1
|
Sadeeq M, Li Y, Wang C, Hou F, Zuo J, Xiong P. Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics. Front Cell Infect Microbiol 2025; 15:1528583. [PMID: 40365533 PMCID: PMC12070195 DOI: 10.3389/fcimb.2025.1528583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical effectors of innate immunity, presenting a compelling alternative to conventional antibiotics amidst escalating antimicrobial resistance. Their broad-spectrum efficacy and inherent low resistance development are countered by production challenges, including limited yields and proteolytic degradation, which restrict their clinical translation. While chemical synthesis offers precise structural control, it is often prohibitively expensive and complex for large-scale production. Heterologous expression systems provide a scalable, cost-effective platform, but necessitate optimization. This review comprehensively examines established and emerging AMP production strategies, encompassing fusion protein technologies, molecular engineering approaches, rational peptide design, and post-translational modifications, with an emphasis on maximizing yield, bioactivity, stability, and safety. Furthermore, we underscore the transformative role of artificial intelligence, particularly machine learning algorithms, in accelerating AMP discovery and optimization, thereby propelling their expanded therapeutic application and contributing to the global fight against drug-resistant infections.
Collapse
Affiliation(s)
| | | | | | | | - Jia Zuo
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| | - Peng Xiong
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| |
Collapse
|
2
|
Osiro KO, Duque HM, Sampaio de Oliveira KB, Melo NTM, Lima LF, Paes HC, Franco OL. Cleaving the way for heterologous peptide production: An overview of cleavage strategies. Methods 2025; 234:36-44. [PMID: 39638163 DOI: 10.1016/j.ymeth.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
One of the main bottlenecks for recombinant peptide production is choosing the proper cleavage method to remove fusion protein tags from target peptides. While these tags are crucial for inhibiting the activity of the target peptide during heterologous expression, incorporating a cleavage site is essential for their later removal, ensuring the pure sequencing of the peptide. This review evaluates different cleavage methods, including protease-mediated, self-cleavable protein, and chemical-mediated sites, regarding their advantages and limitations. For instance, intein, Npro EDDIE, enterokinase, factor Xa, SUMO, and CNBr are options for residue-free cleavage. Although protease-mediated cleavage is widely used, it can be expensive, due to its own cost added to the whole process. As an alternative, self-cleavable sites eliminate the requirement for proteinases. Another crucial step in defining the proper cleavage method is cost consideration, which relates to the purpose of peptide production. Here, we explore a range of cleavage approaches, meeting the needs of both cost-constrained applications and a more flexible budget. Overall, selecting the most suitable cleavage method should be based on careful consideration of toxicity, cost, accuracy, and specific application requirements to ensure a state-of-the-art approach.
Collapse
Affiliation(s)
- Karen Ofuji Osiro
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | | | - Nadielle Tamires Moreira Melo
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil; Colegiado de Clínica Médica da Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Hugo Costa Paes
- Colegiado de Clínica Médica da Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil; Pós-graduação em Patologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil.
| |
Collapse
|
3
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
4
|
Xu Y, Dong M, Wang Q, Sun Y, Hang B, Zhang H, Hu J, Zhang G. Soluble Expression of Antimicrobial Peptide BSN-37 from Escherichia coli by SUMO Fusion Technology. Protein J 2023; 42:563-574. [PMID: 37561256 DOI: 10.1007/s10930-023-10144-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Antimicrobial peptides (AMPs) are a kind of small molecular peptide that an organism produces to resist the invasion of foreign microorganisms. AMP BSN-37 is a bovine AMP that exhibits high antibacterial activity. In this paper, the optimized gene AMP BSN-37 was cloned into pCold-SUMO for fusion expression by recombinant DNA technology. The gene sequence of AMP BSN-37 was obtained by codons reverse translation, and the codons were optimized according to the codons preference of Escherichia coli (E. coli). The recombinant plasmid was constructed and identified by PCR, enzyme digestion and sequencing. Then the recombinant plasmid was transformed into BL21 E. coli to induce expression, and the IPTG concentration and time were optimized. The expressed soluble fusion protein SUMO-BSN-37 was purified by chromatography and then cleaved by SUMO proteases to release BSN-37. SDS-PAGE electrophoresis and Western blotting were used for identification. The recombinant plasmid pCold-SUMO-BSN-37 was obtained, and the fusion AMP BSN-37 was preliminarily expressed in BL21. After optimization, the optimal expression condition was 37 ℃ with 0.4 µM IPTG and 6 h incubation. Under optimal conditions, a large amount of fusion AMP BSN-37 was obtained by purification. Western blotting showed that the fusion peptide was successfully expressed and had good activity. The expressed BSN-37 showed antimicrobial activity similar to that of synthesized BSN-37. In this study, soluble expression products of AMP BSN-37 were obtained, and the problem regarding the limited source of AMP BSN-37 could be effectively solved, laying a foundation for further research on AMP BSN-37.
Collapse
Affiliation(s)
- Yanzhao Xu
- Postdoctoral Research Station, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Mengmeng Dong
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qing Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jianhe Hu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, 453003, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Gaiping Zhang
- Postdoctoral Research Station, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Mardani M, Badakné K, Farmani J, Aluko RE. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr Rev Food Sci Food Saf 2023; 22:46-106. [PMID: 36370116 DOI: 10.1111/1541-4337.13061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
In recent years, several studies have reported the beneficial effects of antioxidant peptides in delaying oxidation reactions. Thus, a growing number of food proteins have been investigated as suitable sources for obtaining these antioxidant peptides. In this study, some of the most critical developments in the discovery of peptidic antioxidants are discussed. Initially, the primary methods to release, purify, and identify these antioxidant peptides from various food-derived sources are reviewed. Then, computer-based screening methods of the available peptides are summarized, and methods to interpret their structure-activity relationship are illustrated. Finally, approaches to the large-scale production of these bioactive peptides are described. In addition, the applications of these antioxidants in food systems are discussed, and gaps, future challenges, and opportunities in this field are highlighted. In conclusion, various food items can be considered promising sources to obtain these novel antioxidant peptides, which present various opportunities for food applications in addition to health promotion. The lack of in-depth data on the link between the structure and activity of these antioxidants, which is critical for the prediction of possible bioactive amino acid sequences and their potency in food systems and in vivo conditions (rather than in vitro systems), requires further attention. Consequently, future collaborative research activities between the industry and academia are required to realize the commercialization objectives of these novel antioxidant peptides.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
7
|
Xu D, Zhao S, Dou J, Xu X, Zhi Y, Wen L. Engineered endolysin-based "artilysins" for controlling the gram-negative pathogen Helicobacter pylori. AMB Express 2021; 11:63. [PMID: 33913058 PMCID: PMC8081812 DOI: 10.1186/s13568-021-01222-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori infection can cause a variety of gastrointestinal diseases. In severe cases, there is a risk of gastric cancer. Antibiotics are often used for clinical treatment of H. pylori infections. However, because of antibiotic overuse in recent years and the emergence of multidrug-resistant bacteria, there is an urgent need to develop new treatment methods and drugs to achieve complete eradication of H. pylori. Endolysins and holins encoded by bacterial viruses (i.e., phages) represent a promising avenue of investigation. These lyase-based antibacterial drugs act on the bacterial cell wall to destroy the bacteria. Currently, a type of endolysin that has been studied more frequently acts on the amide bond between peptidoglycans, and holin is a transmembrane protein that can punch holes in the cell membrane. However, as a Gram-negative bacterium, H. pylori possesses a layer of impermeable lipopolysaccharides on the cell wall, which prevents endolysin interaction with the cell wall. Therefore, we designed a genetic linkage between an endolysin enzyme and a holin enzyme with a section of polypeptides (e.g., polycations and hydrophobic peptides) that enable penetration of the outer membrane. These complexes were designated "artilysins" and were efficiently expressed in Escherichia coli. In vitro bacteriostasis experiments showed that the purified artilysins had strong bacteriostatic effects on H. pylori. In addition, the surface of H. pylori was perforated and destroyed, as confirmed by electron microscopy, which was proved that artilysins had bacteriolytic effect on H. pylori.
Collapse
Affiliation(s)
- Dengyuan Xu
- China Pharmaceutical University, Nanjing, 211100, China
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China
| | | | - Jun Dou
- China Pharmaceutical University, Nanjing, 211100, China
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China
| | - Xiaofeng Xu
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China
| | - Yanyan Zhi
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China
| | - Liangzhu Wen
- Wanbang Pharmatech Co., Ltd, Xuzhou, 221004, China.
| |
Collapse
|
8
|
Fang YT, Li SY, Hu NJ, Yang J, Liu JH, Liu YC. Study on Cecropin B2 Production via Construct Bearing Intein Oligopeptide Cleavage Variants. Molecules 2020; 25:E1005. [PMID: 32102349 PMCID: PMC7070832 DOI: 10.3390/molecules25041005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, genetic engineering was applied to the overexpression of the antimicrobial peptide (AMP) cecropin B2 (cecB2). pTWIN1 vector with a chitin-binding domain (CBD) and an auto-cleavage Ssp DnaB intein (INT) was coupled to the cecB2 to form a fusion protein construct and expressed via Escherichia coli ER2566. The cecB2 was obtained via the INT cleavage reaction, which was highly related to its adjacent amino acids. Three oligopeptide cleavage variants (OCVs), i.e., GRA, CRA, and SRA, were used as the inserts located at the C-terminus of the INT to facilitate the cleavage reaction. SRA showed the most efficient performance in accelerating the INT self-cleavage reaction. In addition, in order to treat the INT as a biocatalyst, a first-order rate equation was applied to fit the INT cleavage reaction. A possible inference was proposed for the INT cleavage promotion with varied OCVs using a molecular dynamics (MD) simulation. The production and purification via the CBD-INT-SRA-cecB2 fusion protein resulted in a cecB2 yield of 58.7 mg/L with antimicrobial activity.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-T.F.); (S.-Y.L.)
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-T.F.); (S.-Y.L.)
- Innovation and Development Center of Sustainable Agriculture, NCHU, Taichung 40227, Taiwan
| | - Nien-Jen Hu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan; (N.-J.H.); (J.Y.)
| | - Jie Yang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan; (N.-J.H.); (J.Y.)
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, NCHU, Taichung 40227, Taiwan
- PhD program in Medical Biotechnology, NCHU, Taichung 40227, Taiwan
- Department of Life Sciences, NCHU, Taichung 40227, Taiwan
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-T.F.); (S.-Y.L.)
| |
Collapse
|
9
|
Molugu TR, Oita RC, Chawla U, Camp SM, Brown MF, Garcia JGN. Nicotinamide phosphoribosyltransferase purification using SUMO expression system. Anal Biochem 2020; 598:113597. [PMID: 31982408 DOI: 10.1016/j.ab.2020.113597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the salvage pathway required for nicotinamide adenine dinucleotide synthesis. The secreted NAMPT protein serves as a master regulatory cytokine involved in activation of evolutionarily conserved inflammatory networks. Appreciation of the role of NAMPT as a damage-associated molecular pattern protein (DAMP) has linked its activities to several disorders via Toll-like receptor 4 (TLR4) binding and inflammatory cascade activation. Information is currently lacking concerning the precise mode of the NAMPT protein functionality due to limited availability of purified protein for use in in vitro and in vivo studies. Here we report successful NAMPT expression using the pET-SUMO expression vector in E. coli strain SHuffle containing a hexa-His tag for purification. The Ulp1 protease was used to cleave the SUMO and hexa-His tags, and the protein was purified by immobilized-metal affinity chromatography. The protein yield was ~4 mg/L and initial biophysical characterization of the protein using circular dichroism revealed the secondary structural elements, while dynamic light scattering demonstrated the presence of oligomeric units. The NAMPT-SUMO showed a predominantly dimeric protein with functional enzymatic activity. Finally, we report NAMPT solubilization in n-dodecyl-β-d-maltopyranoside (DDM) detergent in monomeric form, thus enhancing the opportunity for further structural and functional investigations.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Radu C Oita
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; Department of Physics, University of Arizona, Tucson, AZ, 85721, USA.
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
10
|
Prejit, Pratheesh PT, Nimisha S, Jess V, Asha K, Agarwal RK. Expression and purification of an immunogenic SUMO-OmpC fusion protein of Salmonella Typhimurium in Escherichia coli. Biologicals 2019; 62:22-26. [PMID: 31668855 DOI: 10.1016/j.biologicals.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 01/01/2023] Open
Abstract
Salmonella is found to be a major causes of food borne diseases globally. Poultry products contaminated with this pathogen is one of the major sources of infections in humans. Outer membrane protein C (OmpC) of Salmonella Typhimurium is a promising DNA vaccine candidate to mitigate Salmonella infection in poultry. However, the large-scale production of bioactive recombinant OmpC (rOmpC) protein is hindered due to the formation of inclusion bodies in Escherichia coli. The objective of this work was to attain high level expression of rOmpC protein, purify and evaluate its functional properties. The ompC gene was optimized and fused with small ubiquitin-related modifier (SUMO) gene for high level expression as soluble protein. The fusion protein with ~58 kDa molecular weight was observed on SDS-PAGE gel. The expression levels of rOmpC fusion protein reached maximum of 38% of total soluble protein (TSP) after 8 h of 0.2% rhamnose induction. Protein purification was carried out using nickel nitrilotriacetic acid (Ni-NTA) purification column. Western blot were performed to analyse expression and immunoreactivity of rOmpC fusion protein. The results indicate that SUMO fusion system is ideal for large scale production of functional rOmpC fusion protein expression in E. coli.
Collapse
Affiliation(s)
- Prejit
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India; Centre for One Health Education, Advocacy, Research and Training, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, 673576, India.
| | - Prakasam Thanka Pratheesh
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India
| | - Soman Nimisha
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India
| | - Vergis Jess
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India; Centre for One Health Education, Advocacy, Research and Training, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, 673576, India
| | - Karthikeyan Asha
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India
| | - Rajesh Kumar Agarwal
- National Salmonella Centre (Vet), Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P, India
| |
Collapse
|
11
|
Fang YT, Lai WS, Liu JH, Liu YC. Enhanced cecropin B2 production via chitin-binding domain and intein self-cleavage system. Biotechnol Appl Biochem 2018; 66:209-215. [PMID: 30471160 DOI: 10.1002/bab.1716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 11/06/2022]
Abstract
In this study, various constructs and hosts were used to produce high levels of cecropin B2 (cecB2). To mitigate cecB2's toxic inhibition of host cells, various cecB2 constructs were built. Results showed that the combination of a chitin-binding domain and an intein self-cleavage motif in front of cecropin B2, without a His-tag, was best for cecB2 expression. E. coli ER2566 was the best host, and 2YT was the best medium for cultivation. Under these conditions, a cecB2 yield of 98.2 mg/L could be obtained after purification. The purified cecB2 expressed a wide antimicrobial effect on most Gram-negative strains, including multidrug-resistant Acinetobactor baumannii and Staphylococcus aureus. This study provides a systematic approach to the efficient production of the antimicrobial peptide (AMP) cecB2 via the recombinant E. coli process, which is expected to be an efficient way for the production of other AMPs.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Wei-Shiang Lai
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
12
|
The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif 2017; 140:52-59. [DOI: 10.1016/j.pep.2017.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
|
13
|
Sang M, Wei H, Zhang J, Wei Z, Wu X, Chen Y, Zhuge Q. Expression and characterization of the antimicrobial peptide ABP-dHC-cecropin A in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 2017; 140:44-51. [PMID: 28827052 DOI: 10.1016/j.pep.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/04/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023]
Abstract
ABP-dHC-cecropin A is a linear cationic peptide that exhibits antimicrobial properties. To explore a new approach for expression of ABP-dHC-cecropin A using the methylotrophic yeast Pichia pastoris, we cloned the ABP-dHC-cecropin A gene into the vector pPICZαA. The SacI-linearized plasmid pPICZαA-ABP-dHC-cecropin A was then transformed into P. pastoris GS115 by electroporation. Expression was induced after a 96-h incubation with 0.5% methanol at 20 °C in a culture supplied with 2% casamino acids to avoid proteolysis. Under these conditions, approximately 48 mg of ABP-dHC-cecropin A was secreted into 1L (4 × 250-mL)of medium. Recombinant ABP-dHC-cecropin A was purified using size-exclusion chromatography, and 21 mg of pure active ABP-dHC-cecropin A was obtained from 1L (4 × 250-mL)of culture. Electrophoresis on 4-20% gradient gels indicated that recombinant ABP-dHC-cecropin A was secreted as a protein approximately 4 kDa in size. Recombinant ABP-dHC-cecropin A was successfully expressed, as the product displayed antibacterial and antifungal activities (based on an antibacterial assay, scanning electron microscopy, and antifungal assay) indistinguishable from those of the synthesized protein.
Collapse
Affiliation(s)
- Ming Sang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaxin Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiheng Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaolong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|