1
|
Huang M, Wang Y. GLOBAL AND TARGETED PROFILING OF GTP-BINDING PROTEINS IN BIOLOGICAL SAMPLES BY MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:215-235. [PMID: 32519381 PMCID: PMC7725852 DOI: 10.1002/mas.21637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
GTP-binding proteins are among the most important enzyme families that are involved in a plethora of biological processes. However, owing to the enormous diversity of the nucleotide-binding protein family, comprehensive analyses of the expression level, structure, activity, and regulatory mechanisms of GTP-binding proteins remain challenging with the use of conventional approaches. The many advances in mass spectrometry (MS) instrumentation and data acquisition methods, together with a variety of enrichment approaches in sample preparation, render MS a powerful tool for the comprehensive characterizations of the activities and expression levels of various GTP-binding proteins. We review herein the recent developments in the application of MS-based techniques, together with general and widely used affinity enrichment approaches, for the proteome-wide and targeted capture, identification, and quantification of GTP-binding proteins. The working principles, advantages, and limitations of various strategies for profiling the expression level, activity, posttranslational modifications, and interactome of GTP-binding proteins are discussed. It can be envisaged that future applications of MS-based proteomics will lead to a better understanding about the roles of GTP-binding proteins in different biological processes and human diseases. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Ming Huang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
- Correspondence author: Yinsheng Wang. Telephone: (951)827-2700;
| |
Collapse
|
2
|
Abstract
Small, monomeric guanine triphosphate hydrolases (GTPases) are ubiquitous cellular integrators of signaling. A signal activates the GTPase, which then binds to an effector molecule to relay a signal inside the cell. The GTPase effector trap flow cytometry assay (G-Trap) utilizes bead-based protein immobilization and dual-color flow cytometry to rapidly and quantitatively measure GTPase activity status in cell or tissue lysates. Beginning with commercial cytoplex bead sets that are color-coded with graded fluorescence intensities of a red (700 nm) wavelength, the bead sets are derivatized to display glutathione on the surface through a detailed protocol described here. A different glutathione-S-transferase-effector protein (GST-effector protein) can then be attached to the surface of each set. For the assay, users can incubate bead sets individually or in a multiplex format with lysates for rapid, selective capture of active, GTP-bound GTPases from a single sample. After that, flow cytometry is used to identify the bead-borne GTPase based on red bead intensity, and the amount of active GTPase per bead is detected using monoclonal antibodies conjugated to a green fluorophore or via labeled secondary antibodies. Three examples are provided to illustrate the efficacy of the effector-functionalized beads for measuring the activation of at least five GTPases in a single lysate from fewer than 50,000 cells.
Collapse
|
3
|
Kopra K, van Adrichem AJ, Salo-Ahen OMH, Peltonen J, Wennerberg K, Härmä H. High-Throughput Dual Screening Method for Ras Activities and Inhibitors. Anal Chem 2017; 89:4508-4516. [PMID: 28318223 DOI: 10.1021/acs.analchem.6b04904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ras GTPases act as "molecular switches", alternating between inactive GDP-bound and active GTP-bound conformation. Ras-oncogenes were discovered over three decades ago, but there are still no effective therapies for Ras-driven cancers. So far, drug discovery strategies have been unsuccessful, because of a lack of suitable screening methodologies and well-defined binding pockets on the Ras proteins. Here, we addressed the former by introducing a homogeneous quenching resonance energy transfer (QRET) technique-based screening strategy for Ras interfacial and competitive inhibitors. We demonstrate that using a unique GTP-specific antibody fragment to monitor GTPase cycling in the presence of a guanine nucleotide exchange factor (GEF) and a GTPase activating protein (GAP) is an efficient method for Ras inhibitor high-throughput screening. When compared to a conventional GEF-stimulated nucleotide exchange assay in a proof-of-concept screen, we identified an overlapping set of potential inhibitor compounds but also compounds found exclusively with the new GTP hydrolysis monitoring-based GTPase cycling assay.
Collapse
Affiliation(s)
- Kari Kopra
- Institute of Biomedicine, University of Turku , Kiinamyllynkatu 10 C, FI-20520 Turku, Finland
| | - Arjan J van Adrichem
- Institute for Molecular Medicine Finland, University of Helsinki , Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Biochemistry and Pharmacy, Åbo Akademi University , Tykistökatu 6A, FI-20520 Turku, Finland
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku , Kiinamyllynkatu 10 C, FI-20520 Turku, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki , Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Harri Härmä
- Institute of Biomedicine, University of Turku , Kiinamyllynkatu 10 C, FI-20520 Turku, Finland
| |
Collapse
|
4
|
Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS One 2015; 10:e0142182. [PMID: 26558612 PMCID: PMC4641600 DOI: 10.1371/journal.pone.0142182] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/19/2015] [Indexed: 01/02/2023] Open
Abstract
Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses—using the rotationally constrained carboxylate in R-naproxen—led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and efficacy in the treatment of several epithelial cancer types on account of established human toxicity profiles and novel activities against Rho-family GTPases.
Collapse
|
5
|
Cromm PM, Spiegel J, Grossmann TN, Waldmann H. Direkte Modulation von Aktivität und Funktion kleiner GTPasen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Cromm PM, Spiegel J, Grossmann TN, Waldmann H. Direct Modulation of Small GTPase Activity and Function. Angew Chem Int Ed Engl 2015; 54:13516-37. [DOI: 10.1002/anie.201504357] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 12/19/2022]
|
7
|
Hong L, Guo Y, BasuRay S, Agola JO, Romero E, Simpson DS, Schroeder CE, Simons P, Waller A, Garcia M, Carter M, Ursu O, Gouveia K, Golden JE, Aubé J, Wandinger-Ness A, Sklar LA. A Pan-GTPase Inhibitor as a Molecular Probe. PLoS One 2015; 10:e0134317. [PMID: 26247207 PMCID: PMC4527730 DOI: 10.1371/journal.pone.0134317] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/09/2015] [Indexed: 12/30/2022] Open
Abstract
Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed.
Collapse
Affiliation(s)
- Lin Hong
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Yuna Guo
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Soumik BasuRay
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jacob O. Agola
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Elsa Romero
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Denise S. Simpson
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Chad E. Schroeder
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Peter Simons
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Anna Waller
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Matthew Garcia
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Mark Carter
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Oleg Ursu
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Kristine Gouveia
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Jennifer E. Golden
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Larry A. Sklar
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
8
|
Guo Y, Kenney SR, Muller CY, Adams S, Rutledge T, Romero E, Murray-Krezan C, Prekeris R, Sklar LA, Hudson LG, Wandinger-Ness A. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis. Mol Cancer Ther 2015. [PMID: 26206334 DOI: 10.1158/1535-7163.mct-15-0419] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion, and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high-throughput screening and computational shape homology approaches, we identified R-ketorolac as a Cdc42 and Rac1 inhibitor, distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip) and primary patient-derived ovarian cancer cells show that R-ketorolac is a robust inhibitor of growth factor or serum-dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small-molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration, and invasion. In summary, we provide evidence for R-ketorolac as a direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiologic responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA-approved drug, racemic ketorolac, that can be used in humans.
Collapse
Affiliation(s)
- Yuna Guo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - S Ray Kenney
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Carolyn Y Muller
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Sarah Adams
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Teresa Rutledge
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Elsa Romero
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Cristina Murray-Krezan
- Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Larry A Sklar
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Laurie G Hudson
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
9
|
Iwata S, Masuhara K, Umeki N, Sako Y, Maruta S. Interaction of a novel fluorescent GTP analogue with the small G-protein K-Ras. J Biochem 2015; 159:41-8. [PMID: 26184075 DOI: 10.1093/jb/mvv071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022] Open
Abstract
A novel fluorescent guanosine 5'-triphosphate (GTP) analogue, 2'(3')-O-{6-(N-(7-nitrobenz-2-oxa-l,3-diazol-4-yl)amino) hexanoic}-GTP (NBD-GTP), was synthesized and utilized to monitor the effect of mutations in the functional region of mouse K-Ras. The effects of the G12S, A59T and G12S/A59T mutations on GTPase activity, nucleotide exchange rates were compared with normal Ras. Mutation at A59T resulted in reduction of the GTPase activity by 0.6-fold and enhancement of the nucleotide exchange rate by 2-fold compared with normal Ras. On the other hand, mutation at G12S only slightly affected the nucleotide exchange rate and did not affect the GTPase activity. We also used NBD-GTP to study the effect of these mutations on the interaction between Ras and SOS1, a guanine nucleotide exchange factor. The mutation at A59T abolished the interaction with SOS1. The results suggest that the fluorescent GTP analogue, NBD-GTP, is applicable to the kinetic studies for small G-proteins.
Collapse
Affiliation(s)
- Seigo Iwata
- Division of Bioengineering, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Kaori Masuhara
- Division of Bioengineering, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Nobuhisa Umeki
- Division of Bioengineering, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Yasushi Sako
- Division of Bioengineering, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Shinsaku Maruta
- Division of Bioengineering, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan; Division of Bioengineering, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan;
| |
Collapse
|
10
|
Agola JO, Sivalingam D, Cimino DF, Simons PC, Buranda T, Sklar LA, Wandinger-Ness A. Quantitative bead-based flow cytometry for assaying Rab7 GTPase interaction with the Rab-interacting lysosomal protein (RILP) effector protein. Methods Mol Biol 2015; 1298:331-54. [PMID: 25800855 PMCID: PMC6033261 DOI: 10.1007/978-1-4939-2569-8_28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Rab7 facilitates vesicular transport and delivery from early endosomes to late endosomes as well as from late endosomes to lysosomes. The role of Rab7 in vesicular transport is dependent on its interactions with effector proteins, among them Rab-interacting lysosomal protein (RILP), which aids in the recruitment of active Rab7 (GTP-bound) onto dynein-dynactin motor complexes to facilitate late endosomal transport on the cytoskeleton. Here we detail a novel bead-based flow cytometry assay to measure Rab7 interaction with the Rab-interacting lysosomal protein (RILP) effector protein and demonstrate its utility for quantitative assessment and studying drug-target interactions. The specific binding of GTP-bound Rab7 to RILP is readily demonstrated and shown to be dose-dependent and saturable enabling K d and B max determinations. Furthermore, binding is nearly instantaneous and temperature-dependent. In a novel application of the assay method, a competitive small molecule inhibitor of Rab7 nucleotide binding (CID 1067700 or ML282) is shown to inhibit the Rab7-RILP interaction. Thus, the assay is able to distinguish that the small molecule, rather than incurring the active conformation, instead 'locks' the GTPase in the inactive conformation. Together, this work demonstrates the utility of using a flow cytometry assay to quantitatively characterize protein-protein interactions involving small GTPases and which has been adapted to high-throughput screening. Further, the method provides a platform for testing small molecule effects on protein-protein interactions, which can be relevant to drug discovery and development.
Collapse
Affiliation(s)
- Jacob O Agola
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Heck T, Pham PH, Hammes F, Thöny-Meyer L, Richter M. Continuous Monitoring of Enzymatic Reactions on Surfaces by Real-Time Flow Cytometry: Sortase A Catalyzed Protein Immobilization as a Case Study. Bioconjug Chem 2014; 25:1492-500. [DOI: 10.1021/bc500230r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tobias Heck
- Laboratory
for Bioactive Materials, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Phu-Huy Pham
- Laboratory
for Bioactive Materials, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Frederik Hammes
- Department
of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Linda Thöny-Meyer
- Laboratory
for Bioactive Materials, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Michael Richter
- Laboratory
for Bioactive Materials, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
12
|
Buranda T, BasuRay S, Swanson S, Agola J, Bondu V, Wandinger-Ness A. Rapid parallel flow cytometry assays of active GTPases using effector beads. Anal Biochem 2013; 442:149-57. [PMID: 23928044 DOI: 10.1016/j.ab.2013.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/23/2013] [Accepted: 07/28/2013] [Indexed: 12/13/2022]
Abstract
We describe a rapid assay for measuring the cellular activity of small guanine triphosphatases (GTPases) in response to a specific stimulus. Effector-functionalized beads are used to quantify in parallel multiple GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus.
Collapse
Affiliation(s)
- Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Hong L, Kenney SR, Phillips GK, Simpson D, Schroeder CE, Nöth J, Romero E, Swanson S, Waller A, Strouse JJ, Carter M, Chigaev A, Ursu O, Oprea T, Hjelle B, Golden JE, Aubé J, Hudson LG, Buranda T, Sklar LA, Wandinger-Ness A. Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. J Biol Chem 2013; 288:8531-8543. [PMID: 23382385 PMCID: PMC3605667 DOI: 10.1074/jbc.m112.435941] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cdc42 plays important roles in cytoskeleton organization, cell cycle progression, signal transduction, and vesicle trafficking. Overactive Cdc42 has been implicated in the pathology of cancers, immune diseases, and neuronal disorders. Therefore, Cdc42 inhibitors would be useful in probing molecular pathways and could have therapeutic potential. Previous inhibitors have lacked selectivity and trended toward toxicity. We report here the characterization of a Cdc42-selective guanine nucleotide binding lead inhibitor that was identified by high throughput screening. A second active analog was identified via structure-activity relationship studies. The compounds demonstrated excellent selectivity with no inhibition toward Rho and Rac in the same GTPase family. Biochemical characterization showed that the compounds act as noncompetitive allosteric inhibitors. When tested in cellular assays, the lead compound inhibited Cdc42-related filopodia formation and cell migration. The lead compound was also used to clarify the involvement of Cdc42 in the Sin Nombre virus internalization and the signaling pathway of integrin VLA-4. Together, these data present the characterization of a novel Cdc42-selective allosteric inhibitor and a related analog, the use of which will facilitate drug development targeting Cdc42-related diseases and molecular pathway studies that involve GTPases.
Collapse
Affiliation(s)
- Lin Hong
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131; University of New Mexico (UNM) Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico 87131
| | - S Ray Kenney
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131
| | - Genevieve K Phillips
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131
| | - Denise Simpson
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047
| | - Chad E Schroeder
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047
| | - Julica Nöth
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047
| | - Elsa Romero
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Scarlett Swanson
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Anna Waller
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131; University of New Mexico (UNM) Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico 87131
| | - J Jacob Strouse
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131; University of New Mexico (UNM) Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico 87131
| | - Mark Carter
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131; University of New Mexico (UNM) Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico 87131
| | - Alexandre Chigaev
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Oleg Ursu
- University of New Mexico (UNM) Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico 87131; Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131; Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Tudor Oprea
- University of New Mexico (UNM) Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico 87131; Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131; Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Brian Hjelle
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jennifer E Golden
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047; Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131; Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131
| | - Tione Buranda
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Larry A Sklar
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131; University of New Mexico (UNM) Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico 87131; Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131.
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131; Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131.
| |
Collapse
|
14
|
Detection of flagellin by interaction with human recombinant TLR5 immobilized in liposomes. Anal Bioanal Chem 2012. [DOI: 10.1007/s00216-012-6523-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Agola JO, Hong L, Surviladze Z, Ursu O, Waller A, Strouse JJ, Simpson DS, Schroeder CE, Oprea TI, Golden JE, Aubé J, Buranda T, Sklar LA, Wandinger-Ness A. A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition. ACS Chem Biol 2012; 7:1095-108. [PMID: 22486388 DOI: 10.1021/cb3001099] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mapping the functionality of GTPases through small molecule inhibitors represents an underexplored area in large part due to the lack of suitable compounds. Here we report on the small chemical molecule 2-(benzoylcarbamothioylamino)-5,5-dimethyl-4,7-dihydrothieno[2,3-c]pyran-3-carboxylic acid (PubChem CID 1067700) as an inhibitor of nucleotide binding by Ras-related GTPases. The mechanism of action of this pan-GTPase inhibitor was characterized in the context of the Rab7 GTPase as there are no known inhibitors of Rab GTPases. Bead-based flow cytometry established that CID 1067700 has significant inhibitory potency on Rab7 nucleotide binding with nanomolar inhibitor (K(i)) values and an inhibitory response of ≥97% for BODIPY-GTP and BODIPY-GDP binding. Other tested GTPases exhibited significantly lower responses. The compound behaves as a competitive inhibitor of Rab7 nucleotide binding based on both equilibrium binding and dissociation assays. Molecular docking analyses are compatible with CID 1067700 fitting into the nucleotide binding pocket of the GTP-conformer of Rab7. On the GDP-conformer, the molecule has greater solvent exposure and significantly less protein interaction relative to GDP, offering a molecular rationale for the experimental results. Structural features pertinent to CID 1067700 inhibitory activity have been identified through initial structure-activity analyses and identified a molecular scaffold that may serve in the generation of more selective probes for Rab7 and other GTPases. Taken together, our study has identified the first competitive GTPase inhibitor and demonstrated the potential utility of the compound for dissecting the enzymology of the Rab7 GTPase, as well as serving as a model for other small molecular weight GTPase inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Denise S. Simpson
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
| | - Chad E. Schroeder
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
| | | | - Jennifer E. Golden
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
- Department of Medicinal
Chemistry, University of Kansas, Lawrence,
Kansas 66047, United
States
| | | | | | | |
Collapse
|
16
|
Surviladze Z, Young SM, Sklar LA. High-throughput flow cytometry bead-based multiplex assay for identification of Rho GTPase inhibitors. Methods Mol Biol 2012; 827:253-70. [PMID: 22144280 DOI: 10.1007/978-1-61779-442-1_17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rho family GTPases and their effector proteins regulate a wide range of cell signaling pathways. In normal physiological conditions, their activity is tightly controlled and it is not surprising that their aberrant activation contributes to tumorigenesis or other diseases. For this reason, the identification of small, cell permeable molecules capable of inhibition of Rho GTPases can be extraordinarily useful, particularly if they are specific and act reversibly.Herein, we describe a flow cytometric assay, which allows us to measure the activity of six small GTPases simultaneously. GST-tagged small GTPases are bound to six glutathione bead sets each set having a different intensity of red fluorescence at a fixed wavelength. The coated bead sets were washed, combined, and dispensed into 384-well plates with test compounds, and fluorescent-GTP binding was used as the read-out.This multiplex bead-based assay was successfully used for to identify both general and selective inhibitors of Rho family GTPases.
Collapse
Affiliation(s)
- Zurab Surviladze
- New Mexico Molecular Libraries Screening Center, Albuquerque, NM, USA.
| | | | | |
Collapse
|
17
|
Ward HH, Brown-Glaberman U, Wang J, Morita Y, Alper SL, Bedrick EJ, Gattone VH, Deretic D, Wandinger-Ness A. A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1. Mol Biol Cell 2011; 22:3289-305. [PMID: 21775626 PMCID: PMC3172256 DOI: 10.1091/mbc.e11-01-0082] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Primary cilia regulate epithelial differentiation and organ function. Failure of mutant polycystins to localize to cilia abolishes flow-stimulated calcium signaling and causes autosomal dominant polycystic kidney disease. We identify a conserved amino acid sequence, KVHPSST, in the C-terminus of polycystin-1 (PC1) that serves as a ciliary-targeting signal. PC1 binds a multimeric protein complex consisting of several GTPases (Arf4, Rab6, Rab11) and the GTPase-activating protein (GAP), ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) in the Golgi, which facilitates vesicle budding and Golgi exocytosis. A related N-terminal ciliary-targeting sequence in polycystin-2 similarly binds Arf4. Deletion of the extreme C-terminus of PC1 ablates Arf4 and ASAP1 binding and prevents ciliary localization of an integral membrane CD16.7-PC1 chimera. Interactions are confirmed for chimeric and endogenous proteins through quantitated in vitro and cell-based approaches. PC1 also complexes with Rab8; knockdown of trafficking regulators Arf4 or Rab8 functionally blocks CD16.7-PC1 trafficking to cilia. Mutations in rhodopsin disrupt a similar signal and cause retinitis pigmentosa, while Bardet-Biedl syndrome, primary open-angle glaucoma, and tumor cell invasiveness are linked to dysregulation of ASAP1 or Rab8 or its effectors. In this paper, we provide evidence for a conserved GTPase-dependent ciliary-trafficking mechanism that is shared between epithelia and neurons, and is essential in ciliary-trafficking and cell homeostasis.
Collapse
Affiliation(s)
- Heather H Ward
- Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Surviladze Z, Waller A, Wu Y, Romero E, Edwards BS, Wandinger-Ness A, Sklar LA. Identification of a small GTPase inhibitor using a high-throughput flow cytometry bead-based multiplex assay. ACTA ACUST UNITED AC 2009; 15:10-20. [PMID: 20008126 DOI: 10.1177/1087057109352240] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Small GTPases are key regulators of cellular activity and represent novel targets for the treatment of human diseases using small-molecule inhibitors. The authors describe a multiplex, flow cytometry bead-based assay for the identification and characterization of inhibitors or activators of small GTPases. Six different glutathione-S-transferase (GST)-tagged small GTPases were bound to glutathione beads, each labeled with a different red fluorescence intensity. Subsequently, beads bearing different GTPase were mixed and dispensed into 384-well plates with test compounds, and fluorescent-guanosine triphosphate (GTP) binding was used as the readout. This novel multiplex assay allowed the authors to screen a library of almost 200,000 compounds and identify more than 1200 positive compounds, which were further verified by dose-response analyses, using 6- to 8-plex assays. After the elimination of false-positive and false-negative compounds, several small-molecule families with opposing effects on GTP binding activity were identified. The authors detail the characterization of MLS000532223, a general inhibitor that prevents GTP binding to several GTPases in a dose-dependent manner and is active in biochemical and cell-based secondary assays. Live-cell imaging and confocal microscopy studies revealed the inhibitor-induced actin reorganization and cell morphology changes, characteristic of Rho GTPases inhibition. Thus, high-throughput screening via flow cytometry provides a strategy for identifying novel compounds that are active against small GTPases.
Collapse
Affiliation(s)
- Zurab Surviladze
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Lee SH, Baek K, Dominguez R. Large nucleotide-dependent conformational change in Rab28. FEBS Lett 2008; 582:4107-11. [PMID: 19026641 PMCID: PMC2741181 DOI: 10.1016/j.febslet.2008.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 11/07/2008] [Indexed: 11/28/2022]
Abstract
Rab GTPases are essential regulators of membrane trafficking. We report crystal structures of Rab28 in the active (GppNHp-bound) and inactive (GDP-3'P-bound) forms at 1.5 and 1.1A resolution. Rab28 is a distant member of the Rab family. While the overall fold of Rab28 resembles that of other Rab GTPases, it undergoes a larger nucleotide-dependent conformational change than other members of this family. Added flexibility resulting from a double-glycine motif at the beginning of switch 2 might partially account for this observation. The double-glycine motif, which is conserved in the Arf family, only occurs in Rab28 and Rab7B of the Rab family, and may have a profound effect on their catalytic activities.
Collapse
Affiliation(s)
- Sung Haeng Lee
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, A507 Richards Building, Philadelphia, PA 19104-6085, USA
| | - Kyuwon Baek
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, A507 Richards Building, Philadelphia, PA 19104-6085, USA
| | - Roberto Dominguez
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, A507 Richards Building, Philadelphia, PA 19104-6085, USA
| |
Collapse
|