1
|
Zimmermann I, Eilts F, Galler AS, Bayer J, Hober S, Berensmeier S. Immobilizing calcium-dependent affinity ligand onto iron oxide nanoparticles for mild magnetic mAb separation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00864. [PMID: 39691100 PMCID: PMC11647653 DOI: 10.1016/j.btre.2024.e00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Current downstream processing of monoclonal antibodies (mAbs) is limited in throughput and requires harsh pH conditions for mAb elution from Protein A affinity ligands. The use of an engineered calcium-dependent ligand (ZCa) in magnetic separation applications promises improvements due to mild elution conditions, fast processability, and process integration prospects. In this work, we synthesized and evaluated three magnetic nanoparticle types immobilized with the cysteine-tagged ligand ZCa-cys. Ligand homodimers were physically immobilized onto bare iron oxide nanoparticles (MNP) and MNP coated with tetraethyl orthosilicate (MNP@TEOS). In contrast, ZCa-cys was covalently and more site-directedly immobilized onto MNP coated with (3-glycidyloxypropyl)trimethoxysilane (MNP@GPTMS) via a preferential cysteine-mediated epoxy ring opening reaction. Both coated MNP showed suitable characteristics, with MNP@TEOS@ZCa-cys demonstrating larger immunoglobulin G (IgG) capacity (196 mg g -1) and the GPTMS-coated particles showing faster magnetic attraction and higher IgG recovery (88 %). The particles pave the way for the development of calcium-dependent magnetic separation processes.
Collapse
Affiliation(s)
- Ines Zimmermann
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Friederike Eilts
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Anna-Sophia Galler
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Jonas Bayer
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| |
Collapse
|
2
|
Zimmermann I, Kaveh-Baghbaderani Y, Eilts F, Kohn N, Fraga-García P, Berensmeier S. Direct Affinity Ligand Immobilization onto Bare Iron Oxide Nanoparticles Enables Efficient Magnetic Separation of Antibodies. ACS APPLIED BIO MATERIALS 2024; 7:3942-3952. [PMID: 38740514 PMCID: PMC11190986 DOI: 10.1021/acsabm.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Magnetic separation is a promising alternative to chromatography for enhancing the downstream processing (DSP) of monoclonal antibodies (mAbs). However, there is a lack of efficient magnetic particles for successful application. Aiming to fill this gap, we demonstrate the suitability of bare iron oxide nanoparticles (BION) with physical site-directed immobilization of an engineered Protein A affinity ligand (rSpA) as an innovative magnetic material. The rSpA ligand contains a short peptide tag that enables the direct and stable immobilization onto the uncoated BION surface without commonly required laborious particle activation. The resulting BION@rSpA have beneficial characteristics outperforming conventional Protein A-functionalized magnetic particles: a simple, fast, low-cost synthesis, a particle size in the nanometer range with a large effective specific surface area enabling large immunoglobulin G (IgG) binding capacity, and a high magnetophoretic velocity advantageous for fast processing. We further show rapid interactions of IgG with the easily accessible rSpA ligands. The binding of IgG to BION@rSpA is thereby highly selective and not impeded by impurity molecules in perfusion cell culture supernatant. Regarding the subsequent acidic IgG elution from BION@rSpA@IgG, we observed a hampering pH increase caused by the protonation of large iron oxide surfaces after concentrating the particles in 100 mM sodium acetate buffer. However, the pH can be stabilized by adding 50 mM glycine to the elution buffer, resulting in recoveries above 85% even at high particle concentrations. Our work shows that BION@rSpA enable efficient magnetic mAb separation and could help to overcome emerging bottlenecks in DSP.
Collapse
Affiliation(s)
- Ines Zimmermann
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Yasmin Kaveh-Baghbaderani
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Friederike Eilts
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Nadja Kohn
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Paula Fraga-García
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Sonja Berensmeier
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich
Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| |
Collapse
|
3
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
4
|
Swathy K, Vivekanandhan P, Yuvaraj A, Sarayut P, Kim JS, Krutmuang P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024; 10:e23406. [PMID: 38187317 PMCID: PMC10770572 DOI: 10.1016/j.heliyon.2023.e23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pesticides play a pivotal role in agriculture for the effective production of various crops. The indiscriminate use of pesticides results in the significant bioaccumulation of pesticide residues in vegetables. This situation is beyond the control of consumers and poses a serious health issue for human beings. Occupational exposure to pesticides may occur for farmers, agricultural workers, and industrial producers of pesticides. This occupational exposure primarily causes food and water contamination that gets into humans and environmental pollution. Depending on the toxicity of pesticides, the causes and effects differ in the environment and in human health. The number of criteria used and the method of implementation employed to assess the effect of pesticides on humans and the environment have been increasing, as they may provide characterization of pesticides that are already on the market as well as those that are on the way. The biological control of pests has been increasing nowadays to combat all these effects caused by synthetic pesticides. Myco-biocontrol has received great attention in research because it has no negative impact on humans, the environment, or non-target species. Entomopathogenic fungi are microbes that have the ability to kill insect pests. Fungi also make enzymes like the lytic enzymes, esterase, oxidoreductase, and cytochrome P450, which react with chemical residues in the field and break them down into nontoxic substances. In this review, the authors looked at how entomopathogenic fungi break down insecticides in the environment and how their enzymes break down insecticides on farms.
Collapse
Affiliation(s)
- Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Perumal Vivekanandhan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of General Pathology at Saveetha Dental College and Hospitals in the Saveetha Institute of Medical & Technical Sciences at Saveetha University in Chennai, Tamil Nadu, 600077, India
| | | | - Pittarate Sarayut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jae Su Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
5
|
Xiao H, Qiu J, Wu S, Xie L, Zhou W, Wei X, Hui KN, Zhang M, Lin Z. Cross-Linked γ-Polyglutamic Acid as an Aqueous SiO x Anode Binder for Long-Term Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18625-18633. [PMID: 35417145 DOI: 10.1021/acsami.2c03458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silicon oxide (SiOx) has outstanding capacity and stable lithium-ion uptake/removal electrochemistry as a lithium-ion anode material; however, its practical massive commercialization is encumbered by unavoidable challenges, such as dynamic volume changes during cycling and inherently inferior ionic conductivities. Recent literature has offered a consensus that binders play a critical role in affecting the electrochemical performance of Si-based electrodes. Herein, we report an aqueous binder, γ-polyglutamic acid cross-linked by epichlorohydrin (PGA-ECH), that guarantees enhanced properties for SiOx anodes to implement long-term cycling stability. The abundant amide, carboxyl, and hydroxyl groups in the binder structure form strong interactions with the SiOx surface, which contribute strong interfacial adhesion. The robust covalent interactions and strong supramolecular interactions in the binder ensure mechanical strength and elasticity. Additionally, the interactions between lithium ions and oxygen (nitrogen) atoms of carboxylate (peptide) bonds, which serve as a Lewis base, facilitate the diffusion of lithium ions. A SiOx anode using this PGA-ECH binder exhibits an impressive initial discharge capacity of 1962 mA h g-1 and maintains a high capacity of 900 mA h g-1 after 500 cycles at 500 mA g-1. Meanwhile, the assembled SiOx||LiNi0.6Co0.2MnO0.2 full cell shows a reversible capacity of 155 mA g-1 and displays 73% capacity retention after 100 cycles.
Collapse
Affiliation(s)
- Huayan Xiao
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Juncheng Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuxing Wu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Liangxin Xie
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenbo Zhou
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiujuan Wei
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kwun Nam Hui
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao Special Administrative Region 999078, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhan Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Zuo S, Wang J, An X, Zhang Y. Janus Magnetic Nanoplatform for Magnetically Targeted and Protein/Hyperthermia Combination Therapies of Breast Cancer. Front Bioeng Biotechnol 2022; 9:763486. [PMID: 35350110 PMCID: PMC8958000 DOI: 10.3389/fbioe.2021.763486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 01/08/2023] Open
Abstract
Protein therapeutics have been considered a promising strategy for cancer treatment due to their highly specific bioactivity and few side effects. Unfortunately, the low physiological stability and poor membrane permeability of most protein drugs greatly limit their clinical application. Furthermore, single-modality protein therapeutics show insufficient efficacy. To address these issues, Janus magnetic mesoporous silica nanoparticles (Janus MSNNPs) were developed to preload ribonuclease A (RNaseA) to simultaneously realize the magnetically enhanced delivery of protein drugs and magnetic hyperthermia-enhanced protein therapy. Janus MSNNPs showed a high RNaseA loading ability and pH-responsive drug release behavior. Furthermore, an external magnetic field could remarkably enhance the therapeutic effect of RNaseA-loaded Janus MSNNPs due to the improved intracellular internalization of RNaseA. Importantly, Janus MSNNPs possessed an outstanding magnetic hyperthermia conversion efficiency, which could generate hyperthermia under an alternating magnetic field, effectively supplementing protein therapy by a combined effect. In vitro and in vivo experiments confirmed the high anticancer outcome and low side effects of this intriguing strategy for breast cancer based on Janus MSNNPs. Hence, Janus MSNNPs might be an effective and safe nanoplatform for magnetically combined protein therapy.
Collapse
Affiliation(s)
- Shuting Zuo
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jing Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xianquan An
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yan Zhang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Nadar SS, Kelkar RK, Pise PV, Patil NP, Patil SP, Chaubal-Durve NS, Bhange VP, Tiwari MS, Patil PD. The untapped potential of magnetic nanoparticles for forensic investigations: A comprehensive review. Talanta 2021; 230:122297. [PMID: 33934767 DOI: 10.1016/j.talanta.2021.122297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
With a growing interest in precise and sensitive diagnosis for criminal investigations, nanoparticles (NPs) have intrigued scientific minds working in the field of forensic science due to their exceptional properties. Magnetic nanoparticles (MNPs) have emerged as a powerful tool for improving forensic analysis due to their super magnetic behavior combined with smaller dimensions. MNP-based applications can benefit criminologists to solve criminal mysteries with greater precision and pace. This review highlights the different types of MNP-based applications and their developmental and implicational aspects of forensic science. It also renders insight into the future prospects of a splendid blend of nanotechnology and forensic science, leading to a better scientific analysis.
Collapse
Affiliation(s)
- Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Radhika K Kelkar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Pradnya V Pise
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Neha P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Sadhana P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Nivedita S Chaubal-Durve
- Department of Basic Science and Humanities, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, 400056, Maharashtra, India
| | - Vivek P Bhange
- Department of Biotechnology, Priyadarshini Institute of Engineering and Technology, Nagpur, Maharashtra, 440019, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, 400056, Maharashtra, India
| | - Pravin D Patil
- Department of Basic Science and Humanities, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
8
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
9
|
Zarrineh M, Mashhadi IS, Farhadpour M, Ghassempour A. Mechanism of antibodies purification by protein A. Anal Biochem 2020; 609:113909. [PMID: 32827466 DOI: 10.1016/j.ab.2020.113909] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Protein A, a major cell wall component of Staphylococcus aureus, is one of the first immunoglobulin-binding proteins that is discovered about 80 years ago. However, a great deal of development in both purification methods and application of antibodies in treatment have been done. There are many publications based on the untargeted (size exclusion, ion exchange and hydrophobic interactions) and targeted (affinity) methods by scientists in academic/industry groups. In this review, we have focused on the study of both native and engineered Protein A to understand its mechanism in the purification of antibodies. What domain of Protein A dose interact with antibody? Where are contact regions? What is the non-covalent interaction mechanism of Protein A and antibody? Does alkaline condition, in the washing step, influence on antibody structure and activity? On the other hand, the immobilization of Protein A on various sorbents such as agarose, silica, polysaccharide, polymers, and magnetic nanoparticles have investigated. Also, the application of Protein A as biosensor for detection of the antibody is discussed. We have tried to find interesting and stimulating answers to all these questions.
Collapse
Affiliation(s)
- Mahshid Zarrineh
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C, Evin, P.O.Box: 19835-389, Tehran, Iran
| | - Ilnaz Soleimani Mashhadi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C, Evin, P.O.Box: 19835-389, Tehran, Iran
| | - Mohsen Farhadpour
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C, Evin, P.O.Box: 19835-389, Tehran, Iran.
| |
Collapse
|
10
|
Padwal P, Finger C, Fraga-García P, Kaveh-Baghbaderani Y, Schwaminger SP, Berensmeier S. Seeking Innovative Affinity Approaches: A Performance Comparison between Magnetic Nanoparticle Agglomerates and Chromatography Resins for Antibody Recovery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39967-39978. [PMID: 32786242 DOI: 10.1021/acsami.0c05007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoclonal antibodies are key molecules in medicine and pharmaceuticals. A potentially crucial drawback for faster advances in research here is their high price due to the extremely expensive antibody purification process, particularly the affinity capture step. Affinity chromatography materials have to demonstrate the high binding capacity and recovery efficiency as well as superior chemical and mechanical stability. Low-cost materials and robust, faster processes would reduce costs and enhance industrial immunoglobulin purification. Therefore, exploring the use of alternative materials is necessary. In this context, we conduct the first comparison of the performance of magnetic nanoparticles with commercially available chromatography resins and magnetic microparticles with regard to immobilizing Protein G ligands and recovering immunoglobulin G (IgG). Simultaneously, we demonstrate the suitability of bare as well as silica-coated and epoxy-functionalized magnetite nanoparticles for this purpose. All materials applied have a similar specific surface area but differ in the nature of their matrix and surface accessibility. The nanoparticles are present as micrometer agglomerates in solution. The highest Protein G density can be observed on the nanoparticles. IgG adsorbs as a multilayer on all materials investigated. However, the recovery of IgG after washing indicates a remaining monolayer, which points to the specificity of the IgG binding to the immobilized Protein G. One important finding is the impact of the ligand-binding stoichiometry (Protein G surface coverage) on IgG recovery, reusability, and the ability to withstand long-term sanitization. Differences in the materials' performances are attributed to mass transfer limitations and steric hindrance. These results demonstrate that nanoparticles represent a promising material for the economical and efficient immobilization of proteins and the affinity purification of antibodies, promoting innovation in downstream processing.
Collapse
Affiliation(s)
- Priyanka Padwal
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Constanze Finger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Yasmin Kaveh-Baghbaderani
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
11
|
Bhatt P, Bhatt K, Huang Y, Lin Z, Chen S. Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. CHEMOSPHERE 2020; 244:125507. [PMID: 31835049 DOI: 10.1016/j.chemosphere.2019.125507] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Agricultural and household applications of pyrethroid insecticides have significantly increased residual concentrations in living cells and environments. The enhanced concentration is toxic for living beings. Pyrethroid hydrolase enzyme (pyrethroid catalyzing esterase) regulates pyrethroid degradation, and has been well reported in various organisms (bacteria, fungi, insects and animals). Hydrolysis mechanisms of these esterases are different from others and properly function at factors viz., optimum temperature, pH and physicochemical environment. Active site of the enzyme contains common amino acids that play important role in pyrethroid catalysis. Immobilization technology emphasizes the development of better reusable efficiency of pyrethroid hydrolases to carry out large-scale applications for complete degradation of pyrethroids from the environments. In this review we have attempted to provide insights of pyrethroid-degrading esterases in different living systems along with complete mechanisms.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar 249404, Uttarakhand, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
12
|
Zhang W, Lin Z, Pang S, Bhatt P, Chen S. Insights Into the Biodegradation of Lindane (γ-Hexachlorocyclohexane) Using a Microbial System. Front Microbiol 2020; 11:522. [PMID: 32292398 PMCID: PMC7119470 DOI: 10.3389/fmicb.2020.00522] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Lindane (γ-hexachlorocyclohexane) is an organochlorine pesticide that has been widely used in agriculture over the last seven decades. The increasing residues of lindane in soil and water environments are toxic to humans and other organisms. Large-scale applications and residual toxicity in the environment require urgent lindane removal. Microbes, particularly Gram-negative bacteria, can transform lindane into non-toxic and environmentally safe metabolites. Aerobic and anaerobic microorganisms follow different metabolic pathways to degrade lindane. A variety of enzymes participate in lindane degradation pathways, including dehydrochlorinase (LinA), dehalogenase (LinB), dehydrogenase (LinC), and reductive dechlorinase (LinD). However, a limited number of reviews have been published regarding the biodegradation and bioremediation of lindane. This review summarizes the current knowledge regarding lindane-degrading microbes along with biodegradation mechanisms, metabolic pathways, and the microbial remediation of lindane-contaminated environments. The prospects of novel bioremediation technologies to provide insight between laboratory cultures and large-scale applications are also discussed. This review provides a theoretical foundation and practical basis to use lindane-degrading microorganisms for bioremediation.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
13
|
Pang L, Quan H, Sun Y, Wang P, Ma D, Mu P, Chai T, Zhang Y, Hammock BD. A rapid competitive ELISA assay of Okadaic acid level based on epoxy-functionalized magnetic beads. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1689231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Linjiang Pang
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, People’s Republic of China
| | - Haoran Quan
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, People’s Republic of China
| | - Ying Sun
- Institute of Food and Drug Inspection and Testing Research of Zhoushan, Zhoushan, People’s Republic of China
| | - Pingya Wang
- Institute of Food and Drug Inspection and Testing Research of Zhoushan, Zhoushan, People’s Republic of China
| | - Daifu Ma
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, People’s Republic of China
| | - Pengqian Mu
- China Asia Pacific Application Support Center, AB SCIEX, Shanghai, People’s Republic of China
| | - Tingting Chai
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, People’s Republic of China
| | - Yiming Zhang
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, People’s Republic of China
| | - Bruce D. Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Suner SS, Sahiner M, Akcali A, Sahiner N. Functionalization of halloysite nanotubes with polyethyleneimine and various ionic liquid forms with antimicrobial activity. J Appl Polym Sci 2019. [DOI: 10.1002/app.48352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Selin Sagbas Suner
- Faculty of Sciences and Arts, Chemistry DepartmentCanakkale Onsekiz Mart University, Terzioglu Campus 17100 Canakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC)Canakkale Onsekiz Mart University, Terzioglu Campus 17100 Canakkale Turkey
| | - Mehtap Sahiner
- Fashion Design, Canakkale Applied ScienceCanakkale Onsekiz Mart University, Terzioglu Campus 17100 Canakkale Turkey
| | - Alper Akcali
- Nanoscience and Technology Research and Application Center (NANORAC)Canakkale Onsekiz Mart University, Terzioglu Campus 17100 Canakkale Turkey
- Faculty of Medicine, Department of Medical MicrobiologyCanakkale Onsekiz Mart University, Terzioglu Campus 17100 Canakkale Turkey
| | - Nurettin Sahiner
- Faculty of Sciences and Arts, Chemistry DepartmentCanakkale Onsekiz Mart University, Terzioglu Campus 17100 Canakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC)Canakkale Onsekiz Mart University, Terzioglu Campus 17100 Canakkale Turkey
- Department of OphthalmologyUniversity of South Florida, Morsani College of Medicine, 12901 Bruce B Downs Blvd, MDC 21 Tampa Florida 33612
| |
Collapse
|
15
|
Carli S, Carneiro LABDC, Ward RJ, Meleiro LP. Immobilization of a β-glucosidase and an endoglucanase in ferromagnetic nanoparticles: A study of synergistic effects. Protein Expr Purif 2019; 160:28-35. [DOI: 10.1016/j.pep.2019.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/11/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
|
16
|
Wu S, Liu X, He J, Wang H, Luo Y, Gong W, Li Y, Huang Y, Zhong L, Zhao Y. A Dual Targeting Magnetic Nanoparticle for Human Cancer Detection. NANOSCALE RESEARCH LETTERS 2019; 14:228. [PMID: 31289961 PMCID: PMC6616609 DOI: 10.1186/s11671-019-3049-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Malignant tumors are a major threat to human life and high lymphatic vessel density is often associated with metastatic tumors. With the discovery of molecules targeted at the lymphatic system such as lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) and Podoplanin, many studies have been performed to determine the role of lymphatic endothelial cells (LECs) in tumor metastasis. However, disadvantages such as non-specificity and high cost limit their research and diagnostic applications. In this study, Fe3O4@KCTS, a core-shell type of magnetic nanoparticles, was prepared by activating Fe3O4 with carbodiimide and cross-linking it with α-ketoglutarate chitosan (KCTS). The LYVE-1 and Podoplanin antibodies were then incorporated onto the surface of these magnetic nanoparticles and as a result, dual-targeting magnetic nanoprobes were developed. The experimental tests of this study demonstrated that a dual-targeting magnetic nanoprobe with high-purity LECs from tumor tissues was successfully developed, providing a basis for clinical application of LECs in colorectal cancer treatment as well as in early clinical diagnosis using bimodal imaging.
Collapse
Affiliation(s)
- Siwen Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiyu Liu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huiling Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yiqun Luo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenlin Gong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanmei Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
17
|
A review of magnetic separation of whey proteins and potential application to whey proteins recovery, isolation and utilization. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Myco-Nanotechnological Approach for Improved Degradation of Lignocellulosic Waste: Its Future Aspect. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Wu Y, Cai L, Wang C, Mei C, Shi SQ. Sodium Hydroxide-Free Soy Protein Isolate-Based Films Crosslinked by Pentaerythritol Glycidyl Ether. Polymers (Basel) 2018; 10:E1300. [PMID: 30961225 PMCID: PMC6401677 DOI: 10.3390/polym10121300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022] Open
Abstract
The soy protein isolate (SPI), sodium dodecylbenzenesulfonate (SDBS) and pentaerythritol glycidyl ether (PEGE) were used to make biodegradable films in this study. Unlike the usual method that adding sodium hydroxide (NaOH) during the SPI-based film casting, SDBS was used as a surfactant playing the similar role as NaOH. Since NaOH is a chemical with corrosiveness and toxicity, the replacing of NaOH by SDBS might reduce the hazard threat during the utilization of SPI-based films in food packing application. Furthermore, the presentation of SDBS helped dispersing the hydrophobic PEGE into the hydrophilic SPI. PEGE is a crosslinking agent with multiple reactive epoxy groups. The chemical structures and micro morphologies of the fabricated films were investigated by means of FTIR, XRD, and SEM. The thermal stabilities of the films were examined by means of the thermo-gravimetric analysis. After the chemical crosslinking, the ultimate tensile strength of the film was significantly increased, meanwhile, the water absorption was dramatically decreased. It was concluded that the SPI-based film containing 4% PEGE achieved the optimal performance.
Collapse
Affiliation(s)
- Yingji Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Liping Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA.
| | - Chen Wang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Sheldon Q Shi
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
20
|
Amine functional magnetic nanoparticles via waterborne thiol-ene suspension photopolymerization for antibody immobilization. Colloids Surf B Biointerfaces 2018; 170:122-128. [PMID: 29894832 DOI: 10.1016/j.colsurfb.2018.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/07/2018] [Accepted: 05/26/2018] [Indexed: 12/27/2022]
Abstract
The modification of magnetic nanoparticles (MNPs) via different routes for biomolecule binding is an attractive area of research. Waterborne thiol-ene suspension photopolymerization (TESP) can be a useful method for preparing functional MNPs. In this study, for the very first time waterborne TESP was performed in the presence of MNPs. Neat MNPs were coated and in situ functionalized with amine groups by using thiol-ene chemistry. Engrailed-2 (EN2) protein, a potential biomarker for various cancers such as prostate cancer, bladder cancer, breast cancer and ovarian cancer, is known to be a strong binder to a specific DNA sequence (50-TAATTA-30) to regulate transcription. Anti-EN2 antibodies were immobilized onto these MNPs by physical adsorption and covalent bonding methods, respectively. The amount of the physically immobilized antibodies (0.54 mg/g) were found to be lower than the loading of the covalently bonded antibodies (1.775 mg/g). The biomarker level in the artificial solutions prepared was determined by enzyme-linked immunosorbent assay. Coated MNPs were characterized by FTIR, TGA, SEM and STEM. After TESP, the average diameter of the neat magnetite nanoparticles increased from ∼15 nm to ∼32 nm.
Collapse
|
21
|
Gu YJ, Zhu ML, Li YL, Xiong CH. Research of a new metal chelating carrier preparation and papain immobilization. Int J Biol Macromol 2018; 112:1175-1182. [DOI: 10.1016/j.ijbiomac.2018.02.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/06/2023]
|
22
|
Tabarzad M, Sharafi Z, Javidi J. Covalent immobilization of coagulation factor VIII on magnetic nanoparticles for aptamer development. J Appl Biomater Funct Mater 2018; 16:161-170. [PMID: 29609491 DOI: 10.1177/2280800018765046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Magnetic nanoparticles (MNPs) are one of the most useful particulate systems in analytical applications such as specific aptamer selection. Proteins are the most noted targets of aptamer selection. Generally, covalently immobilized protein coated MNPs are more stable structures. METHODS In this study, coagulation factor VIII (FVIII) was immobilized on MNPs. A silica coating provided isocyanate functional groups was considered to interact covalently with reactive groups of the protein, resulting in a stable protein immobilization. The reactions was run in dried toluene. At end, these MNPs were applied for affinity determination of a previously selected FVIII specific aptamers. RESULTS Immobilization of 1 mg FVIII (~ 3 nmol) on 5 mg particles was achieved with no significant particle aggregation. Using a fluorescence-based method, affinity measurement resulted in a calculated dissociation constant of 120 ± 5.6 nM for the FVIII-specific aptamer to the FVIII-coated MNPs. CONCLUSION The final product could be a suitable protein-coated solid support for magnetic-based aptamer selection processes.
Collapse
Affiliation(s)
- Maryam Tabarzad
- 1 Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Sharafi
- 2 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jaber Javidi
- 3 Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Khoshnevisan K, Vakhshiteh F, Barkhi M, Baharifar H, Poor-Akbar E, Zari N, Stamatis H, Bordbar AK. Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|