1
|
Latifi B, Cole K, Vu MK, Lupták A. Rapid discovery of functional RNA domains. Nucleic Acids Res 2025; 53:gkaf307. [PMID: 40243058 PMCID: PMC12004112 DOI: 10.1093/nar/gkaf307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Many strategies have been implemented to enrich an RNA population for a selectable function, but demarcation of the optimal functional motifs or minimal structures within longer libraries remains a lengthy and tedious process. To overcome this problem, we have developed a technique that isolates minimal active segments from complex heterogeneous pools of RNAs. This method allows for truncations to occur at both 5' and 3' ends of functional domains and introduces independent primer-binding sequences, thereby removing sequence and structure bias introduced by constant-sequence regions. We show examples of minimization for genomic and synthetic aptamers and demonstrate that the method can directly reveal an active RNA assembled from multiple strands, facilitating the development of heterodimeric structures used in cellular sensors. This approach provides a pipeline to experimentally define the boundaries of active domains and accelerate the discovery of functional RNAs.
Collapse
Affiliation(s)
- Brandon Latifi
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Kyle H Cole
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States
| | - Michael M K Vu
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States
| |
Collapse
|
2
|
Cheng JC, Swarup N, Wong DTW, Chia D. A review on the impact of single-stranded library preparation on plasma cell-free diversity for cancer detection. Front Oncol 2024; 14:1332004. [PMID: 38511142 PMCID: PMC10951391 DOI: 10.3389/fonc.2024.1332004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
In clinical oncology, cell-free DNA (cfDNA) has shown immense potential in its ability to noninvasively detect cancer at various stages and monitor the progression of therapy. Despite the rapid improvements in cfDNA liquid biopsy approaches, achieving the required sensitivity to detect rare tumor-derived cfDNA still remains a challenge. For next-generation sequencing, the perceived presentation of cfDNA is strongly linked to the extraction and library preparation protocols. Conventional double-stranded DNA library preparation (dsDNA-LP) focuses on assessing ~167bp double-stranded mononucleosomal (mncfDNA) and its other oligonucleosomal cell-free DNA counterparts in plasma. However, dsDNA-LP methods fail to include short, single-stranded, or nicked DNA in the final library preparation, biasing the representation of the actual cfDNA populations in plasma. The emergence of single-stranded library preparation (ssDNA-LP) strategies over the past decade has now allowed these other populations of cfDNA to be studied from plasma. With the use of ssDNA-LP, single-stranded, nicked, and ultrashort cfDNA can be comprehensively assessed for its molecular characteristics and clinical potential. In this review, we overview the current literature on applications of ssDNA-LP on plasma cfDNA from a potential cancer liquid biopsy perspective. To this end, we discuss the molecular principles of single-stranded DNA adapter ligation, how library preparation contributes to the understanding of native cfDNA characteristics, and the potential for ssDNA-LP to improve the sensitivity of circulating tumor DNA detection. Additionally, we review the current literature on the newly reported species of plasma ultrashort single-stranded cell-free DNA plasma, which appear biologically distinct from mncfDNA. We conclude with a discussion of future perspectives of ssDNA-LP for liquid biopsy endeavors.
Collapse
Affiliation(s)
- Jordan C. Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- Stanford Cancer Institute, Stanford University, Stanford, CA, United States
| | - Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David T. W. Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Szyjka CE, Strobel EJ. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing. Nat Commun 2023; 14:7839. [PMID: 38030633 PMCID: PMC10687018 DOI: 10.1038/s41467-023-43395-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
RNA begins to fold as it is transcribed by an RNA polymerase. Consequently, RNA folding is constrained by the direction and rate of transcription. Understanding how RNA folds into secondary and tertiary structures therefore requires methods for determining the structure of cotranscriptional folding intermediates. Cotranscriptional RNA chemical probing methods accomplish this by systematically probing the structure of nascent RNA that is displayed from an RNA polymerase. Here, we describe a concise, high-resolution cotranscriptional RNA chemical probing procedure called variable length Transcription Elongation Complex RNA structure probing (TECprobe-VL). We demonstrate the accuracy and resolution of TECprobe-VL by replicating and extending previous analyses of ZTP and fluoride riboswitch folding and mapping the folding pathway of a ppGpp-sensing riboswitch. In each system, we show that TECprobe-VL identifies coordinated cotranscriptional folding events that mediate transcription antitermination. Our findings establish TECprobe-VL as an accessible method for mapping cotranscriptional RNA folding pathways.
Collapse
Affiliation(s)
- Courtney E Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA
| | - Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
4
|
Williams AM, Jolley EA, Santiago-Martínez MG, Chan CX, Gutell RR, Ferry JG, Bevilacqua PC. In vivo structure probing of RNA in Archaea: novel insights into the ribosome structure of Methanosarcina acetivorans. RNA (NEW YORK, N.Y.) 2023; 29:1610-1620. [PMID: 37491319 PMCID: PMC10578495 DOI: 10.1261/rna.079687.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/24/2023] [Indexed: 07/27/2023]
Abstract
Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date, such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.
Collapse
Affiliation(s)
- Allison M Williams
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elizabeth A Jolley
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Robin R Gutell
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
5
|
Steiert TA, Parra G, Gut M, Arnold N, Trotta JR, Tonda R, Moussy A, Gerber Z, Abuja P, Zatloukal K, Röcken C, Folseraas T, Grimsrud M, Vogel A, Goeppert B, Roessler S, Hinz S, Schafmayer C, Rosenstiel P, Deleuze JF, Gut I, Franke A, Forster M. A critical spotlight on the paradigms of FFPE-DNA sequencing. Nucleic Acids Res 2023; 51:7143-7162. [PMID: 37351572 PMCID: PMC10415133 DOI: 10.1093/nar/gkad519] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
In the late 19th century, formalin fixation with paraffin-embedding (FFPE) of tissues was developed as a fixation and conservation method and is still used to this day in routine clinical and pathological practice. The implementation of state-of-the-art nucleic acid sequencing technologies has sparked much interest for using historical FFPE samples stored in biobanks as they hold promise in extracting new information from these valuable samples. However, formalin fixation chemically modifies DNA, which potentially leads to incorrect sequences or misinterpretations in downstream processing and data analysis. Many publications have concentrated on one type of DNA damage, but few have addressed the complete spectrum of FFPE-DNA damage. Here, we review mitigation strategies in (I) pre-analytical sample quality control, (II) DNA repair treatments, (III) analytical sample preparation and (IV) bioinformatic analysis of FFPE-DNA. We then provide recommendations that are tested and illustrated with DNA from 13-year-old liver specimens, one FFPE preserved and one fresh frozen, applying target-enriched sequencing. Thus, we show how DNA damage can be compensated, even when using low quantities (50 ng) of fragmented FFPE-DNA (DNA integrity number 2.0) that cannot be amplified well (Q129 bp/Q41 bp = 5%). Finally, we provide a checklist called 'ERROR-FFPE-DNA' that summarises recommendations for the minimal information in publications required for assessing fitness-for-purpose and inter-study comparison when using FFPE samples.
Collapse
Affiliation(s)
- Tim A Steiert
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Genís Parra
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Marta Gut
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Jean-Rémi Trotta
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Raúl Tonda
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Alice Moussy
- Le Centre de référence, d’innovation, d’expertise et de transfert (CRefIX), PFMG 2025, Évry 91057, France
| | - Zuzana Gerber
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Évry 91057, France
| | - Peter M Abuja
- Diagnostic & Research Center for Molecular Biomedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz 8010, Austria
| | - Kurt Zatloukal
- Diagnostic & Research Center for Molecular Biomedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz 8010, Austria
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Trine Folseraas
- Norwegian PSC Research Center Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Marit M Grimsrud
- Norwegian PSC Research Center Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0372, Norway
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover 30625, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, Ludwigsburg 71640, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Sebastian Hinz
- Department of General Surgery, University Medicine Rostock, Rostock 18057, Germany
| | - Clemens Schafmayer
- Department of General Surgery, University Medicine Rostock, Rostock 18057, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Jean-François Deleuze
- Le Centre de référence, d’innovation, d’expertise et de transfert (CRefIX), PFMG 2025, Évry 91057, France
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Évry 91057, France
| | - Ivo G Gut
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
6
|
Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing. Nat Protoc 2023; 18:1260-1295. [PMID: 36653528 DOI: 10.1038/s41596-022-00793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/09/2022] [Indexed: 01/19/2023]
Abstract
Studying the dynamics of genome replication in mammalian cells has been historically challenging. To reveal the location of replication initiation and termination in the human genome, we developed Okazaki fragment sequencing (OK-seq), a quantitative approach based on the isolation and strand-specific sequencing of Okazaki fragments, the lagging strand replication intermediates. OK-seq quantitates the proportion of leftward- and rightward-oriented forks at every genomic locus and reveals the location and efficiency of replication initiation and termination events. Here we provide the detailed experimental procedures for performing OK-seq in unperturbed cultured human cells and budding yeast and the bioinformatics pipelines for data processing and computation of replication fork directionality. Furthermore, we present the analytical approach based on a hidden Markov model, which allows automated detection of ascending, descending and flat replication fork directionality segments revealing the zones of replication initiation, termination and unidirectional fork movement across the entire genome. These tools are essential for the accurate interpretation of human and yeast replication programs. The experiments and the data processing can be accomplished within six days. Besides revealing the genome replication program in fine detail, OK-seq has been instrumental in numerous studies unravelling mechanisms of genome stability, epigenome maintenance and genome evolution.
Collapse
|
7
|
Wang Z, Sun J, Zu X, Gong J, Deng H, Hang R, Zhang X, Liu C, Deng X, Luo L, Wei X, Song X, Cao X. Pseudouridylation of chloroplast ribosomal RNA contributes to low temperature acclimation in rice. THE NEW PHYTOLOGIST 2022; 236:1708-1720. [PMID: 36093745 DOI: 10.1111/nph.18479] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ribosomal RNAs (rRNAs) undergo many modifications during transcription and maturation; homeostasis of rRNA modifications is essential for chloroplast biogenesis in plants. The chloroplast acts as a hub to sense environmental signals, such as cold temperature. However, how RNA modifications contribute to low temperature responses remains unknown. Here we reveal that pseudouridine (Ψ) modification of rice chloroplast rRNAs mediated by the pseudouridine synthase (OsPUS1) contributes to cold tolerance at seedling stage. Loss-function of OsPUS1 leads to abnormal chloroplast development and albino seedling phenotype at low temperature. We find that OsPUS1 is accumulated upon cold and binds to chloroplast precursor rRNAs (pre-rRNAs) to catalyse the pseudouridylation on rRNA. These modifications on chloroplast rRNAs could be required for their processing, as the reduction of mature chloroplast rRNAs and accumulation of pre-rRNAs are observed in ospus1-1 at low temperature. Therefore, the ribosome activity and translation in chloroplasts is disturbed in ospus1-1. Furthermore, transcriptome and translatome analysis reveals that OsPUS1 balances growth and stress-responsive state, preventing excess reactive oxygen species accumulation. Taken together, our findings unveil a crucial function of Ψ in chloroplast ribosome biogenesis and cold tolerance in rice, with potential applications in crop improvement.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Zu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Gong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hongjing Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
8
|
Zhao J, Chow EYC, Yeung PY, Zhang QC, Chan TF, Kwok CK. Enhanced transcriptome-wide RNA G-quadruplex sequencing for low RNA input samples with rG4-seq 2.0. BMC Biol 2022; 20:257. [PMID: 36372875 PMCID: PMC9661767 DOI: 10.1186/s12915-022-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2022] Open
Abstract
Background RNA G-quadruplexes (rG4s) are non-canonical structural motifs that have diverse functional and regulatory roles, for instance in transcription termination, alternative splicing, mRNA localization and stabilization, and translational process. We recently developed the RNA G-quadruplex structure sequencing (rG4-seq) technique and described rG4s in both eukaryotic and prokaryotic transcriptomes. However, rG4-seq suffers from a complicated gel purification step and limited PCR product yield, thus requiring a high amount of RNA input, which limits its applicability in more physiologically or clinically relevant studies often characterized by the limited availability of biological material and low RNA abundance. Here, we redesign and enhance the workflow of rG4-seq to address this issue. Results We developed rG4-seq 2.0 by introducing a new ssDNA adapter containing deoxyuridine during library preparation to enhance library quality with no gel purification step, less PCR amplification cycles and higher yield of PCR products. We demonstrate that rG4-seq 2.0 produces high-quality cDNA libraries that support reliable and reproducible rG4 identification at varying RNA inputs, including RNA mounts as low as 10 ng. rG4-seq 2.0 also improved the rG4-seq calling outcome and nucleotide bias in rG4 detection persistent in rG4-seq 1.0. We further provide in vitro mapping of rG4 in the HEK293T cell line, and recommendations for assessing RNA input and sequencing depth for individual rG4 studies based on transcript abundance. Conclusions rG4-seq 2.0 can improve the identification and study of rG4s in low abundance transcripts, and our findings can provide insights to optimize cDNA library preparation in other related methods. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01448-3.
Collapse
|
9
|
Haegele JA, Boyanapalli R, Goyal J. Improvements to Hybridization-Ligation Enzyme-Linked Immunosorbent Assay Methods to Overcome Bioanalytical Challenges Posed by Novel Oligonucleotide Therapeutics. Nucleic Acid Ther 2022; 32:350-359. [PMID: 35404142 PMCID: PMC9416565 DOI: 10.1089/nat.2021.0100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
As oligonucleotides (ONs) and similar nucleic acid therapeutic modalities enter development pipelines, there is continual need to develop bioanalytical methodologies addressing unique challenges they pose. Novel ONs back bone chemistries, especially those enabling stereochemical control, and base modifications are being exploited to improve pharmacological properties, potency, and increase half-lives. These changes have strained established methods, oftentimes precluding development of assays sensitive and specific enough to meet the needs of preclinical programs. For stereopure ONs representing a single molecular species, nontrivial presence of chain-shortened metabolites in biological samples necessitate assays with high specificity. To meet these needs, this report presents a toolbox of novel techniques, easy to implement for existing hybridization-ligation enzyme-linked immunosorbent assay formats, which address this challenge and yield significant sensitivity and specificity enhancements. Ligation efficiency was improved up to 61-fold through addition of polyethylene glycol, betaine, or dimethylsulfoxide, mitigating major differences among sequence-matched ONs of varying stereopurity, enabling sensitivities below 0.100 ng/mL for quantitation. These improvements enabled further refinement of capture probe designs engendering sufficient specificity to discriminate N-1 chain-shortened metabolites at both the 5′ and 3′ end of the ONs. These generalizable methods advance the performance of mainstay bioanalytical assays, facilitating research and development of innovative ONs therapeutics.
Collapse
Affiliation(s)
| | | | - Jaya Goyal
- Wave Life Sciences USA, Inc., Lexington, Massachusetts, USA
| |
Collapse
|
10
|
Shaw PJ, Piriyapongsa J, Kaewprommal P, Wongsombat C, Chaosrikul C, Teeravajanadet K, Boonbangyang M, Uthaipibull C, Kamchonwongpaisan S, Tongsima S. Identifying transcript 5' capped ends in Plasmodium falciparum. PeerJ 2021; 9:e11983. [PMID: 34527439 PMCID: PMC8401752 DOI: 10.7717/peerj.11983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background The genome of the human malaria parasite Plasmodium falciparum is poorly annotated, in particular, the 5' capped ends of its mRNA transcripts. New approaches are needed to fully catalog P. falciparum transcripts for understanding gene function and regulation in this organism. Methods We developed a transcriptomic method based on next-generation sequencing of complementary DNA (cDNA) enriched for full-length fragments using eIF4E, a 5' cap-binding protein, and an unenriched control. DNA sequencing adapter was added after enrichment of full-length cDNA using two different ligation protocols. From the mapped sequence reads, enrichment scores were calculated for all transcribed nucleotides and used to calculate P-values of 5' capped nucleotide enrichment. Sensitivity and accuracy were increased by combining P-values from replicate experiments. Data were obtained for P. falciparum ring, trophozoite and schizont stages of intra-erythrocytic development. Results 5' capped nucleotide signals were mapped to 17,961 non-overlapping P. falciparum genomic intervals. Analysis of the dominant 5' capped nucleotide in these genomic intervals revealed the presence of two groups with distinctive epigenetic features and sequence patterns. A total of 4,512 transcripts were annotated as 5' capped based on the correspondence of 5' end with 5' capped nucleotide annotated from full-length cDNA data. Discussion The presence of two groups of 5' capped nucleotides suggests that alternative mechanisms may exist for producing 5' capped transcript ends in P. falciparum. The 5' capped transcripts that are antisense, outside of, or partially overlapping coding regions may be important regulators of gene function in P. falciparum.
Collapse
Affiliation(s)
- Philip J Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jittima Piriyapongsa
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pavita Kaewprommal
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chayaphat Wongsombat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chadapohn Chaosrikul
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Krirkwit Teeravajanadet
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Manon Boonbangyang
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
11
|
Kapp JD, Green RE, Shapiro B. A Fast and Efficient Single-stranded Genomic Library Preparation Method Optimized for Ancient DNA. J Hered 2021; 112:241-249. [PMID: 33768239 PMCID: PMC8141684 DOI: 10.1093/jhered/esab012] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/16/2021] [Indexed: 11/12/2022] Open
Abstract
We present a protocol to prepare extracted DNA for sequencing on the Illumina sequencing platform that has been optimized for ancient and degraded DNA. Our approach, the Santa Cruz Reaction or SCR, uses directional splinted ligation of Illumina’s P5 and P7 adapters to convert natively single-stranded DNA and heat denatured double-stranded DNA into sequencing libraries in a single enzymatic reaction. To demonstrate its efficacy in converting degraded DNA molecules, we prepare 5 ancient DNA extracts into sequencing libraries using the SCR and 2 of the most commonly used approaches for preparing degraded DNA for sequencing: BEST, which targets and converts double-stranded DNA, and ssDNA2.0, which targets and converts single-stranded DNA. We then compare the efficiency with which each approach recovers unique molecules, or library complexity, given a standard amount of DNA input. We find that the SCR consistently outperforms the BEST protocol in recovering unique molecules and, despite its relative simplicity to perform and low cost per library, has similar performance to ssDNA2.0 across a wide range of DNA inputs. The SCR is a cost- and time-efficient approach that minimizes the loss of unique molecules and makes accessible a taxonomically, geographically, and a temporally broader sample of preserved remains for genomic analysis.
Collapse
Affiliation(s)
- Joshua D Kapp
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA.,Genomics Institute, University of California Santa Cruz, Santa Cruz, CA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA.,Genomics Institute, University of California Santa Cruz, Santa Cruz, CA.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA
| |
Collapse
|
12
|
Novel target capture DNA library preparation method using CircLigase-mediated hook ligation. N Biotechnol 2020; 59:44-50. [PMID: 32688061 DOI: 10.1016/j.nbt.2020.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
Target capture DNA library preparation methods primarily use the biotin-streptavidin interaction to enrich target DNA, requiring complex operations and a time-consuming workflow with a series of wash steps at regulated temperatures. Here, a new method is presented termed 'hook ligation' for target DNA library preparation, using CircLigase to capture target DNA. The concept was validated by library preparation, sequencing, and acquisition of target DNA fragment information through bioinformatics analysis. An efficient reference point for single-strand DNA ligation to a hook sequence using CircLigase is also provided and it is shown that the efficiency can be influenced by the length and the position of the complementary area on the target DNA.
Collapse
|
13
|
Kladwang W, Topkar VV, Liu B, Rangan R, Hodges TL, Keane SC, Al-Hashimi H, Das R. Anomalous Reverse Transcription through Chemical Modifications in Polyadenosine Stretches. Biochemistry 2020; 59:2154-2170. [PMID: 32407625 DOI: 10.1021/acs.biochem.0c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thermostable reverse transcriptases are workhorse enzymes underlying nearly all modern techniques for RNA structure mapping and for the transcriptome-wide discovery of RNA chemical modifications. Despite their wide use, these enzymes' behaviors at chemical modified nucleotides remain poorly understood. Wellington-Oguri et al. recently reported an apparent loss of chemical modification within putatively unstructured polyadenosine stretches modified by dimethyl sulfate or 2' hydroxyl acylation, as probed by reverse transcription. Here, reanalysis of these and other publicly available data, capillary electrophoresis experiments on chemically modified RNAs, and nuclear magnetic resonance spectroscopy on (A)12 and variants show that this effect is unlikely to arise from an unusual structure of polyadenosine. Instead, tests of different reverse transcriptases on chemically modified RNAs and molecules synthesized with single 1-methyladenosines implicate a previously uncharacterized reverse transcriptase behavior: near-quantitative bypass through chemical modifications within polyadenosine stretches. All tested natural and engineered reverse transcriptases (MMLV; SuperScript II, III, and IV; TGIRT-III; and MarathonRT) exhibit this anomalous bypass behavior. Accurate DMS-guided structure modeling of the polyadenylated HIV-1 3' untranslated region requires taking into account this anomaly. Our results suggest that poly(rA-dT) hybrid duplexes can trigger an unexpectedly effective reverse transcriptase bypass and that chemical modifications in mRNA poly(A) tails may be generally undercounted.
Collapse
Affiliation(s)
- Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ved V Topkar
- Biophysics Program, Stanford University, Stanford, California 94305, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, California 94305, United States
| | - Tracy L Hodges
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hashim Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States.,Department of Chemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States.,Biophysics Program, Stanford University, Stanford, California 94305, United States.,Department of Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Mitchell D, Assmann SM, Bevilacqua PC. Probing RNA structure in vivo. Curr Opin Struct Biol 2019; 59:151-158. [PMID: 31521910 DOI: 10.1016/j.sbi.2019.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 01/30/2023]
Abstract
RNA structure underpins many essential functions in biology. New chemical reagents and techniques for probing RNA structure in living cells have emerged in recent years. High-throughput, genome-wide techniques such as Structure-seq2 and DMS-MaPseq exploit nucleobase modification by dimethylsulfate (DMS) to obtain complete structuromes, and are applicable to multiple domains of life and conditions. New reagents such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), glyoxal, and nicotinoyl azide (NAz) greatly expand the capabilities of nucleobase probing in cells. Additionally, ribose-targeting reagents in selective 2'-hydroxyl acylation and primer extension (SHAPE) detect RNA flexibility in vivo. These techniques, coupled with crosslinking nucleobases in psoralen analysis of RNA interactions and structures (PARIS), provide new and diverse ways to elucidate RNA secondary and tertiary structure in vivo and genome-wide.
Collapse
Affiliation(s)
- David Mitchell
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sarah M Assmann
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
McDonald BR, Contente-Cuomo T, Sammut SJ, Odenheimer-Bergman A, Ernst B, Perdigones N, Chin SF, Farooq M, Mejia R, Cronin PA, Anderson KS, Kosiorek HE, Northfelt DW, McCullough AE, Patel BK, Weitzel JN, Slavin TP, Caldas C, Pockaj BA, Murtaza M. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci Transl Med 2019; 11:eaax7392. [PMID: 31391323 PMCID: PMC7236617 DOI: 10.1126/scitranslmed.aax7392] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 04/17/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022]
Abstract
Longitudinal analysis of circulating tumor DNA (ctDNA) has shown promise for monitoring treatment response. However, most current methods lack adequate sensitivity for residual disease detection during or after completion of treatment in patients with nonmetastatic cancer. To address this gap and to improve sensitivity for minute quantities of residual tumor DNA in plasma, we have developed targeted digital sequencing (TARDIS) for multiplexed analysis of patient-specific cancer mutations. In reference samples, by simultaneously analyzing 8 to 16 known mutations, TARDIS achieved 91 and 53% sensitivity at mutant allele fractions (AFs) of 3 in 104 and 3 in 105, respectively, with 96% specificity, using input DNA equivalent to a single tube of blood. We successfully analyzed up to 115 mutations per patient in 80 plasma samples from 33 women with stage I to III breast cancer. Before treatment, TARDIS detected ctDNA in all patients with 0.11% median AF. After completion of neoadjuvant therapy, ctDNA concentrations were lower in patients who achieved pathological complete response (pathCR) compared to patients with residual disease (median AFs, 0.003 and 0.017%, respectively, P = 0.0057, AUC = 0.83). In addition, patients with pathCR showed a larger decrease in ctDNA concentrations during neoadjuvant therapy. These results demonstrate high accuracy for assessment of molecular response and residual disease during neoadjuvant therapy using ctDNA analysis. TARDIS has achieved up to 100-fold improvement beyond the current limit of ctDNA detection using clinically relevant blood volumes, demonstrating that personalized ctDNA tracking could enable individualized clinical management of patients with cancer treated with curative intent.
Collapse
Affiliation(s)
- Bradon R McDonald
- Center for Noninvasive Diagnostics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Tania Contente-Cuomo
- Center for Noninvasive Diagnostics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Stephen-John Sammut
- Department of Oncology and Cancer Research UK Cambridge Institute and Cancer Centre, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ahuva Odenheimer-Bergman
- Center for Noninvasive Diagnostics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | - Nieves Perdigones
- Center for Noninvasive Diagnostics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Suet-Feung Chin
- Department of Oncology and Cancer Research UK Cambridge Institute and Cancer Centre, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Maria Farooq
- Center for Noninvasive Diagnostics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | - Karen S Anderson
- Mayo Clinic, Scottsdale, AZ 85259, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | | | | | | | | | | | | | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute and Cancer Centre, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Muhammed Murtaza
- Center for Noninvasive Diagnostics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA.
- Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
16
|
Abstract
RNA performs and regulates a diverse range of cellular processes, with new functional roles being uncovered at a rapid pace. Interest is growing in how these functions are linked to RNA structures that form in the complex cellular environment. A growing suite of technologies that use advances in RNA structural probes, high-throughput sequencing and new computational approaches to interrogate RNA structure at unprecedented throughput are beginning to provide insights into RNA structures at new spatial, temporal and cellular scales.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Angela M Yu
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
17
|
Lee HH, Kalhor R, Goela N, Bolot J, Church GM. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat Commun 2019; 10:2383. [PMID: 31160595 PMCID: PMC6546792 DOI: 10.1038/s41467-019-10258-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/01/2019] [Indexed: 11/09/2022] Open
Abstract
DNA is an emerging medium for digital data and its adoption can be accelerated by synthesis processes specialized for storage applications. Here, we describe a de novo enzymatic synthesis strategy designed for data storage which harnesses the template-independent polymerase terminal deoxynucleotidyl transferase (TdT) in kinetically controlled conditions. Information is stored in transitions between non-identical nucleotides of DNA strands. To produce strands representing user-defined content, nucleotide substrates are added iteratively, yielding short homopolymeric extensions whose lengths are controlled by apyrase-mediated substrate degradation. With this scheme, we synthesize DNA strands carrying 144 bits, including addressing, and demonstrate retrieval with streaming nanopore sequencing. We further devise a digital codec to reduce requirements for synthesis accuracy and sequencing coverage, and experimentally show robust data retrieval from imperfectly synthesized strands. This work provides distributive enzymatic synthesis and information-theoretic approaches to advance digital information storage in DNA. Adoption of DNA as a data storage medium could be accelerated with specialized synthesis processes and codecs. The authors describe TdT-mediated DNA synthesis in which data is stored in transitions between non-identical nucleotides and the use of synchronization markers to provide error tolerance.
Collapse
Affiliation(s)
- Henry H Lee
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA.
| | - Reza Kalhor
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA
| | - Naveen Goela
- Technicolor Research & Innovation Lab, Palo Alto, 94306, CA, USA
| | - Jean Bolot
- Technicolor Research & Innovation Lab, Palo Alto, 94306, CA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA.
| |
Collapse
|
18
|
Yeung PY, Zhao J, Chow EYC, Mou X, Hong H, Chen L, Chan TF, Kwok CK. Systematic evaluation and optimization of the experimental steps in RNA G-quadruplex structure sequencing. Sci Rep 2019; 9:8091. [PMID: 31147619 PMCID: PMC6542847 DOI: 10.1038/s41598-019-44541-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/20/2019] [Indexed: 11/24/2022] Open
Abstract
cDNA library preparation is important for many high-throughput sequencing applications, such as RNA G-quadruplex structure sequencing (rG4-seq). A systematic evaluation of the procedures of the experimental pipeline, however, is lacking. Herein, we perform a comprehensive assessment of the 5 key experimental steps involved in the cDNA library preparation of rG4-seq, and identify better reaction conditions and/or enzymes to carry out each of these key steps. Notably, we apply the improved methods to fragmented cellular RNA, and show reduced RNA input requirement, lower transcript abundance variations between biological replicates, as well as lower transcript coverage bias when compared to prior arts. In addition, the time to perform these steps is substantially reduced to hours. Our method and results can be directly applied in protocols that require cDNA library preparation, and provide insights to the further development of simple and efficient cDNA library preparation for different biological applications.
Collapse
Affiliation(s)
- Pui Yan Yeung
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jieyu Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Mou
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - HuiQi Hong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Adams RL, Huston NC, Tavares RCA, Pyle AM. Sensitive detection of structural features and rearrangements in long, structured RNA molecules. Methods Enzymol 2019; 623:249-289. [PMID: 31239050 DOI: 10.1016/bs.mie.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Technical innovations in structural probing have drastically advanced the field of RNA structure analysis. These advances have led to parallel approaches developed in separate labs for analyzing RNA structure and dynamics. With the wealth of methodologies available, it can be difficult to determine which is best suited for a given application. Here, using a long, highly structured viral RNA as an example (the positive strand genome of Hepatitis C Virus), we present a semi-comprehensive analysis and describe the major approaches for analyzing the architecture of RNA that is modified with structure-sensitive probes. Additionally, we present an updated method for generating in vitro transcribed and folded RNA that maintains native secondary structures in long RNA molecules. We anticipate that the methods described here will streamline the use of current approaches and help investigators who are unfamiliar with structure probing, obviating the need for time-consuming and expensive optimization.
Collapse
Affiliation(s)
- Rebecca L Adams
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Nicholas C Huston
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Rafael C A Tavares
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
20
|
Venters BJ. Insights from resolving protein-DNA interactions at near base-pair resolution. Brief Funct Genomics 2019; 17:80-88. [PMID: 29211822 DOI: 10.1093/bfgp/elx043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the central goals in molecular biology is to understand how cell-type-specific expression patterns arise through selective recruitment of RNA polymerase II (Pol II) to a subset of gene promoters. Pol II needs to be recruited to a precise genomic position at the proper time to produce messenger RNA from a DNA template. Ostensibly, transcription is a relatively simple cellular process; yet, experimentally measuring and then understanding the combinatorial possibilities of transcriptional regulators remain a daunting task. Since its introduction in 1985, chromatin immunoprecipitation (ChIP) has remained a key tool for investigating protein-DNA contacts in vivo. Over 30 years of intensive research using ChIP have provided numerous insights into mechanisms of gene regulation. As functional genomic technologies improve, they present new opportunities to address key biological questions. ChIP-exo is a refined version of ChIP-seq that significantly reduces background signal, while providing near base-pair mapping resolution for protein-DNA interactions. This review discusses the evolution of the ChIP assay over the years; the methodological differences between ChIP-seq, ChIP-exo and ChIP-nexus; and highlight new insights into epigenetic and transcriptional mechanisms that were uniquely enabled with the near base-pair resolution of ChIP-exo.
Collapse
|
21
|
Lama L, Cobo J, Buenaventura D, Ryan K. Small RNA-seq: The RNA 5'-end adapter ligation problem and how to circumvent it. J Biol Methods 2019; 6. [PMID: 31080843 PMCID: PMC6507418 DOI: 10.14440/jbm.2019.269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The preparation of small RNA cDNA sequencing libraries depends on the unbiased ligation of adapters to the RNA ends. Small RNA with 5' recessed ends are poor substrates for enzymatic adapter ligation, but this 5' adapter ligation problem can go undetected if the library preparation steps are not monitored. Here we illustrate the severity of the 5' RNA end ligation problem using several pre-miRNA-like hairpins that allow us to expand the definition of the problem to include 5' ends close to a hairpin stem, whether recessed or in a short extension. The ribosome profiling method can avoid a difficult 5' adapter ligation, but the enzyme typically used to circularize the cDNA has been reported to be biased, calling into question the benefit of this workaround. Using the TS2126 RNA ligase 1 (a.k.a. CircLigase) as the circularizing enzyme, we devised a bias test for the circularization of first strand cDNA. All possible dinucleotides were circle-ligated with similar efficiency. To re-linearize the first strand cDNA in the ribosome profiling approach, we introduce an improved method wherein a single ribonucleotide is placed between the sequencing primer binding sites in the reverse transcriptase primer, which later serves as the point of re-linearization by RNase A. We incorporate this step into the ribosomal profiling method and describe a complete improved library preparation method, Coligo-seq, for the sequencing of small RNA with secondary structure close to the 5' end. This method accepts a variety of 5' modified RNA, including 5' monophosphorylated RNA, as demonstrated by the construction of a HeLa cell microRNA cDNA library.
Collapse
Affiliation(s)
- Lodoe Lama
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Biochemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - Jose Cobo
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Biochemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - Diego Buenaventura
- Biology Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Biochemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA.,Chemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
22
|
Pollpeter D, Sobala A, Malim MH. Determining 3'-Termini and Sequences of Nascent Single-Stranded Viral DNA Molecules during HIV-1 Reverse Transcription in Infected Cells. J Vis Exp 2019:10.3791/58715. [PMID: 30774124 PMCID: PMC6682491 DOI: 10.3791/58715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Monitoring of nucleic acid intermediates during virus replication provides insights into the effects and mechanisms of action of antiviral compounds and host cell proteins on viral DNA synthesis. Here we address the lack of a cell-based, high-coverage, and high-resolution assay that is capable of defining retroviral reverse transcription intermediates within the physiological context of virus infection. The described method captures the 3'-termini of nascent complementary DNA (cDNA) molecules within HIV-1 infected cells at single nucleotide resolution. The protocol involves harvesting of whole cell DNA, targeted enrichment of viral DNA via hybrid capture, adaptor ligation, size fractionation by gel purification, PCR amplification, deep sequencing, and data analysis. A key step is the efficient and unbiased ligation of adaptor molecules to open 3'-DNA termini. Application of the described method determines the abundance of reverse transcripts of each particular length in a given sample. It also provides information about the (internal) sequence variation in reverse transcripts and thereby any potential mutations. In general, the assay is suitable for any questions relating to DNA 3'-extension, provided that the template sequence is known.
Collapse
Affiliation(s)
- Darja Pollpeter
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London;
| | - Andrew Sobala
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London
| |
Collapse
|
23
|
Abstract
Genomic library preparation from highly degraded DNA is more efficient when library molecules are prepared separately from the complementary strands of DNA fragments. We describe a protocol in which libraries are constructed from single DNA strands in a three-step procedure: single-stranded ligation of the first adapter with T4 DNA ligase in the presence of a splinter oligonucleotide, copying of the DNA strand with a proofreading polymerase, and blunt-end ligation of the second double-stranded adapter with T4 DNA ligase.
Collapse
Affiliation(s)
- Marie-Theres Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
24
|
Abstract
ChIP-seq and ChIP-exo identify where proteins bind along any genome in vivo. Although ChIP-seq is widely adopted in academic research, it has inherently high noise. In contrast, ChIP-exo has relatively low noise and achieves near-base pair resolution. Consequently, and unlike other genomic assays, ChIP-exo provides structural information on genome-wide binding proteins. Construction of ChIP-exo libraries is technically difficult. Here we describe greatly simplified ChIP-exo methods, each with use-specific advantages. This is achieved through assay optimization and use of Tn5 tagmentation and/or single-stranded DNA ligation. Greater library yields, lower processing time, and lower costs are achieved. In comparing assays, we reveal substantial limitations in other ChIP-based assays. Importantly, the new ChIP-exo assays allow high-resolution detection of some protein-DNA interactions in organs and in as few as 27,000 cells. It is suitable for high-throughput parallelization. The simplicity of ChIP-exo now makes it a highly appropriate substitute for ChIP-seq, and for broader adoption. While ChIP-exo is low noise and highly informative regarding genome-wide binding proteins, libraries are difficult to construct. Here the authors present a simplified ChIP-exo method for high-resolution detection of interactions.
Collapse
|
25
|
Kwok CK, Marsico G, Balasubramanian S. Detecting RNA G-Quadruplexes (rG4s) in the Transcriptome. Cold Spring Harb Perspect Biol 2018; 10:10/7/a032284. [PMID: 29967010 DOI: 10.1101/cshperspect.a032284] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA G-quadruplex (rG4) secondary structures are proposed to play key roles in fundamental biological processes that include the modulation of transcriptional, co-transcriptional, and posttranscriptional events. Recent methodological developments that include predictive algorithms and structure-based sequencing have enabled the detection and mapping of rG4 structures on a transcriptome-wide scale at high sensitivity and resolution. The data generated by these studies provide valuable insights into the potentially diverse roles of rG4s in biology and open up a number of mechanistic hypotheses. Herein we highlight these methodologies and discuss the associated findings in relation to rG4-related biological mechanisms.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Giovanni Marsico
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
26
|
Ritchey LE, Su Z, Tang Y, Tack DC, Assmann SM, Bevilacqua PC. Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo. Nucleic Acids Res 2017. [PMID: 28637286 PMCID: PMC5737731 DOI: 10.1093/nar/gkx533] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RNA serves many functions in biology such as splicing, temperature sensing, and innate immunity. These functions are often determined by the structure of RNA. There is thus a pressing need to understand RNA structure and how it changes during diverse biological processes both in vivo and genome-wide. Here, we present Structure-seq2, which provides nucleotide-resolution RNA structural information in vivo and genome-wide. This optimized version of our original Structure-seq method increases sensitivity by at least 4-fold and improves data quality by minimizing formation of a deleterious by-product, reducing ligation bias, and improving read coverage. We also present a variation of Structure-seq2 in which a biotinylated nucleotide is incorporated during reverse transcription, which greatly facilitates the protocol by eliminating two PAGE purification steps. We benchmark Structure-seq2 on both mRNA and rRNA structure in rice (Oryza sativa). We demonstrate that Structure-seq2 can lead to new biological insights. Our Structure-seq2 datasets uncover hidden breaks in chloroplast rRNA and identify a previously unreported N1-methyladenosine (m1A) in a nuclear-encoded Oryza sativa rRNA. Overall, Structure-seq2 is a rapid, sensitive, and unbiased method to probe RNA in vivo and genome-wide that facilitates new insights into RNA biology.
Collapse
Affiliation(s)
- Laura E Ritchey
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhao Su
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Yin Tang
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
27
|
Gansauge MT, Gerber T, Glocke I, Korlevic P, Lippik L, Nagel S, Riehl LM, Schmidt A, Meyer M. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res 2017; 45:e79. [PMID: 28119419 PMCID: PMC5449542 DOI: 10.1093/nar/gkx033] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/13/2017] [Indexed: 01/21/2023] Open
Abstract
DNA library preparation for high-throughput sequencing of genomic DNA usually involves ligation of adapters to double-stranded DNA fragments. However, for highly degraded DNA, especially ancient DNA, library preparation has been found to be more efficient if each of the two DNA strands are converted into library molecules separately. We present a new method for single-stranded library preparation, ssDNA2.0, which is based on single-stranded DNA ligation with T4 DNA ligase utilizing a splinter oligonucleotide with a stretch of random bases hybridized to a 3΄ biotinylated donor oligonucleotide. A thorough evaluation of this ligation scheme shows that single-stranded DNA can be ligated to adapter oligonucleotides in higher concentration than with CircLigase (an RNA ligase that was previously chosen for end-to-end ligation in single-stranded library preparation) and that biases in ligation can be minimized when choosing splinters with 7 or 8 random nucleotides. We show that ssDNA2.0 tolerates higher quantities of input DNA than CircLigase-based library preparation, is less costly and better compatible with automation. We also provide an in-depth comparison of library preparation methods on degraded DNA from various sources. Most strikingly, we find that single-stranded library preparation increases library yields from tissues stored in formalin for many years by several orders of magnitude.
Collapse
Affiliation(s)
- Marie-Theres Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Tobias Gerber
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Isabelle Glocke
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Petra Korlevic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Laurin Lippik
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Lara Maria Riehl
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany
| | - Anna Schmidt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Sexton AN, Wang PY, Rutenberg-Schoenberg M, Simon MD. Interpreting Reverse Transcriptase Termination and Mutation Events for Greater Insight into the Chemical Probing of RNA. Biochemistry 2017; 56:4713-4721. [PMID: 28820243 PMCID: PMC5648349 DOI: 10.1021/acs.biochem.7b00323] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chemical probing has the power to provide insight into RNA conformation in vivo and in vitro, but interpreting the results depends on methods to detect the chemically modified nucleotides. Traditionally, the presence of modified bases was inferred from their ability to halt reverse transcriptase during primer extension and the locations of termination sites observed by electrophoresis or sequencing. More recently, modification-induced mutations have been used as a readout for chemical probing data. Given the variable propensity for mismatch incorporation and read-through with different reverse transcriptases, we examined how termination and mutation events compare to each other in the same chemical probing experiments. We found that mutations and terminations induced by dimethyl sulfate probing are both specific for methylated bases, but these two measures have surprisingly little correlation and represent largely nonoverlapping indicators of chemical modification data. We also show that specific biases for modified bases depend partly on local sequence context and that different reverse transcriptases show different biases toward reading a modification as a stop or a mutation. These results support approaches that incorporate analysis of both termination and mutation events into RNA probing experiments.
Collapse
Affiliation(s)
- Alec N. Sexton
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Peter Y. Wang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Michael Rutenberg-Schoenberg
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
29
|
Wu DC, Lambowitz AM. Facile single-stranded DNA sequencing of human plasma DNA via thermostable group II intron reverse transcriptase template switching. Sci Rep 2017; 7:8421. [PMID: 28827600 PMCID: PMC5566474 DOI: 10.1038/s41598-017-09064-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/20/2017] [Indexed: 01/30/2023] Open
Abstract
High-throughput single-stranded DNA sequencing (ssDNA-seq) of cell-free DNA from plasma and other bodily fluids is a powerful method for non-invasive prenatal testing, and diagnosis of cancers and other diseases. Here, we developed a facile ssDNA-seq method, which exploits a novel template-switching activity of thermostable group II intron reverse transcriptases (TGIRTs) for DNA-seq library construction. This activity enables TGIRT enzymes to initiate DNA synthesis directly at the 3′ end of a DNA strand while simultaneously attaching a DNA-seq adapter without end repair, tailing, or ligation. Initial experiments using this method to sequence E. coli genomic DNA showed that the TGIRT enzyme has surprisingly robust DNA polymerase activity. Further experiments showed that TGIRT-seq of plasma DNA from a healthy individual enables analysis of nucleosome positioning, transcription factor-binding sites, DNA methylation sites, and tissues-of-origin comparably to established methods, but with a simpler workflow that captures precise DNA ends.
Collapse
Affiliation(s)
- Douglas C Wu
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA. .,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
30
|
Nottingham RM, Wu DC, Qin Y, Yao J, Hunicke-Smith S, Lambowitz AM. RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA (NEW YORK, N.Y.) 2016; 22:597-613. [PMID: 26826130 PMCID: PMC4793214 DOI: 10.1261/rna.055558.115] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/30/2015] [Indexed: 05/20/2023]
Abstract
Next-generation RNA sequencing (RNA-seq) has revolutionized our ability to analyze transcriptomes. Current RNA-seq methods are highly reproducible, but each has biases resulting from different modes of RNA sample preparation, reverse transcription, and adapter addition, leading to variability between methods. Moreover, the transcriptome cannot be profiled comprehensively because highly structured RNAs, such as tRNAs and snoRNAs, are refractory to conventional RNA-seq methods. Recently, we developed a new method for strand-specific RNA-seq using thermostable group II intron reverse transcriptases (TGIRTs). TGIRT enzymes have higher processivity and fidelity than conventional retroviral reverse transcriptases plus a novel template-switching activity that enables RNA-seq adapter addition during cDNA synthesis without using RNA ligase. Here, we obtained TGIRT-seq data sets for well-characterized human RNA reference samples and compared them to previous data sets obtained for these RNAs by the Illumina TruSeq v2 and v3 methods. We find that TGIRT-seq recapitulates the relative abundance of human transcripts and RNA spike-ins in ribo-depleted, fragmented RNA samples comparably to non-strand-specific TruSeq v2 and better than strand-specific TruSeq v3. Moreover, TGIRT-seq is more strand specific than TruSeq v3 and eliminates sampling biases from random hexamer priming, which are inherent to TruSeq. The TGIRT-seq data sets also show more uniform 5' to 3' gene coverage and identify more splice junctions, particularly near the 5' ends of mRNAs, than do the TruSeq data sets. Finally, TGIRT-seq enables the simultaneous profiling of mRNAs and lncRNAs in the same RNA-seq experiment as structured small ncRNAs, including tRNAs, which are essentially absent with TruSeq.
Collapse
Affiliation(s)
- Ryan M Nottingham
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Scott Hunicke-Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
31
|
Abstract
Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA cross-linking patterns by combining chromatin immunoprecipitation (ChIP) with 5' → 3' exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATAC-seq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches.
Collapse
Affiliation(s)
- Shaun Mahony
- a Department of Biochemistry & Molecular Biology , Center for Eukaryotic Gene Regulation, The Pennsylvania State University , University Park , PA , USA
| | - B Franklin Pugh
- a Department of Biochemistry & Molecular Biology , Center for Eukaryotic Gene Regulation, The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
32
|
Kwok CK, Balasubramanian S. Targeted Detection of G-Quadruplexes in Cellular RNAs. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Kwok CK, Balasubramanian S. Targeted Detection of G-Quadruplexes in Cellular RNAs. Angew Chem Int Ed Engl 2015; 54:6751-4. [PMID: 25907625 PMCID: PMC4510783 DOI: 10.1002/anie.201500891] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Indexed: 02/03/2023]
Abstract
The G-quadruplex (G4) is a non-canonical nucleic acid structure which regulates important cellular processes. RNA G4s have recently been shown to exist in human cells and be biologically significant. Described herein is a new approach to detect and map RNA G4s in cellular transcripts. This method exploits the specific control of RNA G4-cation and RNA G4-ligand interactions during reverse transcription, by using a selective reverse transcriptase to monitor RNA G4-mediated reverse transcriptase stalling (RTS) events. Importantly, a ligation-amplification strategy is coupled with RTS, and enables detection and mapping of G4s in important, low-abundance cellular RNAs. Strong evidence is provided for G4 formation in full-length cellular human telomerase RNA, offering important insights into its cellular function.
Collapse
Affiliation(s)
- Chun Kit Kwok
- The University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Shankar Balasubramanian
- The University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW (UK).
| |
Collapse
|
34
|
The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem Sci 2015; 40:221-32. [DOI: 10.1016/j.tibs.2015.02.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/16/2023]
|
35
|
Heyer EE, Ozadam H, Ricci EP, Cenik C, Moore MJ. An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments. Nucleic Acids Res 2014; 43:e2. [PMID: 25505164 PMCID: PMC4288154 DOI: 10.1093/nar/gku1235] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deep sequencing of strand-specific cDNA libraries is now a ubiquitous tool for identifying and quantifying RNAs in diverse sample types. The accuracy of conclusions drawn from these analyses depends on precise and quantitative conversion of the RNA sample into a DNA library suitable for sequencing. Here, we describe an optimized method of preparing strand-specific RNA deep sequencing libraries from small RNAs and variably sized RNA fragments obtained from ribonucleoprotein particle footprinting experiments or fragmentation of long RNAs. Our approach works across a wide range of input amounts (400 pg to 200 ng), is easy to follow and produces a library in 2–3 days at relatively low reagent cost, all while giving the user complete control over every step. Because all enzymatic reactions were optimized and driven to apparent completion, sequence diversity and species abundance in the input sample are well preserved.
Collapse
Affiliation(s)
- Erin E Heyer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hakan Ozadam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Emiliano P Ricci
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Can Cenik
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
36
|
Loughrey D, Watters KE, Settle AH, Lucks JB. SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res 2014; 42:gku909. [PMID: 25303992 PMCID: PMC4245970 DOI: 10.1093/nar/gku909] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
RNA structure is a primary determinant of its function, and methods that merge chemical probing with next generation sequencing have created breakthroughs in the throughput and scale of RNA structure characterization. However, little work has been done to examine the effects of library preparation and sequencing on the measured chemical probe reactivities that encode RNA structural information. Here, we present the first analysis and optimization of these effects for selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). We first optimize SHAPE-Seq, and show that it provides highly reproducible reactivity data over a wide range of RNA structural contexts with no apparent biases. As part of this optimization, we present SHAPE-Seq v2.0, a ‘universal’ method that can obtain reactivity information for every nucleotide of an RNA without having to use or introduce a specific reverse transcriptase priming site within the RNA. We show that SHAPE-Seq v2.0 is highly reproducible, with reactivity data that can be used as constraints in RNA folding algorithms to predict structures on par with those generated using data from other SHAPE methods. We anticipate SHAPE-Seq v2.0 to be broadly applicable to understanding the RNA sequence–structure relationship at the heart of some of life's most fundamental processes.
Collapse
Affiliation(s)
- David Loughrey
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Kyle E Watters
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Alexander H Settle
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Julius B Lucks
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|