1
|
Abstract
Unique pneumonia due to an unknown source emerged in December 2019 in the city of Wuhan, China. Consequently, the World Health Organization (WHO) declared this condition as a new coronavirus disease-19 also known as COVID-19 on February 11, 2020, which on March 13, 2020 was declared as a pandemic. The virus that causes COVID-19 was found to have a similar genome (80% similarity) with the previously known acute respiratory syndrome also known as SARS-CoV. The novel virus was later named Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 falls in the family of Coronaviridae which is further divided into Nidovirales and another subfamily called Orthocoronavirinae. The four generations of the coronaviruses belongs to the Orthocoronavirinae family that consists of alpha, beta, gamma and delta coronavirus which are denoted as α-CoV, β-CoV, γ-CoV, δ-CoV respectively. The α-CoV and β-CoVs are mainly known to infect mammals whereas γ-CoV and δ-CoV are generally found in birds. The β-CoVs also comprise of SARS-CoV and also include another virus that was found in the Middle East called the Middle East respiratory syndrome virus (MERS-CoV) and the cause of current pandemic SARS-CoV-2. These viruses initially cause the development of pneumonia in the patients and further development of a severe case of acute respiratory distress syndrome (ARDS) and other related symptoms that can be fatal leading to death.
Collapse
|
2
|
Al Mamun M, Wahab YA, Hossain MM, Hashem A, Johan MR. Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices. Foods 2021; 10:foods10112598. [PMID: 34828878 PMCID: PMC8623274 DOI: 10.3390/foods10112598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Food allergies have seriously affected the life quality of some people and even endangered their lives. At present, there is still no effective cure for food allergies. Avoiding the intake of allergenic food is still the most effective way to prevent allergic diseases. Therefore, it is necessary to develop rapid, accurate, sensitive, and reliable analysis methods to detect food allergens from different sources. Aptamers are oligonucleotide sequences that can bind to a variety of targets with high specificity and selectivity, and they are often combined with different transduction technologies, thereby constructing various types of aptamer sensors. In recent years, with the development of technology and the application of new materials, the sensitivity, portability, and cost of fluorescence sensing technology have been greatly improved. Therefore, aptamer-based fluorescence sensing technology has been widely developed and applied in the specific recognition of food allergens. In this paper, the classification of major allergens and their characteristics in animal and plant foods were comprehensively reviewed, and the preparation principles and practical applications of aptamer-based fluorescence biosensors are summarized. In addition, we hope that this article can provide some strategies for the rapid and sensitive detection of allergens in food matrices.
Collapse
|
4
|
Ziółkowski R, Jarczewska M, Górski Ł, Malinowska E. From Small Molecules Toward Whole Cells Detection: Application of Electrochemical Aptasensors in Modern Medical Diagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:724. [PMID: 33494499 PMCID: PMC7866209 DOI: 10.3390/s21030724] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
This paper focuses on the current state of art as well as on future trends in electrochemical aptasensors application in medical diagnostics. The origin of aptamers is presented along with the description of the process known as SELEX. This is followed by the description of the broad spectrum of aptamer-based sensors for the electrochemical detection of various diagnostically relevant analytes, including metal cations, abused drugs, neurotransmitters, cancer, cardiac and coagulation biomarkers, circulating tumor cells, and viruses. We described also possible future perspectives of aptasensors development. This concerns (i) the approaches to lowering the detection limit and improvement of the electrochemical aptasensors selectivity by application of the hybrid aptamer-antibody receptor layers and/or nanomaterials; and (ii) electrochemical aptasensors integration with more advanced microfluidic devices as user-friendly medical instruments for medical diagnostic of the future.
Collapse
Affiliation(s)
- Robert Ziółkowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Marta Jarczewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Łukasz Górski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Elżbieta Malinowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
5
|
Jalandra R, Yadav AK, Verma D, Dalal N, Sharma M, Singh R, Kumar A, Solanki PR. Strategies and perspectives to develop SARS-CoV-2 detection methods and diagnostics. Biomed Pharmacother 2020; 129:110446. [PMID: 32768943 PMCID: PMC7303646 DOI: 10.1016/j.biopha.2020.110446] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
To develop diagnostics and detection methods, current research is focussed on targeting the detection of coronavirus based on its RNA. Besides the RNA target, research reports are coming to develop diagnostics by targeting structure and other parts of coronavirus. PCR based detection system is widely used and various improvements in the PCR based detection system can be seen in the recent research reports. This review will discuss multiple detection methods for coronavirus for developing appropriate, reliable, and fast alternative techniques. Considering the current scenario of COVID-19 diagnostics around the world and an urgent need for the development of reliable and cheap diagnostic, various techniques based on CRISPR technology, antibody, MIP, LAMP, microarray, etc. should be discussed and tried.
Collapse
Affiliation(s)
- Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India; Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Damini Verma
- Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, 201313, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India; Department of Environmental Science, Satyawati College, Delhi University, New Delhi, 110052, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, New Delhi, 110052, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Jamei HR, Rezaei B, Ensafi AA. An ultrasensitive electrochemical anti-lysozyme aptasensor with biorecognition surface based on aptamer/amino-rGO/ionic liquid/amino-mesosilica nanoparticles. Colloids Surf B Biointerfaces 2019; 181:16-24. [PMID: 31112933 DOI: 10.1016/j.colsurfb.2019.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
In this work, a novel method based on aptamers is proposed for electrochemical measurement of lysozyme. To this end, screen-printed carbon electrode (SPCE) was modified with a nanocomposite made from amino-reduced graphene oxide (Amino-rGO) synthesized from natural graphite powder, an ionic liquid (IL), and amino-mesosilica nanoparticles (Amino-MSNs). The composition of the nanocomposite (Amino-rGO/IL/Amino-MSNs) results in high thermal and chemical stability, conductivity, surface-to-volume ratio, cost efficiency, biocompatibility, and great bioelectrocatalysis characteristics. Presence of numerous amino groups, as well as remaining oxygen defects in rGO, provides a suitable site for immobilization of aptamers. Furthermore, use of this nanocomposite leads to considerable enhancement of the electrochemical signal and improved method sensitivity. Covalent coupling of aptamer's amino groups with that of the nanocomposite using glutaraldehyde (GLA) as a linker helps immobilize amino-linked lysozyme aptamers (Anti-Lys aptamers) on nanocomposite. The modified electrode was characterized using electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The immobilized aptamer selectively adsorbs lysozyme (Lys) on the electrode interface, leading to increased Charge Transfer Resistance (RCT) in EIS and decrease in the DPV peak currents which are used as analytical signals. Two separate calibration curves were drawn using the data acquired from EIS and DPV. The prepared anti-Lys aptasensor has two very low LODs equal to 2.1 and 4.2 fmol L-1 with wide detection ranges of 10 fmol L-1 to 200 nmol L-1, and 20 fmol L-1 to 50 nmol L-1 for EIS and DPV calibration curves, respectively. The SPCE/Amino-rGO/IL/Amino-MSNs/APT also showed high reproducibility, specificity, sensitivity, and rapid response to Lys which has various applications in fields of bioengineering and biomedicine.
Collapse
Affiliation(s)
- Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| |
Collapse
|
7
|
Guler E, Bozokalfa G, Demir B, Gumus ZP, Guler B, Aldemir E, Timur S, Coskunol H. An aptamer folding-based sensory platform decorated with nanoparticles for simple cocaine testing. Drug Test Anal 2016; 9:578-587. [PMID: 27336666 DOI: 10.1002/dta.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
Abstract
The consumption of illicit drugs such as cannabis, cocaine, and amphetamines is still a major health and social problem, creating an abuse in adults especially. Novel techniques which estimate the drug of abuse are needed for the detection of newly revealed psychoactive drugs. Herein, we have constructed a combinatorial platform by using quantum dots (QDs) and gold nanoparticles (AuNPs) as well as a functional aptamer which selectively recognizes cocaine and its metabolite benzoylecgonine (BE). We have called it an aptamer folding-based sensory device (AFSD). For the fabrication of AFSD, QDs were initially immobilized onto the poly-L-lysine coated μ-well surfaces. Then, the AuNP-aptamer conjugates were bound to the QDs. The addition of cocaine or BE caused a change in the aptamer structure which induced the close interaction of AuNPs with the QDs. Hence, quenching of the fluorescence of QDs was observed depending on the analyte amount. The linearity of cocaine and BE was 1.0-10 nM and 1.0-25 μM, respectively. Moreover, the limits of detection for cocaine and BE were calculated as 0.138 nM and 1.66 μM. The selectivity was tested by using different interfering substances (methamphetamine, bovine serum albumin, codeine, and 3-acetamidophenol). To investigate the use of AFSD in artificial urine matrix, cocaine/BE spiked samples were applied. Also, confirmatory analyses by using high performance liquid chromatography were performed. It is shown that AFSD has a good potential for testing the cocaine abuse and can be easily adapted for detection of various addictive drugs by changing the aptamer according to desired analytes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Emine Guler
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey.,Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Guliz Bozokalfa
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Bilal Demir
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Zinar Pinar Gumus
- Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Bahar Guler
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Ebru Aldemir
- Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey.,Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Hakan Coskunol
- Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey.,Ege LS, Cigli, 35620, Izmir, Turkey
| |
Collapse
|
8
|
|