1
|
Guo MG, Yang CF, Yuan F, Yang T, Luo PY, He YB, Yang S, Chen F, Li W, Feng ZW. Bioinformatics and experimental validation of ferroptosis-related genes in steroid-induced osteonecrosis of the femoral head. Front Mol Biosci 2025; 12:1578755. [PMID: 40421419 PMCID: PMC12104091 DOI: 10.3389/fmolb.2025.1578755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Background Steroid-induced osteonecrosis of the femoral head (SONFH) is a progressive condition that causes increasing disability. It is thought to result from reduced blood flow and oxygen levels in the femoral head, with reactive oxygen species (ROS) playing a key role in triggering ferroptosis. However, the role of ferroptosis in SONFH progression remains underexplored. This study aimed to identify and validate key genes associated with ferroptosis in SONFH using bioinformatics. Methods The study analyzed the SONFH dataset GSE123568, which includes data from 30 SONFH patients and 10 controls. Weighted gene co-expression network analysis (WGCNA) was used to identify differentially expressed genes (DEGs) between the SONFH and control groups. Core genes were identified by intersecting DEGs with ferroptosis-related genes retrieved from FerrDb V2. The diagnostic performance of the key genes was assessed using the receiver operating characteristic (ROC) curve, and a predictive nomogram model was developed. Interaction analysis of these genes was conducted to explore their link with immune infiltration. The expression of these genes in bone tissue from SONFH patients was validated. Finally, drug-protein interactions were predicted using the DSigDB database. Results Differential expression analysis identified 384 DEGs, which were significantly involved in inflammatory pathways. WGCNA revealed four key genes after intersecting DEGs with relevant module genes and ferroptosis-related genes. A nomogram model based on these genes demonstrated strong reliability and validity. Immune infiltration analysis showed significant differences between SONFH patients and controls, with notable associations between immune cell infiltration and the expression of the four core genes. Validation through quantitative real-time PCR (qRT-PCR) and Western blot confirmed that the expression of GCLC, GABARAPL2, CISD2, and NCOA4 was significantly lower in SONFH bone tissue compared to controls (P < 0.05). Additionally, potential therapeutic drugs targeting these genes, including Diethyl sulfate, Meloxicam, and NIMUSTINE, were predicted. Conclusion This study identifies GABARAPL2, CISD2, NCOA4, and GCLC as potential diagnostic biomarkers associated with immune cell infiltration in SONFH, offering new insights for future research and clinical applications.
Collapse
Affiliation(s)
- Ming-gang Guo
- Department of Orthopaedics, Beijing Anzhen Nanchong Hospital, Capital Medical University and Nanchong Central Hospital, Nanchong, China
| | - Chen-fei Yang
- School of Nursing, North Sichuan Medical College, Nanchong, China
| | - Fa Yuan
- Department of Orthopaedics, Beijing Anzhen Nanchong Hospital, Capital Medical University and Nanchong Central Hospital, Nanchong, China
| | - Tao Yang
- Department of Orthopaedics, Nanjiang County People’s Hospital, Bazhong, China
| | - Ping-yuan Luo
- Department of Orthopaedics, Nanjiang County People’s Hospital, Bazhong, China
| | - Yu-bai He
- Department of Orthopaedics, Nanjiang County People’s Hospital, Bazhong, China
| | - Shuan Yang
- Department of Orthopaedics, Nanjiang County People’s Hospital, Bazhong, China
| | - Feng Chen
- Department of Orthopaedics, Beijing Anzhen Nanchong Hospital, Capital Medical University and Nanchong Central Hospital, Nanchong, China
| | - Wei Li
- Department of Orthopaedics, Beijing Anzhen Nanchong Hospital, Capital Medical University and Nanchong Central Hospital, Nanchong, China
| | - Zhi-wei Feng
- Department of Orthopaedics, Beijing Anzhen Nanchong Hospital, Capital Medical University and Nanchong Central Hospital, Nanchong, China
| |
Collapse
|
2
|
Jiang J, Zhang C, Ke L, Hayes N, Zhu Y, Qiu H, Zhang B, Zhou T, Wei GW. A review of machine learning methods for imbalanced data challenges in chemistry. Chem Sci 2025; 16:7637-7658. [PMID: 40271022 PMCID: PMC12013631 DOI: 10.1039/d5sc00270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Imbalanced data, where certain classes are significantly underrepresented in a dataset, is a widespread machine learning (ML) challenge across various fields of chemistry, yet it remains inadequately addressed. This data imbalance can lead to biased ML or deep learning (DL) models, which fail to accurately predict the underrepresented classes, thus limiting the robustness and applicability of these models. With the rapid advancement of ML and DL algorithms, several promising solutions to this issue have emerged, prompting the need for a comprehensive review of current methodologies. In this review, we examine the prominent ML approaches used to tackle the imbalanced data challenge in different areas of chemistry, including resampling techniques, data augmentation techniques, algorithmic approaches, and feature engineering strategies. Each of these methods is evaluated in the context of its application across various aspects of chemistry, such as drug discovery, materials science, cheminformatics, and catalysis. We also explore future directions for overcoming the imbalanced data challenge and emphasize data augmentation via physical models, large language models (LLMs), and advanced mathematics. The benefit of balanced data in new material design and production and the persistent challenges are discussed. Overall, this review aims to elucidate the prevalent ML techniques applied to mitigate the impacts of imbalanced data within the field of chemistry and offer insights into future directions for research and application.
Collapse
Affiliation(s)
- Jian Jiang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
- Department of Mathematics, Michigan State University East Lansing Michigan 48824 USA
| | - Chunhuan Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Lu Ke
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Nicole Hayes
- Department of Mathematics, Michigan State University East Lansing Michigan 48824 USA
| | - Yueying Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Huahai Qiu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-sen University Guangzhou 510006 P R. China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University East Lansing Michigan 48824 USA
- Department of Electrical and Computer Engineering, Michigan State University East Lansing Michigan 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University East Lansing Michigan 48824 USA
| |
Collapse
|
3
|
Jin J, Yuan Z, Wang X, Li Q, Zhang Y, Zhang Y, Ji P, Wu Y, Wang P, Liu W. Bioinformatics-Based Analysis of Ferroptosis-Related Biomarkers and the Prediction of Drugs Affecting the Adipogenic Differentiation of MSCs. Biomedicines 2025; 13:940. [PMID: 40299567 PMCID: PMC12025237 DOI: 10.3390/biomedicines13040940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
Background: The imbalance between the osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) is a key factor in the progression of osteoporosis; therefore, it is crucial to study the regulatory mechanisms that maintain this balance. Ferroptosis is a form of regulated cell death caused by the accumulation of lipid peroxides and is closely associated with various diseases. Changes in intracellular oxidative stress levels can affect the lineage allocation of MSCs. However, it remains unclear whether the disruption of intracellular oxidative stress levels caused by ferroptosis can influence the osteogenic-adipogenic differentiation balance of MSCs, and the mechanism underlying this influence in osteoporosis has not been fully elucidated. This study is the first to demonstrate through in vitro cell experiments that inhibiting ferroptosis can decrease the adipogenic differentiation of MSCs. Methods and Results: Through bioinformatics analysis, differentially expressed genes (DEGs) associated with the adipogenic differentiation of MSCs were identified from the GEO database. We then intersected these differentially expressed genes with a ferroptosis-related gene dataset and identified 118 ferroptosis-related differentially expressed genes (FRDEGs). Additionally, we explored the functional roles of FRDEGs through GO and KEGG analyses and found that these genes significantly impacted intracellular oxidative stress. Furthermore, we identified 10 key FRDEGs via protein-protein interaction (PPI) analysis. The diagnostic performance of these genes was evaluated by plotting receiver operating characteristic (ROC) curves, and the reliability of the diagmodel was validated using data from osteoporosis patients. We then constructed a mouse osteoporosis model and validated the mRNA expression levels of key FRDEGs via qRT-PCR, which revealed significant differences in expression in the osteoporosis group. Finally, molecular docking technology was used to identify two small molecules from the DrugBank database that are able to negatively regulate MSC adipogenic differentiation by inhibiting ferroptosis. Conclusions: The identified FRDEGs and small molecules offer novel diagnostic markers and therapeutic candidates for osteoporosis.
Collapse
Affiliation(s)
- Jiahao Jin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (J.J.); (Z.Y.); (X.W.); (Q.L.); (Y.Z.); (Y.Z.); (P.J.)
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zihao Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (J.J.); (Z.Y.); (X.W.); (Q.L.); (Y.Z.); (Y.Z.); (P.J.)
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xinglang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (J.J.); (Z.Y.); (X.W.); (Q.L.); (Y.Z.); (Y.Z.); (P.J.)
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (J.J.); (Z.Y.); (X.W.); (Q.L.); (Y.Z.); (Y.Z.); (P.J.)
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (J.J.); (Z.Y.); (X.W.); (Q.L.); (Y.Z.); (Y.Z.); (P.J.)
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yibin Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (J.J.); (Z.Y.); (X.W.); (Q.L.); (Y.Z.); (Y.Z.); (P.J.)
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Pengfei Ji
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (J.J.); (Z.Y.); (X.W.); (Q.L.); (Y.Z.); (Y.Z.); (P.J.)
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yanfeng Wu
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China;
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (J.J.); (Z.Y.); (X.W.); (Q.L.); (Y.Z.); (Y.Z.); (P.J.)
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (J.J.); (Z.Y.); (X.W.); (Q.L.); (Y.Z.); (Y.Z.); (P.J.)
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| |
Collapse
|
4
|
Khorramfard A, Pirgazi J, Ghanbari Sorkhi A. Predicting drug protein interactions based on improved support vector data description in unbalanced data. BIOIMPACTS : BI 2024; 15:30468. [PMID: 40256215 PMCID: PMC12008248 DOI: 10.34172/bi.30468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 09/07/2024] [Indexed: 04/22/2025]
Abstract
Introduction Predicting drug-protein interactions is critical in drug discovery, but traditional laboratory methods are expensive and time-consuming. Computational approaches, especially those leveraging machine learning, are increasingly popular. This paper introduces VASVDD, a multi-step method to predict drug-protein interactions. First, it extracts features from amino acid sequences in proteins and drug structures. To address the challenge of unbalanced datasets, a Support Vector Data Description (SVDD) approach is employed, outperforming standard techniques like SMOTE and ENN in balancing data. Subsequently, dimensionality reduction using a Variational Autoencoder (VAE) reduces features from 1074 to 32, improving computational efficiency and predictive performance. Methods The proposed method was evaluated on four datasets related to enzymes, G-protein-coupled receptors, ion channels, and nuclear receptors. Without preprocessing, the Gradient Boosting Classifier showed bias towards the majority class. However, balancing and dimensionality reduction significantly improved accuracy, sensitivity, specificity, and F1 scores. VASVDD demonstrated superior performance compared to other dimensionality reduction methods, such as kernel principal component analysis (kernel PCA) and Principal Component Analysis (PCA), and was validated across multiple classifiers, achieving higher AUROC values than existing techniques. Results The results highlight VASVDD's effectiveness and generalizability in predicting drug-target interactions. The method outperforms state-of-the-art techniques in terms of accuracy, robustness, and efficiency, making it a promising tool in bioinformatics for drug discovery. Conclusion The datasets analyzed during the current study are not publicly available but are available from the corresponding author upon reasonable request and source code are available on GitHub: https://github.com/alirezakhorramfard/vasvdd.
Collapse
Affiliation(s)
- Alireza Khorramfard
- Department of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | - Jamshid Pirgazi
- Department of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | - Ali Ghanbari Sorkhi
- Department of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
5
|
Asediya VS, Anjaria PA, Mathakiya RA, Koringa PG, Nayak JB, Bisht D, Fulmali D, Patel VA, Desai DN. Vaccine development using artificial intelligence and machine learning: A review. Int J Biol Macromol 2024; 282:136643. [PMID: 39426778 DOI: 10.1016/j.ijbiomac.2024.136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The COVID-19 pandemic has underscored the critical importance of effective vaccines, yet their development is a challenging and demanding process. It requires identifying antigens that elicit protective immunity, selecting adjuvants that enhance immunogenicity, and designing delivery systems that ensure optimal efficacy. Artificial intelligence (AI) can facilitate this process by using machine learning methods to analyze large and diverse datasets, suggest novel vaccine candidates, and refine their design and predict their performance. This review explores how AI can be applied to various aspects of vaccine development, such as predicting immune response from protein sequences, discovering adjuvants, optimizing vaccine doses, modeling vaccine supply chains, and predicting protein structures. We also address the challenges and ethical issues that emerge from the use of AI in vaccine development, such as data privacy, algorithmic bias, and health data sensitivity. We contend that AI has immense potential to accelerate vaccine development and respond to future pandemics, but it also requires careful attention to the quality and validity of the data and methods used.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepanker Bisht
- Indian Veterinary Research Institute, Izatnagar, U.P., India
| | | | | | | |
Collapse
|
6
|
Alam MK, Faruk Hosen M, Ganji KK, Ahmed K, Bui FM. Identification of key signaling pathways and novel computational drug target for oral cancer, metabolic disorders and periodontal disease. J Genet Eng Biotechnol 2024; 22:100431. [PMID: 39674633 PMCID: PMC11539153 DOI: 10.1016/j.jgeb.2024.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 12/16/2024]
Abstract
AIM Due to conventional endocrinological methods, there is presently no shared work available, and no therapeutic options have been demonstrated in oral cancer (OC) and periodontal disease (PD), type 2 diabetes (T2D), and obese patients. The aim of this study is to determine the similar molecular pathways and potential therapeutic targets in PD, OC, T2D, and obesity that may be used to anticipate the progression of the disease. METHODS Four Gene Expression Omnibus (GEO) microarray datasets (GSE29221, GSE15773, GSE16134, and GSE13601) are used for finding differentially expressed genes (DEGs) for T2D, obese, and PD patients with OC in order to explore comparable pathways and therapeutic medications. Gene ontology (GO) and pathway analysis were used to investigate the functional annotations of the genes. The hub genes were then identified using protein-protein interaction (PPI) networks, and the most significant PPI components were evaluated using a clustering approach. RESULTS These three gene expression-based datasets yielded a total of seven common DEGs. According to the GO annotation, the majority of the DEGs were connected with the microtubule cytoskeleton structure involved in mitosis. The KEGG pathways revealed that the concordant DEGs are connected to the cell cycle and progesterone-mediated oocyte maturation. Based on topological analysis of the PPI network, major hub genes (CCNB1, BUB1, TTK, PLAT, and AHNAK) and notable modules were revealed. This work additionally identified the connection of TF genes and miRNAs with common DEGs, as well as TF activity. CONCLUSION Predictive drug analysis yielded concordant drug compounds involved with T2D, OC, PD, and obesity disorder, which might be beneficial for examining the diagnosis, treatment, and prognosis of metabolic disorders and Oral cancer.
Collapse
Affiliation(s)
- Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia.
| | - Md Faruk Hosen
- Department of Computing Information System, Daffodil International University, Birulia, Savar, Dhaka 1216, Bangladesh.
| | - Kiran Kumar Ganji
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | - Kawsar Ahmed
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City, Birulia, Dhaka 1216, Bangladesh; Group of Biophotomatiχ, Dept. of ICT, MBSTU, Santosh, Tangail 1902, Bangladesh; Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon S7N5A9, SK, Canada.
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon S7N5A9, SK, Canada.
| |
Collapse
|
7
|
E U, T M, A V G, D P. A comprehensive survey of drug-target interaction analysis in allopathy and siddha medicine. Artif Intell Med 2024; 157:102986. [PMID: 39326289 DOI: 10.1016/j.artmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Effective drug delivery is the cornerstone of modern healthcare, ensuring therapeutic compounds reach their intended targets efficiently. This paper explores the potential of personalized and holistic healthcare, driven by the synergy between traditional and allopathic medicine systems, with a specific focus on the vast reservoir of medicinal compounds found in plants rooted in the historical legacy of traditional medicine. Motivated by the desire to unlock the therapeutic potential of medicinal plants and bridge the gap between traditional and allopathic medicine, this survey delves into in-silico computational approaches for studying Drug-Target Interactions (DTI) within the contexts of allopathy and siddha medicine. The contributions of this survey are multifaceted: it offers a comprehensive overview of in-silico methods for DTI analysis in both systems, identifies common challenges in DTI studies, provides insights into future directions to advance DTI analysis, and includes a comparative analysis of DTI in allopathy and siddha medicine. The findings of this survey highlight the pivotal role of in-silico computational approaches in advancing drug research and development in both allopathy and siddha medicine, emphasizing the importance of integrating these methods to drive the future of personalized healthcare.
Collapse
Affiliation(s)
- Uma E
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India.
| | - Mala T
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Geetha A V
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Priyanka D
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| |
Collapse
|
8
|
Ma X, Huang T, Li X, Zhou X, Pan H, Du A, Zeng Y, Yuan K, Wang Z. Exploration of the link between COVID-19 and gastric cancer from the perspective of bioinformatics and systems biology. Front Med (Lausanne) 2024; 11:1428973. [PMID: 39371335 PMCID: PMC11449776 DOI: 10.3389/fmed.2024.1428973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused a global pandemic. Gastric cancer (GC) poses a great threat to people's health, which is a high-risk factor for COVID-19. Previous studies have found some associations between GC and COVID-19, whereas the underlying molecular mechanisms are not well understood. Methods We employed bioinformatics and systems biology to explore these links between GC and COVID-19. Gene expression profiles of COVID-19 (GSE196822) and GC (GSE179252) were obtained from the Gene Expression Omnibus (GEO) database. After identifying the shared differentially expressed genes (DEGs) for GC and COVID-19, functional annotation, protein-protein interaction (PPI) network, hub genes, transcriptional regulatory networks and candidate drugs were analyzed. Results We identified 209 shared DEGs between COVID-19 and GC. Functional analyses highlighted immune-related pathways as key players in both diseases. Ten hub genes (CDK1, KIF20A, TPX2, UBE2C, HJURP, CENPA, PLK1, MKI67, IFI6, IFIT2) were identified. The transcription factor/gene and miRNA/gene interaction networks identified 38 transcription factors (TFs) and 234 miRNAs. More importantly, we identified ten potential therapeutic agents, including ciclopirox, resveratrol, etoposide, methotrexate, trifluridine, enterolactone, troglitazone, calcitriol, dasatinib and deferoxamine, some of which have been reported to improve and treat GC and COVID-19. Conclusion This research offer valuable insights into the molecular interplay between COVID-19 and GC, potentially guiding future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Liu J, Hu D, Wang Y, Zhou X, Jiang L, Wang P, Lai H, Wang Y, Xiao H. Exploration of a Predictive Model for Keloid and Potential Therapeutic Drugs Based on Immune Infiltration and Cuproptosis-Related Genes. J Burn Care Res 2024; 45:1217-1231. [PMID: 38334429 DOI: 10.1093/jbcr/irae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 02/10/2024]
Abstract
The aim of this study was to investigate the correlation between cuproptosis-related genes and immunoinfiltration in keloid, develop a predictive model for keloid occurrence, and explore potential therapeutic drugs. The microarray datasets (GSE7890 and GSE145725) were obtained from Gene Expression Omnibus database to identify the differentially expressed genes (DEGs) between keloid and nonkeloid samples. Key genes were identified through immunoinfiltration analysis and DEGs and then analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, followed by the identification of protein-protein interaction networks, transcription factors, and miRNAs associated with key genes. Additionally, a logistic regression analysis was performed to develop a predictive model for keloid occurrence, and potential candidate drugs for keloid treatment were identified. Three key genes (FDX1, PDHB, and DBT) were identified, showing involvement in acetyl-CoA biosynthesis, mitochondrial matrix, oxidoreductase activity, and the tricarboxylic acid cycle. Immune infiltration analysis suggested the involvement of B cells, Th1 cells, dendritic cells, T helper cells, antigen-presenting cell coinhibition, and T cell coinhibition in keloid. These genes were used to develop a logistic regression-based nomogram for predicting keloid occurrence with an area under the curve of 0.859 and good calibration. We identified 32 potential drug molecules and extracted the top 10 compounds based on their P-values, showing promise in targeting key genes and potentially effective against keloid. Our study identified some genes in keloid pathogenesis and potential therapeutic drugs. The predictive model enhances early diagnosis and management. Further research is needed to validate and explore clinical implications.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Ding Hu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Yaojun Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Xiaoqian Zhou
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Liyuan Jiang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Peng Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Haijing Lai
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Yu Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Houan Xiao
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
10
|
Wang L, Chen A, Zhang L, Zhang J, Wei S, Chen Y, Hu M, Mo Y, Li S, Zeng M, Li H, Liang C, Ren Y, Xu L, Liang W, Zhu X, Wang X, Sun D. Deciphering the molecular nexus between Omicron infection and acute kidney injury: a bioinformatics approach. Front Mol Biosci 2024; 11:1340611. [PMID: 39027131 PMCID: PMC11254815 DOI: 10.3389/fmolb.2024.1340611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Background The ongoing global health crisis of COVID-19, and particularly the challenges posed by recurrent infections of the Omicron variant, have significantly strained healthcare systems worldwide. There is a growing body of evidence indicating an increased susceptibility to Omicron infection in patients suffering from Acute Kidney Injury (AKI). However, the intricate molecular interplay between AKI and Omicron variant of COVID-19 remains largely enigmatic. Methods This study employed a comprehensive analysis of human RNA sequencing (RNA-seq) and microarray datasets to identify differentially expressed genes (DEGs) associated with Omicron infection in the context of AKI. We engaged in functional enrichment assessments, an examination of Protein-Protein Interaction (PPI) networks, and advanced network analysis to elucidate the cellular signaling pathways involved, identify critical hub genes, and determine the relevant controlling transcription factors and microRNAs. Additionally, we explored protein-drug interactions to highlight potential pharmacological interventions. Results Our investigation revealed significant DEGs and cellular signaling pathways implicated in both Omicron infection and AKI. We identified pivotal hub genes, including EIF2AK2, PLSCR1, GBP1, TNFSF10, C1QB, and BST2, and their associated regulatory transcription factors and microRNAs. Notably, in the murine AKI model, there was a marked reduction in EIF2AK2 expression, in contrast to significant elevations in PLSCR1, C1QB, and BST2. EIF2AK2 exhibited an inverse relationship with the primary AKI mediator, Kim-1, whereas PLSCR1 and C1QB demonstrated strong positive correlations with it. Moreover, we identified potential therapeutic agents such as Suloctidil, Apocarotenal, 3'-Azido-3'-deoxythymidine, among others. Our findings also highlighted a correlation between the identified hub genes and diseases like myocardial ischemia, schizophrenia, and liver cirrhosis. To further validate the credibility of our data, we employed an independent validation dataset to verify the hub genes. Notably, the expression patterns of PLSCR1, GBP1, BST2, and C1QB were consistent with our research findings, reaffirming the reliability of our results. Conclusion Our bioinformatics analysis has provided initial insights into the shared genetic landscape between Omicron COVID-19 infections and AKI, identifying potential therapeutic targets and drugs. This preliminary investigation lays the foundation for further research, with the hope of contributing to the development of innovative treatment strategies for these complex medical conditions.
Collapse
Affiliation(s)
- Li Wang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lantian Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Junwei Zhang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Shuqi Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yangxiao Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Mingliang Hu
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Yihao Mo
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Sha Li
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Min Zeng
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Huafeng Li
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Caixing Liang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Yi Ren
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Liting Xu
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Wenhua Liang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Xuejiao Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaokai Wang
- Xuzhou First People’s Hospital, Xuzhou, Jiangsu, China
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
11
|
Abubakar ML, Kapoor N, Sharma A, Gambhir L, Jasuja ND, Sharma G. Artificial Intelligence in Drug Identification and Validation: A Scoping Review. Drug Res (Stuttg) 2024; 74:208-219. [PMID: 38830370 DOI: 10.1055/a-2306-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The end-to-end process in the discovery of drugs involves therapeutic candidate identification, validation of identified targets, identification of hit compound series, lead identification and optimization, characterization, and formulation and development. The process is lengthy, expensive, tedious, and inefficient, with a large attrition rate for novel drug discovery. Today, the pharmaceutical industry is focused on improving the drug discovery process. Finding and selecting acceptable drug candidates effectively can significantly impact the price and profitability of new medications. Aside from the cost, there is a need to reduce the end-to-end process time, limiting the number of experiments at various stages. To achieve this, artificial intelligence (AI) has been utilized at various stages of drug discovery. The present study aims to identify the recent work that has developed AI-based models at various stages of drug discovery, identify the stages that need more concern, present the taxonomy of AI methods in drug discovery, and provide research opportunities. From January 2016 to September 1, 2023, the study identified all publications that were cited in the electronic databases including Scopus, NCBI PubMed, MEDLINE, Anthropology Plus, Embase, APA PsycInfo, SOCIndex, and CINAHL. Utilising a standardized form, data were extracted, and presented possible research prospects based on the analysis of the extracted data.
Collapse
Affiliation(s)
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| |
Collapse
|
12
|
Wang Z, Feng B, Gao Q, Wang Y, Yang Y, Luo B, Zhang Q, Wang F, Li B. A prediction method of interaction based on Bilinear Attention Networks for designing polyphenol-protein complexes delivery systems. Int J Biol Macromol 2024; 269:131959. [PMID: 38692548 DOI: 10.1016/j.ijbiomac.2024.131959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Polyphenol-protein complexes delivery systems are gaining attention for their potential health benefits and food industry development. However, creating an ideal delivery system requires extensive wet-lab experimentation. To address this, we collected 525 ligand-protein interaction data pairs and established an interaction prediction model using Bilinear Attention Networks. We utilized 10-fold cross validation to address potential overfitting issues in the model, resulting in showed higher average AUROC (0.8443), AUPRC (0.7872), and F1 (0.8164). The optimal threshold (0.3739) was selected for the model to be used for subsequent analysis. Based on the model prediction results and optimal threshold, by verifying experimental analysis, the interaction of paeonol with the following proteins was obtained, including bovine serum albumin (lgKa = 6.2759), bovine β-lactoglobulin (lgKa = 6.7479), egg ovalbumin (lgKa = 5.1806), zein (lgKa = 6.0122), bovine α-lactalbumin (lgKa = 3.9170), bovine lactoferrin (lgKa = 4.5380), the first four proteins are consistent with the predicted results of the model, with lgKa >5. The established model can accurately and rapidly predict the interaction of polyphenol-protein complexes. This study is the first to combine open ligand-protein interaction experiments with Deep Learning algorithms in the food industry, greatly improving research efficiency and providing a novel perspective for future complex delivery system construction.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Baolong Feng
- Center for Education Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Qizhou Gao
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yutang Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China.
| | - Yan Yang
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bowen Luo
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Zhang
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Fengzhong Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China.
| | - Bailiang Li
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Zhang H, Liu X, Cheng W, Wang T, Chen Y. Prediction of drug-target binding affinity based on deep learning models. Comput Biol Med 2024; 174:108435. [PMID: 38608327 DOI: 10.1016/j.compbiomed.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
The prediction of drug-target binding affinity (DTA) plays an important role in drug discovery. Computerized virtual screening techniques have been used for DTA prediction, greatly reducing the time and economic costs of drug discovery. However, these techniques have not succeeded in reversing the low success rate of new drug development. In recent years, the continuous development of deep learning (DL) technology has brought new opportunities for drug discovery through the DTA prediction. This shift has moved the prediction of DTA from traditional machine learning methods to DL. The DL frameworks used for DTA prediction include convolutional neural networks (CNN), graph convolutional neural networks (GCN), and recurrent neural networks (RNN), and reinforcement learning (RL), among others. This review article summarizes the available literature on DTA prediction using DL models, including DTA quantification metrics and datasets, and DL algorithms used for DTA prediction (including input representation of models, neural network frameworks, valuation indicators, and model interpretability). In addition, the opportunities, challenges, and prospects of the application of DL frameworks for DTA prediction in the field of drug discovery are discussed.
Collapse
Affiliation(s)
- Hao Zhang
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqian Liu
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenya Cheng
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianshi Wang
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Chen
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Liyaqat T, Ahmad T, Saxena C. TeM-DTBA: time-efficient drug target binding affinity prediction using multiple modalities with Lasso feature selection. J Comput Aided Mol Des 2023; 37:573-584. [PMID: 37777631 DOI: 10.1007/s10822-023-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
Drug discovery, especially virtual screening and drug repositioning, can be accelerated through deeper understanding and prediction of Drug Target Interactions (DTIs). The advancement of deep learning as well as the time and financial costs associated with conventional wet-lab experiments have made computational methods for DTI prediction more popular. However, the majority of these computational methods handle the DTI problem as a binary classification task, ignoring the quantitative binding affinity that determines the drug efficacy to their target proteins. Moreover, computational space as well as execution time of the model is often ignored over accuracy. To address these challenges, we introduce a novel method, called Time-efficient Multimodal Drug Target Binding Affinity (TeM-DTBA), which predicts the binding affinity between drugs and targets by fusing different modalities based on compound structures and target sequences. We employ the Lasso feature selection method, which lowers the dimensionality of feature vectors and speeds up the proposed model training time by more than 50%. The results from two benchmark datasets demonstrate that our method outperforms state-of-the-art methods in terms of performance. The mean squared errors of 18.8% and 23.19%, achieved on the KIBA and Davis datasets, respectively, suggest that our method is more accurate in predicting drug-target binding affinity.
Collapse
Affiliation(s)
- Tanya Liyaqat
- Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India.
| | - Tanvir Ahmad
- Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India
| | - Chandni Saxena
- The Chinese University of Hong Kong, Sha Tin, SAR, China
| |
Collapse
|
15
|
Chandra A, Sharma A, Dehzangi I, Tsunoda T, Sattar A. PepCNN deep learning tool for predicting peptide binding residues in proteins using sequence, structural, and language model features. Sci Rep 2023; 13:20882. [PMID: 38016996 PMCID: PMC10684570 DOI: 10.1038/s41598-023-47624-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Protein-peptide interactions play a crucial role in various cellular processes and are implicated in abnormal cellular behaviors leading to diseases such as cancer. Therefore, understanding these interactions is vital for both functional genomics and drug discovery efforts. Despite a significant increase in the availability of protein-peptide complexes, experimental methods for studying these interactions remain laborious, time-consuming, and expensive. Computational methods offer a complementary approach but often fall short in terms of prediction accuracy. To address these challenges, we introduce PepCNN, a deep learning-based prediction model that incorporates structural and sequence-based information from primary protein sequences. By utilizing a combination of half-sphere exposure, position specific scoring matrices from multiple-sequence alignment tool, and embedding from a pre-trained protein language model, PepCNN outperforms state-of-the-art methods in terms of specificity, precision, and AUC. The PepCNN software and datasets are publicly available at https://github.com/abelavit/PepCNN.git .
Collapse
Affiliation(s)
- Abel Chandra
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.
| | - Alok Sharma
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Iman Dehzangi
- Department of Computer Science, Rutgers University, Camden, NJ, USA
- Center for Computational and Integrative Biology, Rutgers University, Camden, USA
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Medical Science Mathematics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Abdul Sattar
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia
| |
Collapse
|
16
|
Qian G, Fang H, Chen A, Sun Z, Huang M, Luo M, Cheng E, Zhang S, Wang X, Fang H. A hub gene signature as a therapeutic target and biomarker for sepsis and geriatric sepsis-induced ARDS concomitant with COVID-19 infection. Front Immunol 2023; 14:1257834. [PMID: 37822934 PMCID: PMC10562607 DOI: 10.3389/fimmu.2023.1257834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
Background COVID-19 and sepsis represent formidable public health challenges, characterized by incompletely elucidated molecular mechanisms. Elucidating the interplay between COVID-19 and sepsis, particularly in geriatric patients suffering from sepsis-induced acute respiratory distress syndrome (ARDS), is of paramount importance for identifying potential therapeutic interventions to mitigate hospitalization and mortality risks. Methods We employed bioinformatics and systems biology approaches to identify hub genes, shared pathways, molecular biomarkers, and candidate therapeutics for managing sepsis and sepsis-induced ARDS in the context of COVID-19 infection, as well as co-existing or sequentially occurring infections. We corroborated these hub genes utilizing murine sepsis-ARDS models and blood samples derived from geriatric patients afflicted by sepsis-induced ARDS. Results Our investigation revealed 189 differentially expressed genes (DEGs) shared among COVID-19 and sepsis datasets. We constructed a protein-protein interaction network, unearthing pivotal hub genes and modules. Notably, nine hub genes displayed significant alterations and correlations with critical inflammatory mediators of pulmonary injury in murine septic lungs. Simultaneously, 12 displayed significant changes and correlations with a neutrophil-recruiting chemokine in geriatric patients with sepsis-induced ARDS. Of these, six hub genes (CD247, CD2, CD40LG, KLRB1, LCN2, RETN) showed significant alterations across COVID-19, sepsis, and geriatric sepsis-induced ARDS. Our single-cell RNA sequencing analysis of hub genes across diverse immune cell types furnished insights into disease pathogenesis. Functional analysis underscored the interconnection between sepsis/sepsis-ARDS and COVID-19, enabling us to pinpoint potential therapeutic targets, transcription factor-gene interactions, DEG-microRNA co-regulatory networks, and prospective drug and chemical compound interactions involving hub genes. Conclusion Our investigation offers potential therapeutic targets/biomarkers, sheds light on the immune response in geriatric patients with sepsis-induced ARDS, emphasizes the association between sepsis/sepsis-ARDS and COVID-19, and proposes prospective alternative pathways for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Guojun Qian
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hongwei Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhun Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Meiying Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Mengyuan Luo
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Erdeng Cheng
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengyi Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaokai Wang
- Department of Interventional and Vascular Surgery, Xuzhou First People's Hospital, Xuzhou, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai, China
| |
Collapse
|
17
|
Khojasteh H, Pirgazi J, Ghanbari Sorkhi A. Improving prediction of drug-target interactions based on fusing multiple features with data balancing and feature selection techniques. PLoS One 2023; 18:e0288173. [PMID: 37535616 PMCID: PMC10399861 DOI: 10.1371/journal.pone.0288173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Drug discovery relies on predicting drug-target interaction (DTI), which is an important challenging task. The purpose of DTI is to identify the interaction between drug chemical compounds and protein targets. Traditional wet lab experiments are time-consuming and expensive, that's why in recent years, the use of computational methods based on machine learning has attracted the attention of many researchers. Actually, a dry lab environment focusing more on computational methods of interaction prediction can be helpful in limiting search space for wet lab experiments. In this paper, a novel multi-stage approach for DTI is proposed that called SRX-DTI. In the first stage, combination of various descriptors from protein sequences, and a FP2 fingerprint that is encoded from drug are extracted as feature vectors. A major challenge in this application is the imbalanced data due to the lack of known interactions, in this regard, in the second stage, the One-SVM-US technique is proposed to deal with this problem. Next, the FFS-RF algorithm, a forward feature selection algorithm, coupled with a random forest (RF) classifier is developed to maximize the predictive performance. This feature selection algorithm removes irrelevant features to obtain optimal features. Finally, balanced dataset with optimal features is given to the XGBoost classifier to identify DTIs. The experimental results demonstrate that our proposed approach SRX-DTI achieves higher performance than other existing methods in predicting DTIs. The datasets and source code are available at: https://github.com/Khojasteh-hb/SRX-DTI.
Collapse
Affiliation(s)
- Hakimeh Khojasteh
- Department of Computer Engineering, University of Zanjan, Zanjan, Iran
- School of Biological Sciences Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Jamshid Pirgazi
- School of Biological Sciences Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | - Ali Ghanbari Sorkhi
- Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
18
|
Sarkar MS, Mia MM, Amin MA, Hossain MS, Islam MZ. Bioinformatics and network biology approach to identifying type 2 diabetes genes and pathways that influence the progression of breast cancer. Heliyon 2023; 9:e16151. [PMID: 37234659 PMCID: PMC10205526 DOI: 10.1016/j.heliyon.2023.e16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer is the second most prevalent malignancy affecting women. Postmenopausal women breast tumor is one of the top causes of death in women, accounting for 23% of cancer cases. Type 2 diabetes, a worldwide pandemic, has been connected to a heightened risk of several malignancies, although its association with breast cancer is still uncertain. In comparison to non-diabetic women, women with T2DM had a 23% elevated likelihood of developing breast cancer. It is difficult to determine causative or genetic susceptibility that connect T2DM and breast cancer. We created a large-scale network-based quantitative approach employing unbiased methods to discover abnormally amplified genes in both T2DM and breast cancer, to solve these issues. We performed transcriptome analysis to uncover identical genetic biomarkers and pathways to clarify the connection between T2DM and breast cancer patients. In this study, two RNA-seq datasets (GSE103001 and GSE86468) from the Gene Expression Omnibus (GEO) are used to identify mutually differentially expressed genes (DEGs) for breast cancer and T2DM, as well as common pathways and prospective medicines. Firstly, 45 shared genes (30 upregulated and 15 downregulated) between T2D and breast cancer were detected. We employed gene ontology and pathway enrichment to characterize prevalent DEGs' molecular processes and signal transduction pathways and observed that T2DM has certain connections to the progression of breast cancer. Using several computational and statistical approaches, we created a protein-protein interactions (PPI) network and revealed hub genes. These hub genes can be potential biomarkers, which may also lead to new therapeutic strategies for investigated diseases. We conducted TF-gene interactions, gene-microRNA interactions, protein-drug interactions, and gene-disease associations to find potential connections between T2DM and breast cancer pathologies. We assume that the potential drugs that emerged from this study could be useful therapeutic values. Researchers, doctors, biotechnologists, and many others may benefit from this research.
Collapse
Affiliation(s)
- Md Sumon Sarkar
- Department of Pharmacy, Islamic University, Kushtia-7003, Bangladesh
| | - Md Misor Mia
- Department of Pharmacy, Islamic University, Kushtia-7003, Bangladesh
| | - Md Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka-1216, Bangladesh
| | - Md Sojib Hossain
- Department of Mathematics, Govt. Bangla College, Dhaka-1216, Bangladesh
| | - Md Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia-7003, Bangladesh
| |
Collapse
|
19
|
Abbasi Mesrabadi H, Faez K, Pirgazi J. Drug-target interaction prediction based on protein features, using wrapper feature selection. Sci Rep 2023; 13:3594. [PMID: 36869062 PMCID: PMC9984486 DOI: 10.1038/s41598-023-30026-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Drug-target interaction prediction is a vital stage in drug development, involving lots of methods. Experimental methods that identify these relationships on the basis of clinical remedies are time-taking, costly, laborious, and complex introducing a lot of challenges. One group of new methods is called computational methods. The development of new computational methods which are more accurate can be preferable to experimental methods, in terms of total cost and time. In this paper, a new computational model to predict drug-target interaction (DTI), consisting of three phases, including feature extraction, feature selection, and classification is proposed. In feature extraction phase, different features such as EAAC, PSSM and etc. would be extracted from sequence of proteins and fingerprint features from drugs. These extracted features would then be combined. In the next step, one of the wrapper feature selection methods named IWSSR, due to the large amount of extracted data, is applied. The selected features are then given to rotation forest classification, to have a more efficient prediction. Actually, the innovation of our work is that we extract different features; and then select features by the use of IWSSR. The accuracy of the rotation forest classifier based on tenfold on the golden standard datasets (enzyme, ion channels, G-protein-coupled receptors, nuclear receptors) is as follows: 98.12, 98.07, 96.82, and 95.64. The results of experiments indicate that the proposed model has an acceptable rate in DTI prediction and is compatible with the proposed methods in other papers.
Collapse
Affiliation(s)
- Hengame Abbasi Mesrabadi
- Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Karim Faez
- Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Jamshid Pirgazi
- Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
20
|
Chen Z, Sun X, Kang Y, Zhang J, Jia F, Liu X, Zhu H. A novel risk model based on the correlation between the expression of basement membrane genes and immune infiltration to predict the invasiveness of pituitary adenomas. Front Endocrinol (Lausanne) 2023; 13:1079777. [PMID: 36686480 PMCID: PMC9846255 DOI: 10.3389/fendo.2022.1079777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Objective Invasive pituitary adenomas (IPAs) are common tumors of the nervous system tumors for which invasive growth can lead to difficult total resection and a high recurrence rate. The basement membrane (BM) is a special type of extracellular matrix and plays an important role in the invasion of pituitary adenomas (PAs). The aim of this study was to develop a risk model for predicting the invasiveness of PAs by analyzing the correlation between the expression of BM genes and immune infiltration. Methods Four datasets, featuring samples IPAs and non-invasive pituitary adenomas (NIPAs), were obtained from the Gene Expression Omnibus database (GEO). R software was then used to identify differentially expressed genes (DEGs) and analyze their functional enrichment. Protein-protein interaction (PPI) network was used to screen BM genes, which were analyzed for immune infiltration; this led to the generation of a risk model based on the correlation between the expression of BM genes and immunity. A calibration curve and receiver operating characteristic (ROC) curve were used to evaluate and validate the model. Subsequently, the differential expression levels of BM genes between IPA and NIPA samples collected in surgery were verified by Quantitative Polymerase Chain Reaction (qPCR) and the prediction model was further evaluated. Finally, based on our analysis, we recommend potential drug targets for the treatment of IPAs. Results The merged dataset identified 248 DEGs that were mainly enriching in signal transduction, the extracellular matrix and channel activity. The PPI network identified 11 BM genes from the DEGs: SPARCL1, GPC3, LAMA1, SDC4, GPC4, ADAMTS8, LAMA2, LAMC3, SMOC1, LUM and THBS2. Based on the complex correlation between these 11 genes and immune infiltration, a risk model was established to predict PAs invasiveness. Calibration curve and ROC curve analysis (area under the curve [AUC]: 0.7886194) confirmed the good predictive ability of the model. The consistency between the qPCR results and the bioinformatics results confirmed the reliability of data mining. Conclusion Using a variety of bioinformatics methods, we developed a novel risk model to predict the probability of PAs invasion based on the correlation between 11 BM genes and immune infiltration. These findings may facilitate closer surveillance and early diagnosis to prevent or treat IPAs in patients and improve the clinical awareness of patients at high risk of IPAs.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Sun
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yin Kang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang Jia
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiyao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Zhang W, Liu L, Xiao X, Zhou H, Peng Z, Wang W, Huang L, Xie Y, Xu H, Tao L, Nie W, Yuan X, Liu F, Yuan Q. Identification of common molecular signatures of SARS-CoV-2 infection and its influence on acute kidney injury and chronic kidney disease. Front Immunol 2023; 14:961642. [PMID: 37026010 PMCID: PMC10070855 DOI: 10.3389/fimmu.2023.961642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main cause of COVID-19, causing hundreds of millions of confirmed cases and more than 18.2 million deaths worldwide. Acute kidney injury (AKI) is a common complication of COVID-19 that leads to an increase in mortality, especially in intensive care unit (ICU) settings, and chronic kidney disease (CKD) is a high risk factor for COVID-19 and its related mortality. However, the underlying molecular mechanisms among AKI, CKD, and COVID-19 are unclear. Therefore, transcriptome analysis was performed to examine common pathways and molecular biomarkers for AKI, CKD, and COVID-19 in an attempt to understand the association of SARS-CoV-2 infection with AKI and CKD. Three RNA-seq datasets (GSE147507, GSE1563, and GSE66494) from the GEO database were used to detect differentially expressed genes (DEGs) for COVID-19 with AKI and CKD to search for shared pathways and candidate targets. A total of 17 common DEGs were confirmed, and their biological functions and signaling pathways were characterized by enrichment analysis. MAPK signaling, the structural pathway of interleukin 1 (IL-1), and the Toll-like receptor pathway appear to be involved in the occurrence of these diseases. Hub genes identified from the protein-protein interaction (PPI) network, including DUSP6, BHLHE40, RASGRP1, and TAB2, are potential therapeutic targets in COVID-19 with AKI and CKD. Common genes and pathways may play pathogenic roles in these three diseases mainly through the activation of immune inflammation. Networks of transcription factor (TF)-gene, miRNA-gene, and gene-disease interactions from the datasets were also constructed, and key gene regulators influencing the progression of these three diseases were further identified among the DEGs. Moreover, new drug targets were predicted based on these common DEGs, and molecular docking and molecular dynamics (MD) simulations were performed. Finally, a diagnostic model of COVID-19 was established based on these common DEGs. Taken together, the molecular and signaling pathways identified in this study may be related to the mechanisms by which SARS-CoV-2 infection affects renal function. These findings are significant for the effective treatment of COVID-19 in patients with kidney diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Hongshan Zhou
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wei Wang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wannian Nie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Fang Liu
- Health Management Center, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
- National Clinical Medical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Research Center for Medical Metabolomics, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| |
Collapse
|
22
|
Bu F, Guan R, Wang W, Liu Z, Yin S, Zhao Y, Chai J. Bioinformatics and systems biology approaches to identify the effects of COVID-19 on neurodegenerative diseases: A review. Medicine (Baltimore) 2022; 101:e32100. [PMID: 36626425 PMCID: PMC9750669 DOI: 10.1097/md.0000000000032100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease (COVID-19), has been devastated by COVID-19 in an increasing number of countries and health care systems around the world since its announcement of a global pandemic on 11 March 2020. During the pandemic, emerging novel viral mutant variants have caused multiple outbreaks of COVID-19 around the world and are prone to genetic evolution, causing serious damage to human health. As confirmed cases of COVID-19 spread rapidly, there is evidence that SARS-CoV-2 infection involves the central nervous system (CNS) and peripheral nervous system (PNS), directly or indirectly damaging neurons and further leading to neurodegenerative diseases (ND), but the molecular mechanisms of ND and CVOID-19 are unknown. We employed transcriptomic profiling to detect several major diseases of ND: Alzheimer 's disease (AD), Parkinson' s disease (PD), and multiple sclerosis (MS) common pathways and molecular biomarkers in association with COVID-19, helping to understand the link between ND and COVID-19. There were 14, 30 and 19 differentially expressed genes (DEGs) between COVID-19 and Alzheimer 's disease (AD), Parkinson' s disease (PD) and multiple sclerosis (MS), respectively; enrichment analysis showed that MAPK, IL-17, PI3K-Akt and other signaling pathways were significantly expressed; the hub genes (HGs) of DEGs between ND and COVID-19 were CRH, SST, TAC1, SLC32A1, GAD2, GAD1, VIP and SYP. Analysis of transcriptome data suggests multiple co-morbid mechanisms between COVID-19 and AD, PD, and MS, providing new ideas and therapeutic strategies for clinical prevention and treatment of COVID-19 and ND.
Collapse
Affiliation(s)
- Fan Bu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- * Correspondence: Fan Bu, Heilongjiang University of Chinese Medicine, Haerbin 150040, Heilongjiang Province, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Wanyu Wang
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Zhao Liu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Shijie Yin
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Yonghou Zhao
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Jianbo Chai
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| |
Collapse
|
23
|
Li C, Zhang Y, Xiao Y, Luo Y. Identifying the Effect of COVID-19 Infection in Multiple Myeloma and Diffuse Large B-Cell Lymphoma Patients Using Bioinformatics and System Biology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7017317. [PMID: 36466549 PMCID: PMC9711963 DOI: 10.1155/2022/7017317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 09/29/2023]
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), also referred to as COVID-19, has spread to several countries and caused a serious threat to human health worldwide. Patients with confirmed COVID-19 infection spread the disease rapidly throughout the region. Multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) are risk factors for COVID-19, although the molecular mechanisms underlying the relationship among MM, DLBCL, and COVID-19 have not been elucidated so far. In this context, transcriptome analysis was performed in the present study to identify the shared pathways and molecular indicators of MM, DLBCL, and COVID-19, which benefited the overall understanding of the effect of COVID-19 in patients with MM and DLBCL. Three datasets (GSE16558, GSE56315, and GSE152418) were downloaded from the Gene Expression Omnibus (GEO) and searched for the shared differentially expressed genes (DEGs) in patients with MM and DLBCL who were infected with SARS-CoV-2. The objective was to detect similar pathways and prospective medicines. A total of 29 DEGs that were common across these three datasets were selected. A protein-protein interaction (PPI) network was constructed using data from the STRING database followed by the identification of hub genes. In addition, the association of MM and DLBCL with COVID-19 infection was analyzed through functional analysis using ontologies terms and pathway analysis. Three relationships were observed in the evaluated datasets: transcription factor-gene interactions, protein-drug interactions, and an integrated regulatory network of DEGs and miRNAs with mutual DEGs. The findings of the present study revealed potential pharmaceuticals that could be beneficial in the treatment of COVID-19.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingying Xiao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yun Luo
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Hoa Vo T, Thi Kim Nguyen N, Quoc Khanh Le N. Improved prediction of drug-drug interactions using ensemble deep neural networks. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Fang H, Sun Z, Chen Z, Chen A, Sun D, Kong Y, Fang H, Qian G. Bioinformatics and systems-biology analysis to determine the effects of Coronavirus disease 2019 on patients with allergic asthma. Front Immunol 2022; 13:988479. [PMID: 36211429 PMCID: PMC9537444 DOI: 10.3389/fimmu.2022.988479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
Background The coronavirus disease (COVID-19) pandemic has posed a significant challenge for global health systems. Increasing evidence shows that asthma phenotypes and comorbidities are major risk factors for COVID-19 symptom severity. However, the molecular mechanisms underlying the association between COVID-19 and asthma are poorly understood. Therefore, we conducted bioinformatics and systems biology analysis to identify common pathways and molecular biomarkers in patients with COVID-19 and asthma, as well as potential molecular mechanisms and candidate drugs for treating patients with both COVID-19 and asthma. Methods Two sets of differentially expressed genes (DEGs) from the GSE171110 and GSE143192 datasets were intersected to identify common hub genes, shared pathways, and candidate drugs. In addition, murine models were utilized to explore the expression levels and associations of the hub genes in asthma and lung inflammation/injury. Results We discovered 157 common DEGs between the asthma and COVID-19 datasets. A protein–protein-interaction network was built using various combinatorial statistical approaches and bioinformatics tools, which revealed several hub genes and critical modules. Six of the hub genes were markedly elevated in murine asthmatic lungs and were positively associated with IL-5, IL-13 and MUC5AC, which are the key mediators of allergic asthma. Gene Ontology and pathway analysis revealed common associations between asthma and COVID-19 progression. Finally, we identified transcription factor–gene interactions, DEG–microRNA coregulatory networks, and potential drug and chemical-compound interactions using the hub genes. Conclusion We identified the top 15 hub genes that can be used as novel biomarkers of COVID-19 and asthma and discovered several promising candidate drugs that might be helpful for treating patients with COVID-19 and asthma.
Collapse
Affiliation(s)
- Hongwei Fang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhun Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Donglin Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Kong
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| | - Guojun Qian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| |
Collapse
|
26
|
Network-Based Data Analysis Reveals Ion Channel-Related Gene Features in COVID-19: A Bioinformatic Approach. Biochem Genet 2022; 61:471-505. [PMID: 36104591 PMCID: PMC9473477 DOI: 10.1007/s10528-022-10280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 (COVID-19) seriously threatens human health and has been disseminated worldwide. Although there are several treatments for COVID-19, its control is currently suboptimal. Therefore, the development of novel strategies to treat COVID-19 is necessary. Ion channels are located on the membranes of all excitable cells and many intracellular organelles and are key components involved in various biological processes. They are a target of interest when searching for drug targets. This study aimed to reveal the relevant molecular features of ion channel genes in COVID-19 based on bioinformatic analyses. The RNA-sequencing data of patients with COVID-19 and healthy subjects (GSE152418 and GSE171110 datasets) were obtained from the Gene Expression Omnibus (GEO) database. Ion channel genes were selected from the Hugo Gene Nomenclature Committee (HGNC) database. The RStudio software was used to process the data based on the corresponding R language package to identify ion channel-associated differentially expressed genes (DEGs). Based on the DEGs, Gene Ontology (GO) functional and pathway enrichment analyses were performed using the Enrichr web tool. The STRING database was used to generate a protein-protein interaction (PPI) network, and the Cytoscape software was used to screen for hub genes in the PPI network based on the cytoHubba plug-in. Transcription factors (TF)-DEG, DEG-microRNA (miRNA) and DEG-disease association networks were constructed using the NetworkAnalyst web tool. Finally, the screened hub genes as drug targets were subjected to enrichment analysis based on the DSigDB using the Enrichr web tool to identify potential therapeutic agents for COVID-19. A total of 29 ion channel-associated DEGs were identified. GO functional analysis showed that the DEGs were integral components of the plasma membrane and were mainly involved in inorganic cation transmembrane transport and ion channel activity functions. Pathway analysis showed that the DEGs were mainly involved in nicotine addiction, calcium regulation in the cardiac cell and neuronal system pathways. The top 10 hub genes screened based on the PPI network included KCNA2, KCNJ4, CACNA1A, CACNA1E, NALCN, KCNA5, CACNA2D1, TRPC1, TRPM3 and KCNN3. The TF-DEG and DEG-miRNA networks revealed significant TFs (FOXC1, GATA2, HINFP, USF2, JUN and NFKB1) and miRNAs (hsa-mir-146a-5p, hsa-mir-27a-3p, hsa-mir-335-5p, hsa-let-7b-5p and hsa-mir-129-2-3p). Gene-disease association network analysis revealed that the DEGs were closely associated with intellectual disability and cerebellar ataxia. Drug-target enrichment analysis showed that the relevant drugs targeting the hub genes CACNA2D1, CACNA1A, CACNA1E, KCNA2 and KCNA5 were gabapentin, gabapentin enacarbil, pregabalin, guanidine hydrochloride and 4-aminopyridine. The results of this study provide a valuable basis for exploring the mechanisms of ion channel genes in COVID-19 and clues for developing therapeutic strategies for COVID-19.
Collapse
|
27
|
Chen Z, Liu X, Zhao P, Li C, Wang Y, Li F, Akutsu T, Bain C, Gasser RB, Li J, Yang Z, Gao X, Kurgan L, Song J. iFeatureOmega: an integrative platform for engineering, visualization and analysis of features from molecular sequences, structural and ligand data sets. Nucleic Acids Res 2022; 50:W434-W447. [PMID: 35524557 PMCID: PMC9252729 DOI: 10.1093/nar/gkac351] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that characterize protein or nucleic acids data, there are no one-stop computational toolkits that comprehensively characterize a wide range of biomolecules. We address this vital need by developing a holistic platform that generates features from sequence and structural data for a diverse collection of molecule types. Our freely available and easy-to-use iFeatureOmega platform generates, analyzes and visualizes 189 representations for biological sequences, structures and ligands. To the best of our knowledge, iFeatureOmega provides the largest scope when directly compared to the current solutions, in terms of the number of feature extraction and analysis approaches and coverage of different molecules. We release three versions of iFeatureOmega including a webserver, command line interface and graphical interface to satisfy needs of experienced bioinformaticians and less computer-savvy biologists and biochemists. With the assistance of iFeatureOmega, users can encode their molecular data into representations that facilitate construction of predictive models and analytical studies. We highlight benefits of iFeatureOmega based on three research applications, demonstrating how it can be used to accelerate and streamline research in bioinformatics, computational biology, and cheminformatics areas. The iFeatureOmega webserver is freely available at http://ifeatureomega.erc.monash.edu and the standalone versions can be downloaded from https://github.com/Superzchen/iFeatureOmega-GUI/ and https://github.com/Superzchen/iFeatureOmega-CLI/.
Collapse
Affiliation(s)
- Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
- Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuhan Liu
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Chen Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Yanan Wang
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Fuyi Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Chris Bain
- Monash Data Future Institutes, Monash University, Melbourne, Victoria 3800, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- Monash Data Future Institutes, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
28
|
Hosen MF, Mahmud SH, Ahmed K, Chen W, Moni MA, Deng HW, Shoombuatong W, Hasan MM. DeepDNAbP: A deep learning-based hybrid approach to improve the identification of deoxyribonucleic acid-binding proteins. Comput Biol Med 2022; 145:105433. [DOI: 10.1016/j.compbiomed.2022.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
|
29
|
Gallo K, Goede A, Preissner R, Gohlke BO. SuperPred 3.0: drug classification and target prediction-a machine learning approach. Nucleic Acids Res 2022; 50:W726-W731. [PMID: 35524552 PMCID: PMC9252837 DOI: 10.1093/nar/gkac297] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Since the last published update in 2014, the SuperPred webserver has been continuously developed to offer state-of-the-art models for drug classification according to ATC classes and target prediction. For the first time, a thoroughly filtered ATC dataset, that is suitable for accurate predictions, is provided along with detailed information on the achieved predictions. This aims to overcome the challenges in comparing different published prediction methods, since performance can vary greatly depending on the training dataset used. Additionally, both ATC and target prediction have been reworked and are now based on machine learning models instead of overall structural similarity, stressing the importance of functional groups for the mechanism of action of small molecule substances. Additionally, the dataset for the target prediction has been extensively filtered and is no longer only based on confirmed binders but also includes non-binding substances to reduce false positives. Using these methods, accuracy for the ATC prediction could be increased by almost 5% to 80.5% compared to the previous version, and additionally the scoring function now offers values which are easily assessable at first glance. SuperPred 3.0 is publicly available without the need for registration at: https://prediction.charite.de/index.php.
Collapse
Affiliation(s)
- Kathleen Gallo
- Charité - Universitätsmedizin Berlin, Institute of Physiology and Science IT, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Andrean Goede
- Charité - Universitätsmedizin Berlin, Institute of Physiology and Science IT, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Robert Preissner
- Charité - Universitätsmedizin Berlin, Institute of Physiology and Science IT, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Bjoern-Oliver Gohlke
- Charité - Universitätsmedizin Berlin, Institute of Physiology and Science IT, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
30
|
UnbiasedDTI: Mitigating Real-World Bias of Drug-Target Interaction Prediction by Using Deep Ensemble-Balanced Learning. Molecules 2022; 27:molecules27092980. [PMID: 35566330 PMCID: PMC9100109 DOI: 10.3390/molecules27092980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Drug-target interaction (DTI) prediction through in vitro methods is expensive and time-consuming. On the other hand, computational methods can save time and money while enhancing drug discovery efficiency. Most of the computational methods frame DTI prediction as a binary classification task. One important challenge is that the number of negative interactions in all DTI-related datasets is far greater than the number of positive interactions, leading to the class imbalance problem. As a result, a classifier is trained biased towards the majority class (negative class), whereas the minority class (interacting pairs) is of interest. This class imbalance problem is not widely taken into account in DTI prediction studies, and the few previous studies considering balancing in DTI do not focus on the imbalance issue itself. Additionally, they do not benefit from deep learning models and experimental validation. In this study, we propose a computational framework along with experimental validations to predict drug-target interaction using an ensemble of deep learning models to address the class imbalance problem in the DTI domain. The objective of this paper is to mitigate the bias in the prediction of DTI by focusing on the impact of balancing and maintaining other involved parameters at a constant value. Our analysis shows that the proposed model outperforms unbalanced models with the same architecture trained on the BindingDB both computationally and experimentally. These findings demonstrate the significance of balancing, which reduces the bias towards the negative class and leads to better performance. It is important to note that leaning on computational results without experimentally validating them and by relying solely on AUROC and AUPRC metrics is not credible, particularly when the testing set remains unbalanced.
Collapse
|
31
|
Shao K, Zhang Y, Wen Y, Zhang Z, He S, Bo X. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph. Brief Bioinform 2022; 23:6563180. [PMID: 35380622 DOI: 10.1093/bib/bbac109] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Drug-target interaction (DTI) prediction plays an important role in drug repositioning, drug discovery and drug design. However, due to the large size of the chemical and genomic spaces and the complex interactions between drugs and targets, experimental identification of DTIs is costly and time-consuming. In recent years, the emerging graph neural network (GNN) has been applied to DTI prediction because DTIs can be represented effectively using graphs. However, some of these methods are only based on homogeneous graphs, and some consist of two decoupled steps that cannot be trained jointly. To further explore GNN-based DTI prediction by integrating heterogeneous graph information, this study regards DTI prediction as a link prediction problem and proposes an end-to-end model based on HETerogeneous graph with Attention mechanism (DTI-HETA). In this model, a heterogeneous graph is first constructed based on the drug-drug and target-target similarity matrices and the DTI matrix. Then, the graph convolutional neural network is utilized to obtain the embedded representation of the drugs and targets. To highlight the contribution of different neighborhood nodes to the central node in aggregating the graph convolution information, a graph attention mechanism is introduced into the node embedding process. Afterward, an inner product decoder is applied to predict DTIs. To evaluate the performance of DTI-HETA, experiments are conducted on two datasets. The experimental results show that our model is superior to the state-of-the-art methods. Also, the identification of novel DTIs indicates that DTI-HETA can serve as a powerful tool for integrating heterogeneous graph information to predict DTIs.
Collapse
Affiliation(s)
| | | | - Yuqi Wen
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Song He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
32
|
Prediction of Linear Cationic Antimicrobial Peptides Active against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Models. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides (AMPs) are considered as promising alternatives to conventional antibiotics in order to overcome the growing problems of antibiotic resistance. Computational prediction approaches receive an increasing interest to identify and design the best candidate AMPs prior to the in vitro tests. In this study, we focused on the linear cationic peptides with non-hemolytic activity, which are downloaded from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). Referring to the MIC (Minimum inhibition concentration) values, we have assigned a positive label to a peptide if it shows antimicrobial activity; otherwise, the peptide is labeled as negative. Here, we focused on the peptides showing antimicrobial activity against Gram-negative and against Gram-positive bacteria separately, and we created two datasets accordingly. Ten different physico-chemical properties of the peptides are calculated and used as features in our study. Following data exploration and data preprocessing steps, a variety of classification algorithms are used with 100-fold Monte Carlo Cross-Validation to build models and to predict the antimicrobial activity of the peptides. Among the generated models, Random Forest has resulted in the best performance metrics for both Gram-negative dataset (Accuracy: 0.98, Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC: 0.99, F1: 0.98) and Gram-positive dataset (Accuracy: 0.95, Recall: 0.95, Specificity: 0.95, Precision: 0.90, AUC: 0.97, F1: 0.92) after outlier elimination is applied. This prediction approach might be useful to evaluate the antibacterial potential of a candidate peptide sequence before moving to the experimental studies.
Collapse
|
33
|
Ye Q, Zhang X, Lin X. Drug-target interaction prediction via multiple classification strategies. BMC Bioinformatics 2022; 22:461. [PMID: 35057737 PMCID: PMC8772044 DOI: 10.1186/s12859-021-04366-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Computational prediction of the interaction between drugs and protein targets is very important for the new drug discovery, as the experimental determination of drug-target interaction (DTI) is expensive and time-consuming. However, different protein targets are with very different numbers of interactions. Specifically, most interactions focus on only a few targets. As a result, targets with larger numbers of interactions could own enough positive samples for predicting their interactions but the positive samples for targets with smaller numbers of interactions could be not enough. Only using a classification strategy may not be able to deal with the above two cases at the same time. To overcome the above problem, in this paper, a drug-target interaction prediction method based on multiple classification strategies (MCSDTI) is proposed. In MCSDTI, targets are firstly divided into two parts according to the number of interactions of the targets, where one part contains targets with smaller numbers of interactions (TWSNI) and another part contains targets with larger numbers of interactions (TWLNI). And then different classification strategies are respectively designed for TWSNI and TWLNI to predict the interaction. Furthermore, TWSNI and TWLNI are evaluated independently, which can overcome the problem that result could be mainly determined by targets with large numbers of interactions when all targets are evaluated together. RESULTS We propose a new drug-target interaction (MCSDTI) prediction method, which uses multiple classification strategies. MCSDTI is tested on five DTI datasets, such as nuclear receptors (NR), ion channels (IC), G protein coupled receptors (GPCR), enzymes (E), and drug bank (DB). Experiments show that the AUCs of our method are respectively 3.31%, 1.27%, 2.02%, 2.02% and 1.04% higher than that of the second best methods on NR, IC, GPCR and E for TWLNI; And AUCs of our method are respectively 1.00%, 3.20% and 2.70% higher than the second best methods on NR, IC, and E for TWSNI. CONCLUSION MCSDTI is a competitive method compared to the previous methods for all target parts on most datasets, which administrates that different classification strategies for different target parts is an effective way to improve the effectiveness of DTI prediction.
Collapse
Affiliation(s)
- Qing Ye
- Hubei Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaolong Zhang
- Hubei Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China.
| | - Xiaoli Lin
- Hubei Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
The Discovery of New Drug-Target Interactions for Breast Cancer Treatment. Molecules 2021; 26:molecules26247474. [PMID: 34946556 PMCID: PMC8704452 DOI: 10.3390/molecules26247474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Drug–target interaction (DTIs) prediction plays a vital role in probing new targets for breast cancer research. Considering the multifaceted challenges associated with experimental methods identifying DTIs, the in silico prediction of such interactions merits exploration. In this study, we develop a feature-based method to infer unknown DTIs, called PsePDC-DTIs, which fuses information regarding protein sequences extracted by pseudo-position specific scoring matrix (PsePSSM), detrended cross-correlation analysis coefficient (DCCA coefficient), and an FP2 format molecular fingerprint descriptor of drug compounds. In addition, the synthetic minority oversampling technique (SMOTE) is employed for dealing with the imbalanced data after Lasso dimensionality reduction. Then, the processed feature vectors are put into a random forest classifier to perform DTIs predictions on four gold standard datasets, including nuclear receptors (NR), G-protein-coupled receptors (GPCR), ion channels (IC), and enzymes (E). Furthermore, we explore new targets for breast cancer treatment using its risk genes identified from large-scale genome-wide genetic studies using PsePDC-DTIs. Through five-fold cross-validation, the average values of accuracy in NR, GPCR, IC, and E datasets are 95.28%, 96.19%, 96.74%, and 98.22%, respectively. The PsePDC-DTIs model provides us with 10 potential DTIs for breast cancer treatment, among which erlotinib (DB00530) and FGFR2 (hsa2263), caffeine (DB00201) and KCNN4 (hsa3783), as well as afatinib (DB08916) and FGFR2 (hsa2263) are found with direct or inferred evidence. The PsePDC-DTIs model has achieved good prediction results, establishing the validity and superiority of the proposed method.
Collapse
|
35
|
Screening of Potential Indonesia Herbal Compounds Based on Multi-Label Classification for 2019 Coronavirus Disease. BIG DATA AND COGNITIVE COMPUTING 2021. [DOI: 10.3390/bdcc5040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 pandemic spreads rapidly and requires an acceleration in the process of drug discovery. Drug repurposing can help accelerate the drug discovery process by identifying new efficacy for approved drugs, and it is considered an efficient and economical approach. Research in drug repurposing can be done by observing the interactions of drug compounds with protein related to a disease (DTI), then predicting the new drug-target interactions. This study conducted multilabel DTI prediction using the stack autoencoder-deep neural network (SAE-DNN) algorithm. Compound features were extracted using PubChem fingerprint, daylight fingerprint, MACCS fingerprint, and circular fingerprint. The results showed that the SAE-DNN model was able to predict DTI in COVID-19 cases with good performance. The SAE-DNN model with a circular fingerprint dataset produced the best average metrics with an accuracy of 0.831, recall of 0.918, precision of 0.888, and F-measure of 0.89. Herbal compounds prediction results using the SAE-DNN model with the circular, daylight, and PubChem fingerprint dataset resulted in 92, 65, and 79 herbal compounds contained in herbal plants in Indonesia respectively.
Collapse
|
36
|
Zhang Y, Jiang Z, Chen C, Wei Q, Gu H, Yu B. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier. Interdiscip Sci 2021; 14:311-330. [PMID: 34731411 DOI: 10.1007/s12539-021-00488-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Accurate prediction of drug-target interactions (DTIs), which is often used in the fields of drug discovery and drug repositioning, is regarded a key challenge in the study of drug science. In this paper, a new method called DeepStack-DTIs is proposed to predict DTIs. First, for the target protein, pseudo-position specific score matrix, pseudo amino acid composition and SPIDER3 are used to extract the different feature information of the target protein. Meanwhile, the path-based fingerprint features of each drug are extracted. Then, the synthetic minority oversampling technique (SMOTE) and light gradient boosting machine (LightGBM) are used for data balancing and feature selection, respectively. Finally, the processed features are input to the deep-stacked ensemble classifier composed of gated recurrent unit (GRU), deep neural network (DNN), support vector machine (SVM), eXtreme gradient boosting (XGBoost) and logistic regression (LR) to predict DTIs. Under the five-fold cross-validation and compared with existing methods, the proposed method achieves higher prediction accuracy on the gold standard dataset. To evaluate the predictive power of DeepStack-DTIs, we validate the method on another dataset and predict the drug-target interaction network. The results indicate that DeepStack-DTIs has excellent predictive ability than the other methods, and provides novel insights for the prediction of DTIs. A novel method DeepStack-DTIs for drug-target interactions prediction. PsePSSM, PseAAC, SPIDER3 and FP2 are fused to convert protein sequence and drug molecule information into digital information, respectively. The SMOTE algorithm is used to balance the dataset and LightGBM feature selection algorithm is employed to remove redundant and irrelevant features to select the optimal feature subset. This optimal feature subset is inputted into the deep-stacked ensemble classifier to predict drug-target interactions. The experimental results show DeepStack-DTIs method can significantly improve the prediction accuracy of drug-target interactions.
Collapse
Affiliation(s)
- Yan Zhang
- College of Mechanical and Electrical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China.,College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Zhiwen Jiang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Cheng Chen
- School of Computer Science and Technology, Shandong University, Qingdao, 266237, China
| | - Qinqin Wei
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Haiming Gu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China. .,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China. .,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, 571158, China.
| |
Collapse
|
37
|
El-Behery H, Attia AF, El-Feshawy N, Torkey H. Efficient machine learning model for predicting drug-target interactions with case study for Covid-19. Comput Biol Chem 2021; 93:107536. [PMID: 34271420 PMCID: PMC8256690 DOI: 10.1016/j.compbiolchem.2021.107536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Discover possible Drug Target Interactions (DTIs) is a decisive step in the detection of the effects of drugs as well as drug repositioning. There is a strong incentive to develop effective computational methods that can effectively predict potential DTIs, as traditional DTI laboratory experiments are expensive, time-consuming, and labor-intensive. Some technologies have been developed for this purpose, however large numbers of interactions have not yet been detected, the accuracy of their prediction still low, and protein sequences and structured data are rarely used together in the prediction process. METHODS This paper presents DTIs prediction model that takes advantage of the special capacity of the structured form of proteins and drugs. Our model obtains features from protein amino-acid sequences using physical and chemical properties, and from drugs smiles (Simplified Molecular Input Line Entry System) strings using encoding techniques. Comparing the proposed model with different existing methods under K-fold cross validation, empirical results show that our model based on ensemble learning algorithms for DTI prediction provide more accurate results from both structures and features data. RESULTS The proposed model is applied on two datasets:Benchmark (feature only) datasets and DrugBank (Structure data) datasets. Experimental results obtained by Light-Boost and ExtraTree using structures and feature data results in 98 % accuracy and 0.97 f-score comparing to 94 % and 0.92 achieved by the existing methods. Moreover, our model can successfully predict more yet undiscovered interactions, and hence can be used as a practical tool to drug repositioning. A case study of applying our prediction model on the proteins that are known to be affected by Corona viruses in order to predict the possible interactions among these proteins and existing drugs is performed. Also, our model is applied on Covid-19 related drugs announced on DrugBank. The results show that some drugs like DB00691 and DB05203 are predicted with 100 % accuracy to interact with ACE2 protein. This protein is a self-membrane protein that enables Covid-19 infection. Hence, our model can be used as an effective tool in drug reposition to predict possible drug treatments for Covid-19.
Collapse
Affiliation(s)
- Heba El-Behery
- Department of Computer Science and Engineering, Faculty of Engineering, Kafrelsheikh University, Kafr_El_Sheikh, Egypt.
| | - Abdel-Fattah Attia
- Department of Computer Science and Engineering, Faculty of Engineering, Kafrelsheikh University, Kafr_El_Sheikh, Egypt.
| | - Nawal El-Feshawy
- Computer Science & Engineering Department, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.
| | - Hanaa Torkey
- Computer Science & Engineering Department, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.
| |
Collapse
|
38
|
Chen Z, Zhao P, Li C, Li F, Xiang D, Chen YZ, Akutsu T, Daly RJ, Webb GI, Zhao Q, Kurgan L, Song J. iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization. Nucleic Acids Res 2021; 49:e60. [PMID: 33660783 PMCID: PMC8191785 DOI: 10.1093/nar/gkab122] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Sequence-based analysis and prediction are fundamental bioinformatic tasks that facilitate understanding of the sequence(-structure)-function paradigm for DNAs, RNAs and proteins. Rapid accumulation of sequences requires equally pervasive development of new predictive models, which depends on the availability of effective tools that support these efforts. We introduce iLearnPlus, the first machine-learning platform with graphical- and web-based interfaces for the construction of machine-learning pipelines for analysis and predictions using nucleic acid and protein sequences. iLearnPlus provides a comprehensive set of algorithms and automates sequence-based feature extraction and analysis, construction and deployment of models, assessment of predictive performance, statistical analysis, and data visualization; all without programming. iLearnPlus includes a wide range of feature sets which encode information from the input sequences and over twenty machine-learning algorithms that cover several deep-learning approaches, outnumbering the current solutions by a wide margin. Our solution caters to experienced bioinformaticians, given the broad range of options, and biologists with no programming background, given the point-and-click interface and easy-to-follow design process. We showcase iLearnPlus with two case studies concerning prediction of long noncoding RNAs (lncRNAs) from RNA transcripts and prediction of crotonylation sites in protein chains. iLearnPlus is an open-source platform available at https://github.com/Superzchen/iLearnPlus/ with the webserver at http://ilearnplus.erc.monash.edu/.
Collapse
Affiliation(s)
- Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Chen Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Fuyi Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Dongxu Xiang
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Yong-Zi Chen
- Laboratory of Tumor Cell Biology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Roger J Daly
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Geoffrey I Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China.,Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
39
|
Ru X, Ye X, Sakurai T, Zou Q, Xu L, Lin C. Current status and future prospects of drug-target interaction prediction. Brief Funct Genomics 2021; 20:312-322. [PMID: 34189559 DOI: 10.1093/bfgp/elab031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/09/2023] Open
Abstract
Drug-target interaction prediction is important for drug development and drug repurposing. Many computational methods have been proposed for drug-target interaction prediction due to their potential to the time and cost reduction. In this review, we introduce the molecular docking and machine learning-based methods, which have been widely applied to drug-target interaction prediction. Particularly, machine learning-based methods are divided into different types according to the data processing form and task type. For each type of method, we provide a specific description and propose some solutions to improve its capability. The knowledge of heterogeneous network and learning to rank are also summarized in this review. As far as we know, this is the first comprehensive review that summarizes the knowledge of heterogeneous network and learning to rank in the drug-target interaction prediction. Moreover, we propose three aspects that can be explored in depth for future research.
Collapse
Affiliation(s)
| | - Xiucai Ye
- Department of Computer Science, and Center for Artificial Intelligence Research (C-AIR), University of Tsukuba
| | - Tetsuya Sakurai
- Department of Computer Science and is the director of the C-AIR, University of Tsukuba
| | - Quan Zou
- University of Electronic Science and Technology of China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic
| | | |
Collapse
|
40
|
Xu L, Ru X, Song R. Application of Machine Learning for Drug-Target Interaction Prediction. Front Genet 2021; 12:680117. [PMID: 34234813 PMCID: PMC8255962 DOI: 10.3389/fgene.2021.680117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Exploring drug–target interactions by biomedical experiments requires a lot of human, financial, and material resources. To save time and cost to meet the needs of the present generation, machine learning methods have been introduced into the prediction of drug–target interactions. The large amount of available drug and target data in existing databases, the evolving and innovative computer technologies, and the inherent characteristics of various types of machine learning have made machine learning techniques the mainstream method for drug–target interaction prediction research. In this review, details of the specific applications of machine learning in drug–target interaction prediction are summarized, the characteristics of each algorithm are analyzed, and the issues that need to be further addressed and explored for future research are discussed. The aim of this review is to provide a sound basis for the construction of high-performance models.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Xiaoqing Ru
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Rong Song
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
41
|
Mahmud SMH, Al-Mustanjid M, Akter F, Rahman MS, Ahmed K, Rahman MH, Chen W, Moni MA. Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease patients. Brief Bioinform 2021; 22:6224261. [PMID: 33847347 PMCID: PMC8083324 DOI: 10.1093/bib/bbab115] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), better known as COVID-19, has become a current threat to humanity. The second wave of the SARS-CoV-2 virus has hit many countries, and the confirmed COVID-19 cases are quickly spreading. Therefore, the epidemic is still passing the terrible stage. Having idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are the risk factors of the COVID-19, but the molecular mechanisms that underlie IPF, COPD, and CVOID-19 are not well understood. Therefore, we implemented transcriptomic analysis to detect common pathways and molecular biomarkers in IPF, COPD, and COVID-19 that help understand the linkage of SARS-CoV-2 to the IPF and COPD patients. Here, three RNA-seq datasets (GSE147507, GSE52463, and GSE57148) from Gene Expression Omnibus (GEO) is employed to detect mutual differentially expressed genes (DEGs) for IPF, and COPD patients with the COVID-19 infection for finding shared pathways and candidate drugs. A total of 65 common DEGs among these three datasets were identified. Various combinatorial statistical methods and bioinformatics tools were used to build the protein–protein interaction (PPI) and then identified Hub genes and essential modules from this PPI network. Moreover, we performed functional analysis under ontologies terms and pathway analysis and found that IPF and COPD have some shared links to the progression of COVID-19 infection. Transcription factors–genes interaction, protein–drug interactions, and DEGs-miRNAs coregulatory network with common DEGs also identified on the datasets. We think that the candidate drugs obtained by this study might be helpful for effective therapeutic in COVID-19.
Collapse
Affiliation(s)
- S M Hasan Mahmud
- Computer Science and Technology from the University of Electronic Science and Technology of China, China
| | | | - Farzana Akter
- Computer Science and Engineering from Daffodil International University, Bangladesh
| | | | - Kawsar Ahmed
- Information and Communication Technology (ICT) at Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Habibur Rahman
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wenyu Chen
- University of Electronic Science and Technology of China, China
| | | |
Collapse
|
42
|
Mahmud SMH, Chen W, Liu Y, Awal MA, Ahmed K, Rahman MH, Moni MA. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques. Brief Bioinform 2021; 22:6168499. [PMID: 33709119 PMCID: PMC7989622 DOI: 10.1093/bib/bbab046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Discovering drug–target (protein) interactions (DTIs) is of great significance for researching and developing novel drugs, having a tremendous advantage to pharmaceutical industries and patients. However, the prediction of DTIs using wet-lab experimental methods is generally expensive and time-consuming. Therefore, different machine learning-based methods have been developed for this purpose, but there are still substantial unknown interactions needed to discover. Furthermore, data imbalance and feature dimensionality problems are a critical challenge in drug-target datasets, which can decrease the classifier performances that have not been significantly addressed yet. This paper proposed a novel drug–target interaction prediction method called PreDTIs. First, the feature vectors of the protein sequence are extracted by the pseudo-position-specific scoring matrix (PsePSSM), dipeptide composition (DC) and pseudo amino acid composition (PseAAC); and the drug is encoded with MACCS substructure fingerings. Besides, we propose a FastUS algorithm to handle the class imbalance problem and also develop a MoIFS algorithm to remove the irrelevant and redundant features for getting the best optimal features. Finally, balanced and optimal features are provided to the LightGBM Classifier to identify DTIs, and the 5-fold CV validation test method was applied to evaluate the prediction ability of the proposed method. Prediction results indicate that the proposed model PreDTIs is significantly superior to other existing methods in predicting DTIs, and our model could be used to discover new drugs for unknown disorders or infections, such as for the coronavirus disease 2019 using existing drugs compounds and severe acute respiratory syndrome coronavirus 2 protein sequences.
Collapse
Affiliation(s)
- S M Hasan Mahmud
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenyu Chen
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yongsheng Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Md Abdul Awal
- Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Kawsar Ahmed
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Mohammad Ali Moni
- UNSW Digital Health, WHO Center for eHealth, School of Public Health and Community Medicine, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
43
|
Lim S, Lu Y, Cho CY, Sung I, Kim J, Kim Y, Park S, Kim S. A review on compound-protein interaction prediction methods: Data, format, representation and model. Comput Struct Biotechnol J 2021; 19:1541-1556. [PMID: 33841755 PMCID: PMC8008185 DOI: 10.1016/j.csbj.2021.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/27/2023] Open
Abstract
There has recently been a rapid progress in computational methods for determining protein targets of small molecule drugs, which will be termed as compound protein interaction (CPI). In this review, we comprehensively review topics related to computational prediction of CPI. Data for CPI has been accumulated and curated significantly both in quantity and quality. Computational methods have become powerful ever to analyze such complex the data. Thus, recent successes in the improved quality of CPI prediction are due to use of both sophisticated computational techniques and higher quality information in the databases. The goal of this article is to provide reviews of topics related to CPI, such as data, format, representation, to computational models, so that researchers can take full advantages of these resources to develop novel prediction methods. Chemical compounds and protein data from various resources were discussed in terms of data formats and encoding schemes. For the CPI methods, we grouped prediction methods into five categories from traditional machine learning techniques to state-of-the-art deep learning techniques. In closing, we discussed emerging machine learning topics to help both experimental and computational scientists leverage the current knowledge and strategies to develop more powerful and accurate CPI prediction methods.
Collapse
Affiliation(s)
- Sangsoo Lim
- Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea
| | - Yijingxiu Lu
- Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Chang Yun Cho
- Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
| | - Inyoung Sung
- Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
| | - Jungwoo Kim
- Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Youngkuk Kim
- Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sungjoon Park
- Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sun Kim
- Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea
- Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Jesus J, Canuto A, Araújo D. An exploratory analysis of data noisy scenarios in a Pareto-front based dynamic feature selection method. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2020.106951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Hasan Mahmud SM, Chen W, Jahan H, Dai B, Din SU, Dzisoo AM. DeepACTION: A deep learning-based method for predicting novel drug-target interactions. Anal Biochem 2020; 610:113978. [PMID: 33035462 DOI: 10.1016/j.ab.2020.113978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Drug-target interactions (DTIs) play a key role in drug development and discovery processes. Wet lab prediction of DTIs is time-consuming, expensive, and tedious. Fortunately, computational approaches can identify new interactions (drug-target pairs) and accelerate the process of drug repurposing. However, a vast number of interactions remain undiscovered; therefore, we proposed a deep learning-based method (deepACTION) for predicting potential or unknown DTIs. Here, each drug chemical structure and protein sequence are transformed according to structural and sequence information using different descriptors to represent their features correctly. There have been some challenges, such as the high dimensionality and class imbalance of data during the prediction process. To address these problems, we developed the MMIB technique to balance the majority and minority instances in the dataset and utilized a LASSO model to handle the high dimensionality of the data. In addition, we trained the convolutional neural network algorithm with balanced and reduced features for accurate prediction of DTIs. In this study, the AUC is considered a primary evaluation metric for comparing the performance of the deep ACTION model with that of existing methods by a 5-fold cross-validation test. Our experiential dataset obtained from the DrugBank database and our deepACTION model achieved an AUC of 0.9836 for this dataset. The experimental results ensured that the model can predict significant numbers of new DTIs and provide complete information to motivate scientists to develop drugs.
Collapse
Affiliation(s)
- S M Hasan Mahmud
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wenyu Chen
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Hosney Jahan
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Bo Dai
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Salah Ud Din
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Anthony Mackitz Dzisoo
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
46
|
Ensemble Learning Prediction of Drug-Target Interactions Using GIST Descriptor Extracted from PSSM-Based Evolutionary Information. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4516250. [PMID: 32908888 PMCID: PMC7463380 DOI: 10.1155/2020/4516250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022]
Abstract
Identifying the drug-target interactions (DTIs) plays an essential role in new drug development. However, there still has the limited knowledge of DTIs and a significant number of unknown DTI pairs. Moreover, the traditional experimental methods have inevitable disadvantages such as high cost and time-consuming. Therefore, developing computational methods for predicting DTIs is attracting more and more attention. In this study, we report a novel computational approach for predicting DTI using GIST feature, position-specific scoring matrix (PSSM), and rotation forest (RF). Specifically, each target protein is first converted into a PSSM for retaining evolutionary information. Then, the GIST feature is extracted from PSSM and substructure fingerprint information is adopted to extract the feature of the drug. Finally, combining each protein and drug features to form a new drug-target pair, which is employed as input feature for RF classifier. In the experiment, the proposed method achieves high average accuracies of 89.25%, 85.93%, 82.36%, and 73.89% on enzyme, ion channel, G protein-coupled receptors (GPCRs), and nuclear receptor, respectively. For further evaluating the prediction performance of the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the same golden standard dataset. These promising results illustrate that the proposed method is more effective and stable than other methods. We expect the proposed method to be a useful tool for predicting large-scale DTIs.
Collapse
|
47
|
Al-Mustanjid M, Mahmud SMH, Royel MRI, Rahman MH, Islam T, Rahman MR, Moni MA. Detection of molecular signatures and pathways shared in inflammatory bowel disease and colorectal cancer: A bioinformatics and systems biology approach. Genomics 2020; 112:3416-3426. [PMID: 32535071 DOI: 10.1016/j.ygeno.2020.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/03/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Emerging evidence indicates IBD is a risk factor for the increasing incidence of colorectal cancer (CRC) development. We used a system biology approach to identify common molecular signatures and pathways that interact between IBD and CRC and the indispensable pathological mechanisms. First, we identified 177 common differentially expressed genes (DEGs) between IBD and CRC. Gene set enrichment, protein-protein, DEGs-transcription factors, DEGs-microRNAs, protein-drug interaction, gene-disease association, Gene Ontology, pathway enrichment analyses were conducted to these common genes. The inclusion of common DEGs with bimolecular networks disclosed hub proteins (LYN, PLCB1, NPSR1, WNT5A, CDC25B, CD44, RIPK2, ASAP1), transcription factors (SCD, SLC7A5, IKZF3, SLC16A1, SLC7A11) and miRNAs (mir-335-5p, mir-26b-5p, mir-124-3p, mir-16-5p, mir-192-5p, mir-548c-3p, mir-29b-3p, mir-155-5p, mir-21-5p, mir-15a-5p). Analysis of the interaction between protein and drug discovered ASAP1 interacts with cysteine sulfonic acid and double oxidized cysteine drug compounds. Gene-disease association analysis retrieved ASAP1 also associated with pulmonary and bladder neoplasm diseases.
Collapse
Affiliation(s)
- Md Al-Mustanjid
- Department of Software Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka 1207, Bangladesh
| | - S M Hasan Mahmud
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Md Rejaul Islam Royel
- Department of Software Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md Habibur Rahman
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tania Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Rezanur Rahman
- Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali, University, Enayetpur, Sirajganj 6751, Bangladesh
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Australia.
| |
Collapse
|