhou
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Derardja AE, Pretzler M, Barkat M, Rompel A. Extraction, Purification, and Characterization of Olive ( Olea europaea L., cv. Chemlal) Polyphenol Oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3099-3112. [PMID: 38291573 PMCID: PMC10870767 DOI: 10.1021/acs.jafc.3c07776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Among fruits susceptible to enzymatic browning, olive polyphenol oxidase (OePPO) stood out as being unisolated from a natural source until this study, wherein we successfully purified and characterized the enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of heated and nonheated OePPO revealed distinct molecular weights of 35 and 54 kDa, respectively, indicative of its oligomeric nature comprising active and C-terminal subunits. OePPO displayed latency, fully activating with 5 mM SDS under optimal conditions of pH 7.5 and 15 °C. The enzyme demonstrated monophenolase activity and showcased the highest efficiency toward hydroxytyrosol. Despite its low optimal temperature, OePPO exhibited high thermal resistance, maintaining stability up to 90 °C. However, beyond this threshold, the oligomeric enzyme disassociated, yielding a denatured main subunit and C-terminal fragments. Six OePPO genes were found in the fruits. Tryptic digestion identified the enzyme as mature OePPO1 (INSDC OY733096), while mass spectrometry detected the active form mass alongside several C-terminal fragments, revealing potential cleavage sites (Gly407, Tyr408).
Collapse
Affiliation(s)
- Ala eddine Derardja
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
- Laboratoire
Bioqual, INATAA, Université Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Matthias Pretzler
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Malika Barkat
- Laboratoire
Bioqual, INATAA, Université Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Annette Rompel
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| |
Collapse
|
23
|
Gooran N, Kopra K. Fluorescence-Based Protein Stability Monitoring-A Review. Int J Mol Sci 2024; 25:1764. [PMID: 38339045 PMCID: PMC10855643 DOI: 10.3390/ijms25031764] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. Thus, there is a clear need for methods enabling the study of proteins, their correct folding, and components affecting protein stability. There is a significant number of label-free methods to study protein stability. In this review, we provide a general overview of these methods, but the main focus is on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor, are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the challenges and comparative aspects related to these methods, as well as future opportunities and assay development directions.
Collapse
Affiliation(s)
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland;
| |
Collapse
|
24
|
Deniaud A, Kabasakal BV, Bufton JC, Schaffitzel C. Sample Preparation for Electron Cryo-Microscopy of Macromolecular Machines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:173-190. [PMID: 38507207 DOI: 10.1007/978-3-031-52193-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG - Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Burak V Kabasakal
- School of Biochemistry, University of Bristol, Bristol, UK
- Turkish Accelerator and Radiation Laboratory, Gölbaşı, Ankara, Türkiye
| | | | | |
Collapse
|
25
|
Platt AJ, Padrick S, Ma AT, Beld J. A dissected non-ribosomal peptide synthetase maintains activity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140972. [PMID: 37951518 DOI: 10.1016/j.bbapap.2023.140972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) generate chemically complex compounds and their modular architecture suggests that changing their domain organization can predictably alter their products. Ebony, a small three-domain NRPS, catalyzes the formation of β-alanine containing amides from biogenic amines. To examine the necessity of interdomain interactions, we modeled and docked domains of Ebony to reveal potential interfaces between them. Testing the same domain combinations in vitro showed that 8 % of activity was preserved after Ebony was dissected into a di-domain and a detached C-terminal domain, suggesting that sufficient interaction was maintained after dissection. Our work creates a model to identify domain interfaces necessary for catalysis, an important step toward utilizing Ebony as a combinatorial engineering platform for novel amides.
Collapse
Affiliation(s)
- Amanda J Platt
- Department of Microbiology and Immunology, Institute of Molecular Medicine and Infectious Disease, Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shae Padrick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15(th) Street, Philadelphia, PA 19102, USA
| | - Amy T Ma
- Department of Microbiology and Immunology, Institute of Molecular Medicine and Infectious Disease, Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Institute of Molecular Medicine and Infectious Disease, Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Pathira Kankanamge L, Mora A, Ondrechen MJ, Beuning PJ. Biochemical Activity of 17 Cancer-Associated Variants of DNA Polymerase Kappa Predicted by Electrostatic Properties. Chem Res Toxicol 2023; 36:1789-1803. [PMID: 37883788 PMCID: PMC10664756 DOI: 10.1021/acs.chemrestox.3c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
DNA damage and repair have been widely studied in relation to cancer and therapeutics. Y-family DNA polymerases can bypass DNA lesions, which may result from external or internal DNA damaging agents, including some chemotherapy agents. Overexpression of the Y-family polymerase human pol kappa can result in tumorigenesis and drug resistance in cancer. This report describes the use of computational tools to predict the effects of single nucleotide polymorphism variants on pol kappa activity. Partial Order Optimum Likelihood (POOL), a machine learning method that uses input features from Theoretical Microscopic Titration Curve Shapes (THEMATICS), was used to identify amino acid residues most likely involved in catalytic activity. The μ4 value, a metric obtained from POOL and THEMATICS that serves as a measure of the degree of coupling between one ionizable amino acid and its neighbors, was then used to identify which protein mutations are likely to impact the biochemical activity. Bioinformatic tools SIFT, PolyPhen-2, and FATHMM predicted most of these variants to be deleterious to function. Along with computational and bioinformatic predictions, we characterized the catalytic activity and stability of 17 cancer-associated DNA pol kappa variants. We identified pol kappa variants R48I, H105Y, G147D, G154E, V177L, R298C, E362V, and R470C as having lower activity relative to wild-type pol kappa; the pol kappa variants T102A, H142Y, R175Q, E210K, Y221C, N330D, N338S, K353T, and L383F were identified as being similar in catalytic efficiency to WT pol kappa. We observed that POOL predictions can be used to predict which variants have decreased activity. Predictions from bioinformatic tools like SIFT, PolyPhen-2, and FATHMM are based on sequence comparisons and therefore are complementary to POOL but are less capable of predicting biochemical activity. These bioinformatic and computational tools can be used to identify SNP variants with deleterious effects and altered biochemical activity from a large data set.
Collapse
Affiliation(s)
- Lakindu
S. Pathira Kankanamge
- Department
of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandra Mora
- Department
of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mary Jo Ondrechen
- Department
of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department
of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
27
|
Fernandes A, Williamson A, Matias PM, Moe E. Structure/function studies of the NAD +-dependent DNA ligase from the poly-extremophile Deinococcus radiodurans reveal importance of the BRCT domain for DNA binding. Extremophiles 2023; 27:26. [PMID: 37712998 PMCID: PMC10504179 DOI: 10.1007/s00792-023-01309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Bacterial NAD+-dependent DNA ligases (LigAs) are enzymes involved in replication, recombination, and DNA-repair processes by catalyzing the formation of phosphodiester bonds in the backbone of DNA. These multidomain proteins exhibit four modular domains, that are highly conserved across species, with the BRCT (breast cancer type 1 C-terminus) domain on the C-terminus of the enzyme. In this study, we expressed and purified both recombinant full-length and a C-terminally truncated LigA from Deinococcus radiodurans (DrLigA and DrLigA∆BRCT) and characterized them using biochemical and X-ray crystallography techniques. Using seeds of DrLigA spherulites, we obtained ≤ 100 µm plate crystals of DrLigA∆BRCT. The crystal structure of the truncated protein was obtained at 3.4 Å resolution, revealing DrLigA∆BRCT in a non-adenylated state. Using molecular beacon-based activity assays, we demonstrated that DNA ligation via nick sealing remains unaffected in the truncated DrLigA∆BRCT. However, DNA-binding assays revealed a reduction in the affinity of DrLigA∆BRCT for dsDNA. Thus, we conclude that the flexible BRCT domain, while not critical for DNA nick-joining, plays a role in the DNA binding process, which may be a conserved function of the BRCT domain in LigA-type DNA ligases.
Collapse
Affiliation(s)
- Andreia Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Adele Williamson
- Department of Chemistry, UiT-The Arctic University of Norway, Tromsø, Norway
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
- Institute of Experimental and Technological Biology (IBET), Oeiras, Portugal
| | - Elin Moe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal.
- Department of Chemistry, UiT-The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
28
|
Custódio TF, Killer M, Yu D, Puente V, Teufel DP, Pautsch A, Schnapp G, Grundl M, Kosinski J, Löw C. Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1. Nat Commun 2023; 14:5696. [PMID: 37709742 PMCID: PMC10502012 DOI: 10.1038/s41467-023-41420-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
PHT1 is a histidine /oligopeptide transporter with an essential role in Toll-like receptor innate immune responses. It can act as a receptor by recruiting the adaptor protein TASL which leads to type I interferon production via IRF5. Persistent stimulation of this signalling pathway is known to be involved in the pathogenesis of systemic lupus erythematosus (SLE). Understanding how PHT1 recruits TASL at the molecular level, is therefore clinically important for the development of therapeutics against SLE and other autoimmune diseases. Here we present the Cryo-EM structure of PHT1 stabilized in the outward-open conformation. By combining biochemical and structural modeling techniques we propose a model of the PHT1-TASL complex, in which the first 16 N-terminal TASL residues fold into a helical structure that bind in the central cavity of the inward-open conformation of PHT1. This work provides critical insights into the molecular basis of PHT1/TASL mediated type I interferon production.
Collapse
Affiliation(s)
- Tânia F Custódio
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Maxime Killer
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Collaboration for joint PhD degree between EMBL, and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany
| | - Dingquan Yu
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Collaboration for joint PhD degree between EMBL, and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany
| | - Virginia Puente
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Daniel P Teufel
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Alexander Pautsch
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Marc Grundl
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany.
| |
Collapse
|
29
|
Wright KM, DiNapoli SR, Miller MS, Aitana Azurmendi P, Zhao X, Yu Z, Chakrabarti M, Shi W, Douglass J, Hwang MS, Hsiue EHC, Mog BJ, Pearlman AH, Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S, Gabelli SB. Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen. Nat Commun 2023; 14:5063. [PMID: 37604828 PMCID: PMC10442379 DOI: 10.1038/s41467-023-40821-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Specificity remains a major challenge to current therapeutic strategies for cancer. Mutation associated neoantigens (MANAs) are products of genetic alterations, making them highly specific therapeutic targets. MANAs are HLA-presented (pHLA) peptides derived from intracellular mutant proteins that are otherwise inaccessible to antibody-based therapeutics. Here, we describe the cryo-EM structure of an antibody-MANA pHLA complex. Specifically, we determine a TCR mimic (TCRm) antibody bound to its MANA target, the KRASG12V peptide presented by HLA-A*03:01. Hydrophobic residues appear to account for the specificity of the mutant G12V residue. We also determine the structure of the wild-type G12 peptide bound to HLA-A*03:01, using X-ray crystallography. Based on these structures, we perform screens to validate the key residues required for peptide specificity. These experiments led us to a model for discrimination between the mutant and the wild-type peptides presented on HLA-A*03:01 based exclusively on hydrophobic interactions.
Collapse
Affiliation(s)
- Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA
- Discovery Chemistry, Protein and Structural Chemistry, Merck & Co, Inc, West Point, PA, 19846, USA
| | - Sarah R DiNapoli
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Michelle S Miller
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
| | - P Aitana Azurmendi
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA
| | - Xiaowei Zhao
- Janelia Research Campus, HHMI,19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Zhiheng Yu
- Janelia Research Campus, HHMI,19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Mayukh Chakrabarti
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - WuXian Shi
- Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Case Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jacqueline Douglass
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Michael S Hwang
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Emily Han-Chung Hsiue
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Brian J Mog
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander H Pearlman
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Maximilian F Konig
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kenneth W Kinzler
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Bert Vogelstein
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shibin Zhou
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA.
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Discovery Chemistry, Protein and Structural Chemistry, Merck & Co, Inc, West Point, PA, 19846, USA.
| |
Collapse
|
30
|
Gedi V, Duarte F, Patel P, Bhattacharjee P, Tecza M, McGourty K, Hudson SP. Impact of Propeptide Cleavage on the Stability and Activity of a Streptococcal Immunomodulatory C5a Peptidase for Biopharmaceutical Development. Mol Pharm 2023; 20:4041-4049. [PMID: 37406301 PMCID: PMC10410607 DOI: 10.1021/acs.molpharmaceut.3c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Posttranslational modifications of proteins can impact their therapeutic efficacy, stability, and potential for pharmaceutical development. The Group AStreptococcus pyogenesC5a peptidase (ScpA) is a multi-domain protein composed of an N-terminal signal peptide, a catalytic domain (including propeptide), three fibronectin domains, and cell membrane-associated domains. It is one of several proteins produced by Group AS. pyogenesknown to cleave components of the human complement system. After signal peptide removal, ScpA undergoes autoproteolysis and cleaves its propeptide for full maturation. The exact location and mechanism of the propeptide cleavage, and the impact of this cleavage on stability and activity, are not clearly understood, and the exact primary sequence of the final enzyme is not known. A form of ScpA with no autoproteolysis fragments of propeptide present may be more desirable for pharmaceutical development from a regulatory and a biocompatibility in the body perspective. The current study describes an in-depth structural and functional characterization of propeptide truncated variants of ScpA expressed inEscherichia colicells. All three purified ScpA variants, ScpA, 79ΔPro, and 92ΔPro, starting with N32, D79, and A92 positions, respectively, showed similar activity against C5a, which suggests a propeptide-independent activity profile of ScpA. CE-SDS and MALDI top-down sequencing analyses highlight a time-dependent propeptide autoproteolysis of ScpA at 37 °C with a distinct end point at A92 and/or D93. In comparison, all three variants of ScpA exhibit similar stability, melting temperatures, and secondary structure orientation. In summary, this work not only highlights propeptide localization but also provides a strategy to recombinantly produce a final mature and active form of ScpA without any propeptide-related fragments.
Collapse
Affiliation(s)
- Vinayakumar Gedi
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Francisco Duarte
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Pratikkumar Patel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Promita Bhattacharjee
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Malgorzata Tecza
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Kieran McGourty
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sarah P. Hudson
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
31
|
Llowarch P, Usselmann L, Ivanov D, Holdgate GA. Thermal unfolding methods in drug discovery. BIOPHYSICS REVIEWS 2023; 4:021305. [PMID: 38510342 PMCID: PMC10903397 DOI: 10.1063/5.0144141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/13/2023] [Indexed: 03/22/2024]
Abstract
Thermal unfolding methods, applied in both isolated protein and cell-based settings, are increasingly used to identify and characterize hits during early drug discovery. Technical developments over recent years have facilitated their application in high-throughput approaches, and they now are used more frequently for primary screening. Widespread access to instrumentation and automation, the ability to miniaturize, as well as the capability and capacity to generate the appropriate scale and quality of protein and cell reagents have all played a part in these advances. As the nature of drug targets and approaches to their modulation have evolved, these methods have broadened our ability to provide useful chemical start points. Target proteins without catalytic function, or those that may be difficult to express and purify, are amenable to these methods. Here, we provide a review of the applications of thermal unfolding methods applied in hit finding during early drug discovery.
Collapse
Affiliation(s)
- Poppy Llowarch
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Laura Usselmann
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Delyan Ivanov
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Geoffrey A. Holdgate
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| |
Collapse
|
32
|
Gomes D, Correia M, Romão M, Passarinha L, Sousa A. Integrated approaches for the separation and purification of recombinant HPV16 E6 protein from Escherichia coli crude extracts. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
33
|
Livada J, Vargas AM, Martinez CA, Lewis RD. Ancestral Sequence Reconstruction Enhances Gene Mining Efforts for Industrial Ene Reductases by Expanding Enzyme Panels with Thermostable Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Jovan Livada
- Pfizer Global Research and Development, Chemical Research Development, MS 4073 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ariana M. Vargas
- Pfizer Global Research and Development, Chemical Research Development, MS 4073 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Carlos A. Martinez
- Pfizer Global Research and Development, Chemical Research Development, MS 4073 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Russell D. Lewis
- Pfizer Global Research and Development, Chemical Research Development, MS 4073 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
34
|
Paoletti F, Covaceuszach S, Cassetta A, Calabrese AN, Novak U, Konarev P, Grdadolnik J, Lamba D, Golič Grdadolnik S. Distinct conformational changes occur within the intrinsically unstructured pro-domain of pro-Nerve Growth Factor in the presence of ATP and Mg 2. Protein Sci 2023; 32:e4563. [PMID: 36605018 PMCID: PMC9878617 DOI: 10.1002/pro.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Nerve growth factor (NGF), the prototypical neurotrophic factor, is involved in the maintenance and growth of specific neuronal populations, whereas its precursor, proNGF, is involved in neuronal apoptosis. Binding of NGF or proNGF to TrkA, p75NTR , and VP10p receptors triggers complex intracellular signaling pathways that can be modulated by endogenous small-molecule ligands. Here, we show by isothermal titration calorimetry and NMR that ATP binds to the intrinsically disordered pro-peptide of proNGF with a micromolar dissociation constant. We demonstrate that Mg2+ , known to play a physiological role in neurons, modulates the ATP/proNGF interaction. An integrative structural biophysics analysis by small angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry unveils that ATP binding induces a conformational rearrangement of the flexible pro-peptide domain of proNGF. This suggests that ATP may act as an allosteric modulator of the overall proNGF conformation, whose likely distinct biological activity may ultimately affect its physiological homeostasis.
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | | | - Alberto Cassetta
- Institute of Crystallography—C.N.R.—Trieste OutstationTriesteItaly
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Urban Novak
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | - Petr Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | - Doriano Lamba
- Institute of Crystallography—C.N.R.—Trieste OutstationTriesteItaly
- Interuniversity Consortium “Biostructures and Biosystems National Institute”RomeItaly
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| |
Collapse
|
35
|
Retnoningrum DS, Yoshida H, Pajatiwi I, Muliadi R, Utami RA, Artarini A, Ismaya WT. Introducing Intermolecular Interaction to Strengthen the Stability of MnSOD Dimer. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04347-7. [PMID: 36701098 DOI: 10.1007/s12010-023-04347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Manganese superoxide dismutase from Staphylococcus equorum (MnSODSeq) maintains its activity upon treatments like a wide range of pH, addition of detergent and denaturing agent, exposure to ultraviolet light, and heating up to 50 °C. The enzyme dimer dissociates at 52-55 °C, while its monomer unfolds at 63-67 °C. MnSOD dimeric form is indispensable for the enzyme activity; therefore, strengthening the interactions between the monomers is the most preferred strategy to improve the enzyme stability. However, to date, modification of MnSODSeq at the dimer interface has been unfruitful despite excluding the inner and outer sphere regions that are important to the enzyme activity. Here, a new strategy was developed and K38R-A121E/Y double substitutions were proposed. These mutants displayed similar enzyme activity to the wild type. K38R-A121E dimer was thermally more stable and its monomer stability was similar to the wild type. The thermal stability of K38R-A121Y dimer was similar to the wild type but its monomer was thermally less stable. In addition, the structure of the previously reported L169W mutant was also elucidated. The L169W mutant structure showed that intramolecular modification can decrease flexibility of the MnSODSeq monomer and leads to a less stable enzyme with similar activity to the wild type. Thus, while the enzyme activity depends on arrangement of residues in the dimer interface, the stability appears to depend more on its monomeric architecture. Furthermore, in the L169W structure in complex with azide, which is a specific inhibitor for MnSOD, one of the azide molecules was present in the dimer interface region that previously has been identified to involve in the enzymatic reaction. Nevertheless, the present results show that an MnSODSeq mutant with better thermal stability has been obtained.
Collapse
Affiliation(s)
- Debbie S Retnoningrum
- Laboratory of Pharmaceutical Biotechnology, Pharmaceutics Research Group, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Hiromi Yoshida
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ismiana Pajatiwi
- Laboratory of Pharmaceutical Biotechnology, Pharmaceutics Research Group, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Rahmat Muliadi
- Laboratory of Pharmaceutical Biotechnology, Pharmaceutics Research Group, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Ratna A Utami
- Laboratory of Pharmaceutical Biotechnology, Pharmaceutics Research Group, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Anita Artarini
- Laboratory of Pharmaceutical Biotechnology, Pharmaceutics Research Group, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia.
| | - Wangsa T Ismaya
- Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Industri Selatan V Blok PP-7, Cikarang, 17750, West Java, Indonesia
| |
Collapse
|
36
|
Engrola FSS, Paquete-Ferreira J, Santos-Silva T, Correia MAS, Leisico F, Santos MFA. Screening of Buffers and Additives for Protein Stabilization by Thermal Shift Assay: A Practical Approach. Methods Mol Biol 2023; 2652:199-213. [PMID: 37093477 DOI: 10.1007/978-1-0716-3147-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Thermal shift assay (TSA), also commonly designed by differential scanning fluorimetry (DSF) or ThermoFluor, is a technique relatively easy to implement and perform, useful in a myriad of applications. In addition to versatility, it is also rather inexpensive, making it suitable for high-throughput approaches. TSA uses a fluorescent dye to monitor the thermal denaturation of the protein under study and determine its melting temperature (Tm). One of its main applications is to identify the best buffers and additives that enhance protein stability.Understanding the TSA operating mode and the main methodological steps is a central key to designing effective experiments and retrieving meaningful conclusions. This chapter intends to present a straightforward TSA protocol, with different troubleshooting tips, to screen effective protein stabilizers such as buffers and additives, as well as data treatment and analysis. TSA results provide conditions in which the protein of interest is stable and therefore suitable to carry out further biophysical and structural characterization.
Collapse
Affiliation(s)
- Filipa S S Engrola
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Paquete-Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Márcia A S Correia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Francisco Leisico
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Marino F A Santos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
37
|
Tarver CL, Pusey ML. Effects of Ionic Liquids as Additives on Protein Crystallization. Methods Mol Biol 2023; 2652:187-197. [PMID: 37093476 DOI: 10.1007/978-1-0716-3147-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Protein crystallization is a complex process, where every component and physical parameter of the crystallization process may have an effect on the outcome. Crystallization conditions are typically arrived at by a screening process, where the target is subjected to a broad array of solution conditions with the goal of obtaining at least one condition that can be carried on to a structure. Ionic liquids (IL) have been found to be useful additives for improving the outcomes of the crystallization process, with existing data indicating that the IL structure has an effect. We describe a method for quickly preparing a series of solutions that vary in just one component, in this case a series of ILs that are used as crystallization additives. The method results in a screening grid, where the crystallization conditions being tested are constant in any one column in the Y dimension and they ILs are constant in any one row in the X dimension. This provides a systematic approach to determining effective ILs for obtaining crystals from a limited set of promising starting crystallization conditions. The approach generates an X-Y array of conditions, where the basic precipitant conditions are kept constant in one plate dimension and the additives are kept constant in the second dimension, generating a 12 × 8 array of conditions. This approach would also be useful for surveying other classes of protein crystallization additives in a systematic fashion.
Collapse
Affiliation(s)
- Crissy L Tarver
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marc L Pusey
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA.
| |
Collapse
|
38
|
Rzoska-Smith E, Stelzer R, Monterio M, Cary SC, Williamson A. DNA repair enzymes of the Antarctic Dry Valley metagenome. Front Microbiol 2023; 14:1156817. [PMID: 37125210 PMCID: PMC10140301 DOI: 10.3389/fmicb.2023.1156817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Microbiota inhabiting the Dry Valleys of Antarctica are subjected to multiple stressors that can damage deoxyribonucleic acid (DNA) such as desiccation, high ultraviolet light (UV) and multiple freeze-thaw cycles. To identify novel or highly-divergent DNA-processing enzymes that may enable effective DNA repair, we have sequenced metagenomes from 30 sample-sites which are part of the most extensive Antarctic biodiversity survey undertaken to date. We then used these to construct wide-ranging sequence similarity networks from protein-coding sequences and identified candidate genes involved in specialized repair processes including unique nucleases as well as a diverse range of adenosine triphosphate (ATP) -dependent DNA ligases implicated in stationary-phase DNA repair processes. In one of the first direct investigations of enzyme function from these unique samples, we have heterologously expressed and assayed a number of these enzymes, providing insight into the mechanisms that may enable resident microbes to survive these threats to their genomic integrity.
Collapse
Affiliation(s)
- Elizabeth Rzoska-Smith
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
| | - Ronja Stelzer
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
| | - Maria Monterio
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Stephen C. Cary
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Adele Williamson
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
- *Correspondence: Adele Williamson,
| |
Collapse
|
39
|
Ruckthong L, Pretzler M, Kampatsikas I, Rompel A. Biochemical characterization of Dimocarpus longan polyphenol oxidase provides insights into its catalytic efficiency. Sci Rep 2022; 12:20322. [PMID: 36434079 PMCID: PMC9700842 DOI: 10.1038/s41598-022-20616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
The "dragon-eye" fruits produced by the tropical longan tree are rich in nutrients and antioxidants. They suffer from post-harvest enzymatic browning, a process for which mainly the polyphenol oxidase (PPO) family of enzymes is responsible. In this study, two cDNAs encoding the PPO have been cloned from leaves of Dimocarpus longan (Dl), heterologously expressed in Escherichia coli and purified by affinity chromatography. The prepro-DlPPO1 contains two signal peptides at its N-terminal end that facilitate transportation of the protein into the chloroplast stroma and to the thylakoid lumen. Removal of the two signal peptides from prepro-DlPPO1 yields pro-DlPPO1. The prepro-DlPPO1 exhibited higher thermal tolerance than pro-DlPPO1 (unfolding at 65 °C vs. 40 °C), suggesting that the signal peptide may stabilize the fold of DlPPO1. DlPPO1 can be classified as a tyrosinase because it accepts both monophenolic and diphenolic substrates. The pro-DlPPO1 exhibited the highest specificity towards the natural diphenol (-)-epicatechin (kcat/KM of 800 ± 120 s-1 mM-1), which is higher than for 4-methylcatechol (590 ± 99 s-1 mM-1), pyrogallol (70 ± 9.7 s-1 mM-1) and caffeic acid (4.3 ± 0.72 s-1 mM-1). The kinetic efficiencies of prepro-DlPPO1 are 23, 36, 1.7 and 4.7-fold lower, respectively, than those observed with pro-DlPPO1 for the four aforementioned diphenolic substrates. Additionally, docking studies showed that (-)-epicatechin has a lower binding energy than any other investigated substrate. Both kinetic and in-silico studies strongly suggest that (-)-epicatechin is a good substrate of DlPPO1 and ascertain the affinity of PPOs towards specific flavonoid compounds.
Collapse
Affiliation(s)
- Leela Ruckthong
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
- Faculty of Science, Department of Chemistry, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, 10140, Thailand
| | - Matthias Pretzler
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Ioannis Kampatsikas
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria.
| |
Collapse
|
40
|
Alaofi AL, Shahid M, Raish M, Ansari MA, Syed R, Kalam MA. Identification of Doxorubicin as Repurposing Inhibitory Drug for MERS-CoV PLpro. Molecules 2022; 27:7553. [PMID: 36364379 PMCID: PMC9654812 DOI: 10.3390/molecules27217553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 07/29/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), belonging to the betacoronavirus genus can cause severe respiratory illnesses, accompanied by pneumonia, multiorgan failure, and ultimately death. CoVs have the ability to transgress species barriers and spread swiftly into new host species, with human-to-human transmission causing epidemic diseases. Despite the severe public health threat of MERS-CoV, there are currently no vaccines or drugs available for its treatment. MERS-CoV papain-like protease (PLpro) is a key enzyme that plays an important role in its replication. In the present study, we evaluated the inhibitory activities of doxorubicin (DOX) against the recombinant MERS-CoV PLpro by employing protease inhibition assays. Hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of DOX showed an IC50 value of 1.67 μM at 30 min. Subsequently, we confirmed the interaction between DOX and MERS-CoV PLpro by thermal shift assay (TSA), and DOX increased ΔTm by ~20 °C, clearly indicating a coherent interaction between the MERS-CoV PL protease and DOX. The binding site of DOX on MERS-CoV PLpro was assessed using docking techniques and molecular dynamic (MD) simulations. DOX bound to the thumb region of the catalytic domain of the MERS-CoV PLpro. MD simulation results showed flexible BL2 loops, as well as other potential residues, such as R231, R233, and G276 of MERS-CoV PLpro. Development of drug repurposing is a remarkable opportunity to quickly examine the efficacy of different aspects of treating various diseases. Protease inhibitors have been found to be effective against MERS-CoV to date, and numerous candidates are currently undergoing clinical trials to prove this. Our effort follows a in similar direction.
Collapse
Affiliation(s)
- Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- College of Pharmacy Building 23, Pharmaceutics Department, King Saud University, Ground Floor, Office AA 79, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Phamacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
41
|
Bragagnolo N, Audette GF. Solution characterization of the dynamic conjugative entry exclusion protein TraG. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064702. [PMID: 36590369 PMCID: PMC9797247 DOI: 10.1063/4.0000171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The R100 plasmid and the secretion system it encodes are representative of F-like conjugative type IV secretion systems for the transmission of mobile DNA elements in gram-negative bacteria, serving as a major contributor to the spread of antibiotic resistance in bacterial pathogens. The TraG protein of F-like systems consists of a membrane-bound N-terminal domain and a periplasmic C-terminal domain, denoted TraG*. TraG* is essential in preventing redundant DNA transfer through a process termed entry exclusion. In the donor cell, it interacts with TraN to facilitate mating pair stabilization; however, if a mating pore forms between bacteria with identical plasmids, TraG* interacts with its cognate TraS in the inner membrane of the recipient bacterium to prevent redundant donor-donor conjugation. Structural studies of TraG* from the R100 plasmid have revealed the presence of a dynamic region between the N- and C-terminal domains of TraG. Thermofluor, circular dichroism, collision-induced unfolding-mass spectrometry, and size exclusion chromatography linked to multiangle light scattering and small angle x-ray scattering experiments indicated an N-terminal truncation mutant displayed higher stability and less disordered content relative to full-length TraG*. The 45 N-terminal residues of TraG* are hypothesized to serve as part of a flexible linker between the two independently functioning domains.
Collapse
Affiliation(s)
- Nicholas Bragagnolo
- Centre for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Gerald F. Audette
- Centre for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
42
|
Elamin T, Brandstetter H, Dall E. Legumain Activity Is Controlled by Extended Active Site Residues and Substrate Conformation. Int J Mol Sci 2022; 23:12548. [PMID: 36293424 PMCID: PMC9604545 DOI: 10.3390/ijms232012548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Legumain is a lysosomal cysteine protease with strict specificity for cleaving after asparagine residues. By sequence comparison, legumain belongs to MEROPS clan CD of the cysteine proteases, which indicates its structural and mechanistic relation to caspases. Contrasting caspases, legumain harbors a pH-dependent ligase activity in addition to the protease activity. Although we already have a significant body of knowledge on the catalytic activities of legumain, many mechanistic details are still elusive. In this study, we provide evidence that extended active site residues and substrate conformation are steering legumain activities. Biochemical experiments and bioinformatics analysis showed that the catalytic Cys189 and His148 residues are regulated by sterically close Glu190, Ser215 and Asn42 residues. While Glu190 serves as an activity brake, Ser215 and Asn42 have a favorable effect on legumain protease activity. Mutagenesis studies using caspase-9 as model enzyme additionally showed that a similar Glu190 activity brake is also implemented in the caspases. Furthermore, we show that the substrate's conformational flexibility determines whether it will be hydrolyzed or ligated by legumain. The functional understanding of the extended active site residues and of substrate prerequisites will allow us to engineer proteases with increased enzymatic activity and better ligase substrates, with relevance for biotechnological applications.
Collapse
Affiliation(s)
| | | | - Elfriede Dall
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
43
|
Thermofluor-Based Optimization Strategy for the Stabilization of Recombinant Human Soluble Catechol- O-Methyltransferase. Int J Mol Sci 2022; 23:ijms232012298. [PMID: 36293152 PMCID: PMC9603843 DOI: 10.3390/ijms232012298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Catechol-O-methyltransferase (COMT) has been involved in a number of medical conditions including catechol-estrogen-induced cancers and a great range of cardiovascular and neurodegenerative diseases such as Parkinson's disease. Currently, Parkinson's disease treatment relies on a triple prophylaxis, involving dopamine replacement by levodopa, the use of aromatic L-amino acid decarboxylase inhibitors, and the use of COMT inhibitors. Typically, COMT is highly thermolabile, and its soluble isoform (SCOMT) loses biological activity within a short time span preventing further structural and functional trials. Herein, we characterized the thermal stability profile of lysate cells from Komagataella pastoris containing human recombinant SCOMT (hSCOMT) and enzyme-purified fractions (by Immobilized Metal Affinity Chromatography-IMAC) upon interaction with several buffers and additives by Thermal Shift Assay (TSA) and a biological activity assessment. Based on the obtained results, potential conditions able to increase the thermal stability of hSCOMT have been found through the analysis of melting temperature (Tm) variations. Moreover, the use of the ionic liquid 1-butyl-3-methylimidazolium chloride [C4mim]Cl (along with cysteine, trehalose, and glycerol) ensures complete protein solubilization as well as an increment in the protein Tm of approximately 10 °C. Thus, the developed formulation enhances hSCOMT stability with an increment in the percentage of activity recovery of 200% and 70% when the protein was stored at 4 °C and -80 °C, respectively, for 12 h. The formation of metanephrine over time confirmed that the enzyme showed twice the productivity in the presence of the additive. These outstanding achievements might pave the way for the development of future hSCOMT structural and biophysical studies, which are fundamental for the design of novel therapeutic molecules.
Collapse
|
44
|
Molecular and in vivo studies of a glutamate-class prolyl-endopeptidase for coeliac disease therapy. Nat Commun 2022; 13:4446. [PMID: 35915115 PMCID: PMC9343461 DOI: 10.1038/s41467-022-32215-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The digestion of gluten generates toxic peptides, among which a highly immunogenic proline-rich 33-mer from wheat α-gliadin, that trigger coeliac disease. Neprosin from the pitcher plant is a reported prolyl endopeptidase. Here, we produce recombinant neprosin and its mutants, and find that full-length neprosin is a zymogen, which is self-activated at gastric pH by the release of an all-β pro-domain via a pH-switch mechanism featuring a lysine plug. The catalytic domain is an atypical 7+8-stranded β-sandwich with an extended active-site cleft containing an unprecedented pair of catalytic glutamates. Neprosin efficiently degrades both gliadin and the 33-mer in vitro under gastric conditions and is reversibly inactivated at pH > 5. Moreover, co-administration of gliadin and the neprosin zymogen at the ratio 500:1 reduces the abundance of the 33-mer in the small intestine of mice by up to 90%. Neprosin therefore founds a family of eukaryotic glutamate endopeptidases that fulfils requisites for a therapeutic glutenase. Celiac disease is characterized by intolerance to gluten, a cereal protein. Here, the authors show that neprosin, a glutamate peptidase from the pitcher plant, efficiently cleaves gluten components under physiological conditions in vitro and in the gut of mice.
Collapse
|
45
|
Alghamdi MA, Hussien RA, Zheng Y, Patel HP, Asencion Diez MD, A. Iglesias A, Liu D, Ballicora MA. Site-directed mutagenesis of Serine-72 reveals the location of the fructose 6-phosphate regulatory site of the Agrobacterium tumefaciens ADP-glucose pyrophosphorylase. Protein Sci 2022; 31:e4376. [PMID: 35762722 PMCID: PMC9234290 DOI: 10.1002/pro.4376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022]
Abstract
The allosteric regulation of ADP-glucose pyrophosphorylase is critical for the biosynthesis of glycogen in bacteria and starch in plants. The enzyme from Agrobacterium tumefaciens is activated by fructose 6-phosphate (Fru6P) and pyruvate (Pyr). The Pyr site has been recently found, but the site where Fru6P binds has remained unknown. We hypothesize that a sulfate ion previously found in the crystal structure reveals a part of the regulatory site mimicking the presence of the phosphoryl moiety of the activator Fru6P. Ser72 interacts with this sulfate ion and, if the hypothesis is correct, Ser72 would affect the interaction with Fru6P and activation of the enzyme. Here, we report structural, binding, and kinetic analysis of Ser72 mutants of the A. tumefaciens ADP-glucose pyrophosphorylase. By X-ray crystallography, we found that when Ser72 was replaced by Asp or Glu side chain carboxylates protruded into the sulfate-binding pocket. They would present a strong steric and electrostatic hindrance to the phosphoryl moiety of Fru6P, while being remote from the Pyr site. In agreement, we found that Fru6P could not activate or bind to S72E or S72D mutants, whereas Pyr was still an effective activator. These mutants also blocked the binding of the inhibitor AMP. This could potentially have biotechnological importance in obtaining enzyme forms insensitive to inhibition. Other mutations in this position (Ala, Cys, and Trp) confirmed the importance of Ser72 in regulation. We propose that the ADP-glucose pyrophosphorylase from A. tumefaciens have two distinct sites for Fru6P and Pyr working in tandem to regulate glycogen biosynthesis.
Collapse
Affiliation(s)
- Mashael A. Alghamdi
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
- Department of ChemistryImam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
| | - Rania A. Hussien
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
- Department of ChemistryAl Baha UniversityAl BahaSaudi Arabia
| | - Yuanzhang Zheng
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| | - Hiral P. Patel
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| | - Matías D. Asencion Diez
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
- Instituto de Agrobiotecnología del Litoral (UNL‐CONICET)FBCB Paraje “El Pozo”, CCT‐Santa FeSanta FeArgentina
| | - Alberto A. Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL‐CONICET)FBCB Paraje “El Pozo”, CCT‐Santa FeSanta FeArgentina
| | - Dali Liu
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| | - Miguel A. Ballicora
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| |
Collapse
|
46
|
Xu Y, Dang S. Recent Technical Advances in Sample Preparation for Single-Particle Cryo-EM. Front Mol Biosci 2022; 9:892459. [PMID: 35813814 PMCID: PMC9263182 DOI: 10.3389/fmolb.2022.892459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cryo-sample preparation is a vital step in the process of obtaining high-resolution structures of macromolecules by using the single-particle cryo–electron microscopy (cryo-EM) method; however, cryo-sample preparation is commonly hampered by high uncertainty and low reproducibility. Specifically, the existence of air-water interfaces during the sample vitrification process could cause protein denaturation and aggregation, complex disassembly, adoption of preferred orientations, and other serious problems affecting the protein particles, thereby making it challenging to pursue high-resolution 3D reconstruction. Therefore, sample preparation has emerged as a critical research topic, and several new methods for application at various preparation stages have been proposed to overcome the aforementioned hurdles. Here, we summarize the methods developed for enhancing the quality of cryo-samples at distinct stages of sample preparation, and we offer insights for developing future strategies based on diverse viewpoints. We anticipate that cryo-sample preparation will no longer be a limiting step in the single-particle cryo-EM field as increasing numbers of methods are developed in the near future, which will ultimately benefit the entire research community.
Collapse
Affiliation(s)
- Yixin Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Shangyu Dang,
| |
Collapse
|
47
|
Salar U, Atia-Tul-Wahab, Choudhary MI. Functional and ligand binding studies of NAD(P)H hydrate dehydratase enzyme from vancomycin-resistant Staphylococcus aureus by NMR spectroscopic approach, including saturation transfer difference (STD-NMR) spectroscopy. Biochimie 2022; 201:148-156. [PMID: 35716900 DOI: 10.1016/j.biochi.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
NADH and NADPH are labile coenzymes that undergo hydration by enzymatic reaction or by heat at 5,6 double bond, and convert into non-functional hydrates, NADHX and NADPHX, respectively. The NAD(P)H hydrate dehydratase enzyme catalyzes the dehydration of S-NADHX/S-NADPHX at the expense of ATP, and thus contributes in the nicotinamide nucleotide repair process. This enzyme is also known as "metabolite-proofreading enzyme". Herein, we report the molecular cloning and expression of this highly conserved enzyme of vancomycin-resistant Staphylococcus aureus (VRSA). Its functional and inhibition studies were performed for the first time by NMR spectroscopy. NMR studies showed the dehydration of S epimer of NADHX, in the presence of R-NADHX and cyc-NADHX, by NAD(P)H hydrate dehydratase. In addition, by employing the STD-NMR approach, a library of drugs and natural products (total 79) were evaluated for their binding interactions with the NAD(P)H hydrate dehydratase enzyme. Among them, seven compounds showed ligand-like interactions with the enzyme, and thus functional activity of the enzyme was again checked in the presence of each ligand. Compound 2 (Thiamine HCl) was found to fully inhibit the enzyme's function, and recognized as a potential inhibitor. Current study demonstrates that this enzyme deserves further studies as a potential drug target, as its inhibition can disrupt the normal metabolism of pathogenic VRSA.
Collapse
Affiliation(s)
- Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21412, Saudi Arabia
| |
Collapse
|
48
|
Small Molecule Arranged Thermal Proximity Co aggregation (smarTPCA)-A Novel Approach to Characterize Protein-Protein Interactions in Living Cells by Similar Isothermal Dose-Responses. Int J Mol Sci 2022; 23:ijms23105605. [PMID: 35628420 PMCID: PMC9147192 DOI: 10.3390/ijms23105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Chemical biology and the application of small molecules has proven to be a potent perturbation strategy, especially for the functional elucidation of proteins, their networks, and regulators. In recent years, the cellular thermal shift assay (CETSA) and its proteome-wide extension, thermal proteome profiling (TPP), have proven to be effective tools for identifying interactions of small molecules with their target proteins, as well as off-targets in living cells. Here, we asked the question whether isothermal dose-response (ITDR) CETSA can be exploited to characterize secondary effects downstream of the primary binding event, such as changes in post-translational modifications or protein-protein interactions (PPI). By applying ITDR-CETSA to MAPK14 kinase inhibitor treatment of living HL-60 cells, we found similar dose-responses for the direct inhibitor target and its known interaction partners MAPKAPK2 and MAPKAPK3. Extension of the dose-response similarity comparison to the proteome wide level using TPP with compound concentration range (TPP-CCR) revealed not only the known MAPK14 interaction partners MAPKAPK2 and MAPKAPK3, but also the potentially new intracellular interaction partner MYLK. We are confident that dose-dependent small molecule treatment in combination with ITDR-CETSA or TPP-CCR similarity assessment will not only allow discrimination between primary and secondary effects, but will also provide a novel method to study PPI in living cells without perturbation by protein modification, which we named "small molecule arranged thermal proximity coaggregation" (smarTPCA).
Collapse
|
49
|
Pande V, Mitra N, Bagde SR, Srinivasan R, Gayathri P. Filament organization of the bacterial actin MreB is dependent on the nucleotide state. J Biophys Biochem Cytol 2022; 221:213108. [PMID: 35377392 PMCID: PMC9195046 DOI: 10.1083/jcb.202106092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/01/2021] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
MreB, the bacterial ancestor of eukaryotic actin, is responsible for shape in most rod-shaped bacteria. Despite belonging to the actin family, the relevance of nucleotide-driven polymerization dynamics for MreB function is unclear. Here, we provide insights into the effect of nucleotide state on membrane binding of Spiroplasma citri MreB5 (ScMreB5). Filaments of ScMreB5WT and an ATPase-deficient mutant, ScMreB5E134A, assemble independently of the nucleotide state. However, capture of the filament dynamics revealed that efficient filament formation and organization through lateral interactions are affected in ScMreB5E134A. Hence, the catalytic glutamate functions as a switch, (a) by sensing the ATP-bound state for filament assembly and (b) by assisting hydrolysis, thereby potentially triggering disassembly, as observed in other actins. Glu134 mutation and the bound nucleotide exhibit an allosteric effect on membrane binding, as observed from the differential liposome binding. We suggest that the conserved ATP-dependent polymerization and disassembly upon ATP hydrolysis among actins has been repurposed in MreBs for modulating filament organization on the membrane.
Collapse
Affiliation(s)
- Vani Pande
- Indian Institute of Science Education and Research, Pune, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institutes, Training School Complex, Anushakti Nagar, Mumbai, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institutes, Training School Complex, Anushakti Nagar, Mumbai, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | |
Collapse
|
50
|
Cheng C, Liu M, Gao X, Wu D, Pu M, Ma J, Quinn RJ, Xiao Z, Liu Z. Identifying New Ligands for JNK3 by Fluorescence Thermal Shift Assays and Native Mass Spectrometry. ACS OMEGA 2022; 7:13925-13931. [PMID: 35559183 PMCID: PMC9088906 DOI: 10.1021/acsomega.2c00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The c-Jun N-terminal kinases (JNKs) are evolutionary highly conserved serine/threonine kinases. Numerous findings suggest that JNK3 is involved in the pathogenesis of neurodegenerative diseases, so the inhibition of JNK3 may be a potential therapeutic intervention. The identification of novel compounds with promising pharmacological properties still represents a challenge. Fluorescence thermal shift screening of a chemically diversified lead-like scaffold library of 2024 pure compounds led to the initial identification of seven JNK3 binding hits, which were classified into four scaffold groups according to their chemical structures. Native mass spectrometry validated the interaction of 4 out of the 7 hits with JNK3. Binding geometries and interactions of the top 2 hits were evaluated by docking into a JNK3 crystal structure. Hit 5 had a K d of 21 μM with JNK3 suggested scaffold 5-(phenylamino)-1H-1,2,3-triazole-4-carboxamide as a novel and selective JNK3 binder.
Collapse
Affiliation(s)
- Chongyun Cheng
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
- Monash
Biomedicine Discovery Institute, Monash
University, Melbourne, Victoria 3800, Australia
| | - Miaomiao Liu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Xiaoqin Gao
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Beijing 100191, China
| | - Dong Wu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Mengchen Pu
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Ma
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Zhicheng Xiao
- Monash
Biomedicine Discovery Institute, Monash
University, Melbourne, Victoria 3800, Australia
- Kunming
Medical College, Kunming, Yunnan 650031, China
| | - Zhijie Liu
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- Kunming
Medical College, Kunming, Yunnan 650031, China
| |
Collapse
|