1
|
Wang W, Gong J. Identification of Key Nucleotide Metabolism Genes in Diabetic Retinopathy Based on Bioinformatics Analysis and Experimental Verification. BIOLOGY 2025; 14:409. [PMID: 40282274 PMCID: PMC12024606 DOI: 10.3390/biology14040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
A dysregulated nucleotide metabolism has been implicated in the pathogenesis of diabetic retinopathy (DR). RNA sequencing datasets, GSE102485, GSE60436, and GSE165784, were downloaded from the GEO database. The differentially expressed genes (DEGs) between the DR and controls overlapped with nucleotide metabolism-related genes (NM-RGs), resulting in the differentially expressed NM-RGs (DE-NMRGs). Next, the core genes were identified by the five algorithms of the CytoHubba plugin. Receiver Operating Characteristic (ROC) curves and gene expression analysis were utilized to confirm the biomarkers. Then, the correlations between biomarker expression and the immune-related module were analyzed. The miRNA and transcription factor (TF) predictions, biomarker-targeting drugs, and molecular docking were implemented separately. The interaction between each subcluster of DR was elucidated through single-cell RNA (scRNA) analysis. Moreover, RT-PCR was applied to verify the expression of the biomarkers. In GSE102485, 48 DE-NMRGs were identified via the intersection of 1359 DEGs and 882 NM-RGs. Using the CytoHubba plugin, HMOX1, TLR4, and ACE were selected as core genes. As per the GSVA result, the interferon alpha response, IL6_JAK_STAT3 signaling, and apoptosis were activated in the DR group. The TF prediction identified TLR4 and HMOX1 as potential target genes of USF2. In conclusion, ACE and HMOX1 were possible diagnostic biomarkers related to nucleotide metabolism in DR.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
- Anhui Public Health Clinical Center, Hefei 230022, China
| | - Jianyang Gong
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
- Anhui Public Health Clinical Center, Hefei 230022, China
| |
Collapse
|
2
|
Nazir A, Shad M, Rehman HM, Azim N, Sajjad M. Application of SUMO fusion technology for the enhancement of stability and activity of lysophospholipase from Pyrococcus abyssi. World J Microbiol Biotechnol 2024; 40:183. [PMID: 38722449 DOI: 10.1007/s11274-024-03998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability. In current research, a simple, efficient and cost-effective method is being discussed for the construction of pET28a-SUMO vector. In order to improve the stability and activity of lysophospholipase from Pyrococcus abyssi (Pa-LPL), a 6xHis-SUMO tag was fused to N-terminal of Pa-LPL by using pET28a-SUMO vector. Recombinant SUMO-fused enzyme (6 H-S-PaLPL) works optimally at 35 °C and pH 6.5 with remarkable thermostability at 35-95 °C. Thermo-inactivation kinetics of 6 H-S-PaLPL were also studied at 35-95 °C with first order rate constant (kIN) of 5.58 × 10- 2 h-1 and half-life of 12 ± 0 h at 95 °C. Km and Vmax for the hydrolysis of 4-nitrophenyl butyrate were calculated to be 2 ± 0.015 mM and 3882 ± 22.368 U/mg, respectively. 2.4-fold increase in Vmax of Pa-LPL was observed after fusion of 6xHis-SUMO tag to its N-terminal. It is the first report on the utilization of SUMO fusion tag to enhance the overall stability and activity of Pa-LPL. Fusion of 6xHis-SUMO tag not only aided in the purification process but also played a crucial role in increasing the thermostability and activity of the enzyme. SUMO-fused enzyme, thus generated, can serve as an important candidate for degumming of vegetable oils at industrial scale.
Collapse
Affiliation(s)
- Arshia Nazir
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohsin Shad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Naseema Azim
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
3
|
Colon-Targeted eNAMPT-Specific Peptide Systems for Treatment of DSS-Induced Acute and Chronic Colitis in Mouse. Antioxidants (Basel) 2022; 11:antiox11122376. [PMID: 36552583 PMCID: PMC9774280 DOI: 10.3390/antiox11122376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) is required to maintain the NAD+ pool, among which extracellular (e) NAMPT is associated with inflammation, mainly mediated by macrophages. However, the role of (e) NAMPT in inflammatory macrophages in ulcerative colitis is insufficiently understood. Here our analyses of single-cell RNA-seq data revealed that the levels of NAMPT and CYBB/NOX2 in macrophages were elevated in patients with colitis and in mouse models of acute and chronic colitis. These findings indicate the clinical significance of NAMPT and CYBB in colitis. Further, we found that eNAMPT directly binds the extracellular domains of CYBB and TLR4 in activated NLRP3 inflammasomes. Moreover, we developed a recombinant 12-residue TK peptide designated colon-targeted (CT)-conjugated multifunctional NAMPT (rCT-NAMPT), comprising CT as the colon-targeting moiety, which harbors the minimal essential residues required for CYBB/TLR4 binding. rCT-NAMPT effectively suppressed the severity of disease in DSS-induced acute and chronic colitis models through targeting the colon and inhibiting the interaction of NAMPT with CYBB or TLR4. Together, our data show that rCT-NAMPT may serve as an effective novel candidate therapeutic for colitis by modulating the NLRP3 inflammasome-mediated immune signaling system.
Collapse
|
4
|
Identification of early and intermediate biomarkers for ARDS mortality by multi-omic approaches. Sci Rep 2021; 11:18874. [PMID: 34556700 PMCID: PMC8460799 DOI: 10.1038/s41598-021-98053-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
The lack of successful clinical trials in acute respiratory distress syndrome (ARDS) has highlighted the unmet need for biomarkers predicting ARDS mortality and for novel therapeutics to reduce ARDS mortality. We utilized a systems biology multi-“omics” approach to identify predictive biomarkers for ARDS mortality. Integrating analyses were designed to differentiate ARDS non-survivors and survivors (568 subjects, 27% overall 28-day mortality) using datasets derived from multiple ‘omics’ studies in a multi-institution ARDS cohort (54% European descent, 40% African descent). ‘Omics’ data was available for each subject and included genome-wide association studies (GWAS, n = 297), RNA sequencing (n = 93), DNA methylation data (n = 61), and selective proteomic network analysis (n = 240). Integration of available “omic” data identified a 9-gene set (TNPO1, NUP214, HDAC1, HNRNPA1, GATAD2A, FOSB, DDX17, PHF20, CREBBP) that differentiated ARDS survivors/non-survivors, results that were validated utilizing a longitudinal transcription dataset. Pathway analysis identified TP53-, HDAC1-, TGF-β-, and IL-6-signaling pathways to be associated with ARDS mortality. Predictive biomarker discovery identified transcription levels of the 9-gene set (AUC-0.83) and Day 7 angiopoietin 2 protein levels as potential candidate predictors of ARDS mortality (AUC-0.70). These results underscore the value of utilizing integrated “multi-omics” approaches in underpowered datasets from racially diverse ARDS subjects.
Collapse
|
5
|
Zhang Y, Gao H, Qi X, Gao S, Xu S, Wang H, An Y. Efficient Molecular Biological Manipulations with Improved Strategies Based on Novel Escherichia coli Vectors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5086-5095. [PMID: 33882667 DOI: 10.1021/acs.jafc.1c00109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, some novel plasmids have been constructed for flexible and zero-background molecular cloning, more efficient expression, and purification of proteins with improved strategies. The plasmids pANY4-pL18-ccdB and pANY4-pR18/pL18-ccdB have different promoters in the complementary DNA strands. Therefore, recombinant plasmids for either isopropyl-β-d-thiogalactoside-induced or temperature-induced protein expression could be simultaneously constructed in a single molecular cloning process for parallel comparison. Intriguingly, the mutated pL18 and pR18/pL18 promoters performed similar to or even better than the T7 promoter when used for promoting the expression of the GFP or pfLamA enzyme. Moreover, the plasmid pANY8 containing the His-elastin-like polypeptide (ELP)-intein multifunctional tag was constructed, and special purification protocol was designed to obtain purified proteins without the requirement of time-consuming dialysis steps to remove imidazole and high concentration of salt ions. Additionally, the urea-based denaturation and refolding processes can be conveniently integrated into the ELP-mediated precipitation protocol for purification of insoluble inclusion bodies, omitting the time-consuming dialysis steps.
Collapse
Affiliation(s)
- Yifeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Herui Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Shumin Xu
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Hongling Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Yingfeng An
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
6
|
Wang G, Zhou Y, Ma K, Zhang F, Ye J, Zhong G, Yang X. Bioconversion of recombinantly produced precursor peptide pqqA into pyrroloquinoline quinone (PQQ) using a cell-free in vitro system. Protein Expr Purif 2020; 178:105777. [PMID: 33069826 DOI: 10.1016/j.pep.2020.105777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/11/2023]
Abstract
Pyrroloquinoline quinone (PQQ) has been recognized as the third class of redox cofactors in addition to the well-known nicotinamides (NAD(P)+) and flavins (FAD, FMN). It plays important physiological roles in various organisms and has strong antioxidant properties. The biosynthetic pathway of PQQ involves a gene cluster composed of 4-7 genes, named pqqA-G, among which pqqA is a key gene for PQQ synthesis, encoding the precursor peptide PqqA. To produce recombinant PqqA in E. coli, fusion tags were used to increase the stability and solubility of the peptide, as well simplify the scale-up of the fermentation process. In this paper, pqqA from Gluconobacter oxydans 621H was expressed in E. coli BL21 (DE3) as a fusion protein with SUMO and purified using a hexahistidine (His6) tag. The SUMO fusion protein and His6 tag were specifically recognized and cleaved by the SUMO specific ULP protease, and immobilized-metal affinity chromatography was used to obtain high-purity precursor peptide PqqA. Expression and purification of target proteins was confirmed by Tricine-SDS-PAGE. Finally, the synthesis of PQQ in a cell-free enzymatic reaction in vitro was confirmed by LC-MS.
Collapse
Affiliation(s)
- Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China; School of Food and Bioengineering/Collaborative Innovation Center for Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yifei Zhou
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China; School of Food and Bioengineering/Collaborative Innovation Center for Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ke Ma
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China; School of Food and Bioengineering/Collaborative Innovation Center for Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, People's Republic of China
| | - Fan Zhang
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China; School of Food and Bioengineering/Collaborative Innovation Center for Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jianbin Ye
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China; School of Food and Bioengineering/Collaborative Innovation Center for Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, People's Republic of China
| | - Guifang Zhong
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China; School of Food and Bioengineering/Collaborative Innovation Center for Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xuepeng Yang
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China; School of Food and Bioengineering/Collaborative Innovation Center for Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
7
|
Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation. Front Oncol 2020; 10:358. [PMID: 32266141 PMCID: PMC7096376 DOI: 10.3389/fonc.2020.00358] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|