1
|
Li H, Yan J, Jiang L, Zhao Y, Song Y, Yu J, Cheng L. Selective and Sensitive Detection of Hg 2+ and Ag + by a Fluorescent and Colorimetric Probe with Large Stokes Shift. J Fluoresc 2024; 34:2793-2806. [PMID: 37922113 DOI: 10.1007/s10895-023-03478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2023]
Abstract
Development of fluorescent sensors with large Stokes shift for selective detection of heavy metals is of great importance. A novel fluorescent probe with extremely large Stokes shift (212 nm) was synthesized for selective and simultaneous detection of Hg2+ and Ag+ ions. The deep yellow probe turned colorless or pale yellow after addition of Hg2+ or Ag+. The new probe could be utilized for absorption spectral detection of Hg2+ and Ag+ both in ethanol and aqueous solution. Addition of Hg2+ and Ag+ ions caused significant decrease in the fluorescence intensity of the new probe and the selective recognition of Hg2+ and Ag+ was not interfered by common competitive metal ions including Li+, Na+, K+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Ca2+, Mg2+, Al3+, Cr3+ and Fe3+. The detection limit for Hg2+ and Ag+ was calculated to be 4.68 μM and 4.29 μM, respectively. Application of the new probe for quantitative determination of Hg2+ and Ag+ concentrations in real water samples was accomplished.
Collapse
Affiliation(s)
- Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiabao Yan
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lin Jiang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yong Zhao
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, 232038, Anhui Province, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jirui Yu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lang Cheng
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Raina J, Kaur G, Singh I. Recent progress in nanomaterial-based aptamers as biosensors for point of care detection of Hg 2+ ions and its environmental applications. Talanta 2024; 277:126372. [PMID: 38865954 DOI: 10.1016/j.talanta.2024.126372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Among the foremost persistent heavy metal ions in the ecosystem, mercury (Hg2+) remains intimidating to the environment by producing a catastrophic effect on the environment as well as on mankind due to the exacerbation of anthropogenic activities. Therefore, it has become necessary to develop superlative techniques for its detection even at low concentrations. The conventional approaches for Hg2+ ions are quite laborious, and expensive, and require expertise in operating sophisticated instruments. To overcome these limitations, aptamer-based biosensors emerged as a promising tool for its detection. DNA-based aptamers have evolved as a significant technique by detecting them even in ppb levels. This review outlines the progress in aptamer-based biosensors from the year 2019-2023 by inducing changes in the electrochemical signal or by fluorescent/colorimetric approaches. The electrochemical sensors used nanomaterial electrodes for increasing the sensitivity whereas fluorescent and colorimetric sensors exhibit quenching or strong fluorescence in the presence of Hg2+ ions depending upon the prevailing mechanism or visible color changes. This perturbation in the signals could be attributed to the formation of the T-Hg2+ -T complex with the aptamers in the presence of ions revealing its real-time and biological applications in living or cancerous cells. Furthermore, next-generation biosensors are suggested to bring a paradigm shift to the integration of high-end smartphones, machine learning, artificial intelligence, etc.
Collapse
Affiliation(s)
- Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India, 144411
| | - Gurdeep Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India, 144411
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India, 144411.
| |
Collapse
|
3
|
Nikkey, Swami S, Sharma N, Saini A. Captivating nano sensors for mercury detection: a promising approach for monitoring of toxic mercury in environmental samples. RSC Adv 2024; 14:18907-18941. [PMID: 38873550 PMCID: PMC11167620 DOI: 10.1039/d4ra02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Mercury, a widespread highly toxic environmental pollutant, poses significant risks to both human health and ecosystems. It commonly infiltrates the food chain, particularly through fish, and water resources via multiple pathways, leading to adverse impacts on human health and the environment. To monitor and keep track of mercury ion levels various methods traditionally have been employed. However, conventional detection techniques are often hindered by limitations. In response to challenges, nano-sensors, capitalizing on the distinctive properties of nanomaterials, emerge as a promising solution. This comprehensive review provides insight into the extensive spectrum of nano-sensor development for mercury detection. It encompasses various types of nanomaterials such as silver, gold, silica, magnetic, quantum dot, carbon dot, and electrochemical variants, elucidating their sensing mechanisms and fabrication. The aim of this review is to offer an in-depth exploration to researchers, technologists, and the scientific community, and understanding of the evolving landscape in nano-sensor development for mercury sensing. Ultimately, this review aims to encourage innovation in the pursuit of efficient and reliable solutions for mercury detection, thereby contributing to advancements in environmental protection and public health.
Collapse
Affiliation(s)
- Nikkey
- Department of Chemistry, Chandigarh University NH-05, Ludhiana - Chandigarh State Hwy Mohali Punjab 140413 India
| | - Suman Swami
- Department of Chemistry, Chandigarh University NH-05, Ludhiana - Chandigarh State Hwy Mohali Punjab 140413 India
| | - Neelam Sharma
- Department of Chemistry, Manipal University Jaipur Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza Jaipur Rajasthan 303007 India
| | - Ajay Saini
- Central Analytical Facilities, Manipal University Jaipur Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza Jaipur Rajasthan 303007 India
| |
Collapse
|
4
|
Gao Y, Wang Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. APPLIED PHYSICS REVIEWS 2024; 11:011306. [PMID: 38784221 PMCID: PMC11115426 DOI: 10.1063/5.0171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Graphene-based materials and DNA probes/nanostructures have emerged as building blocks for constructing powerful biosensors. Graphene-based materials possess exceptional properties, including two-dimensional atomically flat basal planes for biomolecule binding. DNA probes serve as excellent selective probes, exhibiting specific recognition capabilities toward diverse target analytes. Meanwhile, DNA nanostructures function as placement scaffolds, enabling the precise organization of molecular species at nanoscale and the positioning of complex biomolecular assays. The interplay of DNA probes/nanostructures and graphene-based materials has fostered the creation of intricate hybrid materials with user-defined architectures. This advancement has resulted in significant progress in developing novel biosensors for detecting DNA, RNA, small molecules, and proteins, as well as for DNA sequencing. Consequently, a profound understanding of the interactions between DNA and graphene-based materials is key to developing these biological devices. In this review, we systematically discussed the current comprehension of the interaction between DNA probes and graphene-based materials, and elucidated the latest advancements in DNA probe-graphene-based biosensors. Additionally, we concisely summarized recent research endeavors involving the deposition of DNA nanostructures on graphene-based materials and explored imminent biosensing applications by seamlessly integrating DNA nanostructures with graphene-based materials. Finally, we delineated the primary challenges and provided prospective insights into this rapidly developing field. We envision that this review will aid researchers in understanding the interactions between DNA and graphene-based materials, gaining deeper insight into the biosensing mechanisms of DNA-graphene-based biosensors, and designing novel biosensors for desired applications.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
5
|
Azzouz A, Hejji L, Kumar V, Kim KH. Nanomaterials-based aptasensors: An efficient detection tool for heavy-metal and metalloid ions in environmental and biological samples. ENVIRONMENTAL RESEARCH 2023; 238:117170. [PMID: 37722582 DOI: 10.1016/j.envres.2023.117170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur S/n, 23700, Linares, Jaén, Spain
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
6
|
Zhu J, Wang D, Yu H, Yin H, Wang L, Shen G, Geng X, Yang L, Fei Y, Deng Y. Advances in colorimetric aptasensors for heavy metal ion detection utilizing nanomaterials: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6320-6343. [PMID: 37965993 DOI: 10.1039/d3ay01815f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Heavy metal ion contamination poses significant environmental and health risks, necessitating rapid and efficient detection methods. In the last decade, colorimetric aptasensors have emerged as powerful tools for heavy metal ion detection, owing to their notable attributes such as high specificity, facile synthesis, adaptability to modifications, long-term stability, and heightened sensitivity. This comprehensive overview summarizes the key developments in this field over the past ten years. It discusses the principles, design strategies, and innovative techniques employed in colorimetric aptasensors using nanomaterials. Recent advancements in enhancing sensitivity, selectivity, and on-site applicability are highlighted. The review also presents application studies of successful heavy metal ion detection using colorimetric aptasensors, underlining their potential for environmental monitoring and health protection. Finally, future directions and challenges in the continued evolution of these aptasensors are outlined.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Danfeng Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Hong Yu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Hao Yin
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Lumei Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Guoqing Shen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Xueqing Geng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Linnan Yang
- School of Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Yongcheng Fei
- Eryuan County Inspection and Testing Institute, Yunnan 671299, China
| | - Yun Deng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
- Eryuan County Inspection and Testing Institute, Yunnan 671299, China
| |
Collapse
|
7
|
Economou A, Kokkinos C, Bousiakou L, Hianik T. Paper-Based Aptasensors: Working Principles, Detection Modes, and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:7786. [PMID: 37765843 PMCID: PMC10536119 DOI: 10.3390/s23187786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Aptamers are short oligonucleotides designed to possess high binding affinity towards specific target compounds (ions, molecules, or cells). Due to their function and unique advantages, aptamers are considered viable alternatives to antibodies as biorecognition elements in bioassays and biosensors. On the other hand, paper-based devices (PADs) have emerged as a promising and powerful technology for the fabrication of low-cost analytical tools, mainly intended for on-site and point-of-care applications. The present work aims to provide a comprehensive overview of paper-based aptasensors. The review describes the fabrication methods and working principles of paper-based devices, the properties of aptamers as bioreceptors, the different modes of detection used in conjunction with aptasensing PADs, and representative applications for the detection of ions, small molecules, proteins, and cells. The future challenges and prospects of these devices are also discussed.
Collapse
Affiliation(s)
- Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Leda Bousiakou
- IMD Laboratories Co., R&D Section, Lefkippos Technology Park, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, P.O. Box 60037, 15130 Athens, Greece;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 84248 Bratislava, Slovakia;
| |
Collapse
|
8
|
Gunasekaran P, Immanuel David C, Shanmugam S, Ramanagul K, Rajendran R, Gothandapani V, Kannan VR, Prabhu J, Nandhakumar R. Positional Isomeric Symmetric Dipodal Receptors Dangled with Rotatable Binding Scaffolds: Fluorescent Sensing of Silver Ions and Sequential Detection of l-Histidine and Their Multifarious Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:802-814. [PMID: 36548786 DOI: 10.1021/acs.jafc.2c05823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Three simple dipodal artificial acyclic symmetric receptors, SDO, SDM, and SDP, driven by positional isomerism based on xylelene scaffolds were designed, synthesized, and characterized by 1H NMR, 13C NMR, and mass spectroscopy techniques. Probes SDO, SDM, and SDP demonstrated selective detection of Ag+ metal ions and amino acid l-histidine in a DMSO-H2O solution (1:1 v/v, HEPES 50 mM, pH = 7.4). The detection of Ag+ metal ions occurred in three ways: (i) inhibition of the photoinduced electron-transfer (PET) process, (ii) blueshifted fluorescence enhancement via the intramolecular charge-transfer (ICT) process, and (iii) restricted rotation of the dangling benzylic scaffold following coordination with a Ag+ metal ion. Job's plot analysis and quantum yields confirm the binding of probes to Ag+ in 1:1, 1:2, and 1:2 ratios with LODs and LOQs found to be 1.3 μM and 3.19 × 10-7 M, 6.40 × 10-7 and 2.44 × 10 -6 M, and 9.76 × 10-7 and 21.01 × 10-7 M, respectively. 1H NMR titration, HRMS, ESI-TOF, IR analysis, and theoretical DFT investigations were also used to establish the binding stoichiometry. Furthermore, the probes were utilized for the detection of Ag+ ions in water samples, food samples, soil analysis, and bacterial imaging in Escherichia coli cells and a molecular logic gate was constructed.
Collapse
Affiliation(s)
- Prabakaran Gunasekaran
- Fluorensic Materials Lab, Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore 641 114, India
| | - Charles Immanuel David
- Fluorensic Materials Lab, Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore 641 114, India
| | - Suresh Shanmugam
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia
| | | | - Ramya Rajendran
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | - Velu Rajesh Kannan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Jeyaraj Prabhu
- Fluorensic Materials Lab, Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore 641 114, India
| | - Raju Nandhakumar
- Fluorensic Materials Lab, Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore 641 114, India
| |
Collapse
|
9
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
10
|
Jarczewska M, Szymczyk A, Zajda J, Olszewski M, Ziółkowski R, Malinowska E. Recent Achievements in Electrochemical and Optical Nucleic Acids Based Detection of Metal Ions. Molecules 2022; 27:7481. [PMID: 36364308 PMCID: PMC9657803 DOI: 10.3390/molecules27217481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2024] Open
Abstract
Recently nucleic acids gained considerable attention as selective receptors of metal ions. This is because of the possibility of adjusting their sequences in new aptamers selection, as well as the convenience of elaborating new detection mechanisms. Such a flexibility allows for easy utilization of newly emerging nanomaterials for the development of detection devices. This, in turn, can significantly increase, e.g., analytical signal intensity, both optical and electrochemical, and the same can allow for obtaining exceptionally low detection limits and fast biosensor responses. All these properties, together with low power consumption, make nucleic acids biosensors perfect candidates as detection elements of fully automatic portable microfluidic devices. This review provides current progress in nucleic acids application in monitoring environmentally and clinically important metal ions in the electrochemical or optical manner. In addition, several examples of such biosensor applications in portable microfluidic devices are shown.
Collapse
Affiliation(s)
- Marta Jarczewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University ofTechnology, Koszykowa 75, 00-664 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
11
|
Shen Y, Nie C, Wei Y, Zheng Z, Xu ZL, Xiang P. FRET-based innovative assays for precise detection of the residual heavy metals in food and agriculture-related matrices. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Heavy Metal Ions Trigger a Fluorescent Quenching in DNA–Organic Semiconductor Hybrid Assemblies. Polymers (Basel) 2022; 14:polym14173591. [PMID: 36080666 PMCID: PMC9460141 DOI: 10.3390/polym14173591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The significance of DNA is no longer limited to its role as a biological information carrier; as a natural polymer, it also become in the field of materials. Single-stranded DNA (ssDNA) molecules with specific sequences can form a G-quadruplex or hairpin-shaped conformation with specific heavy metal ions through coordination bonds. In this study, ssDNA molecules of the four sequences were prepared into hybrid assemblies with one of the famous display materials, the tris-(8-hydroxyquinoline)aluminum (Alq3) semiconductor. Based on these hybrid assemblies, heavy metal ions, namely Pb2+, Hg2+, Cd2+ and As3+, were detected individually at the ppb level. Apart from this, in practical application, many samples containing heavy metal ions are digested with acid. By introducing MES buffer solution, the influence of acidity on the fluorescent signal of Alq3 was excluded. This strategy showed promising results in the practical application of detecting heavy metal ions in shrub branches and leaves.
Collapse
|
13
|
Ullah S, Zahra QUA, Mansoorianfar M, Hussain Z, Ullah I, Li W, Kamya E, Mehmood S, Pei R, Wang J. Heavy Metal Ions Detection Using Nanomaterials-Based Aptasensors. Crit Rev Anal Chem 2022; 54:1399-1415. [PMID: 36018260 DOI: 10.1080/10408347.2022.2115287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Heavy metals ions as metallic pollutants are a growing global issue due to their adverse effects on the aquatic ecosystem, and human health. Unfortunately, conventional detection methods such as atomic absorption spectrometry exhibit a relatively low limit of detection and hold numerous disadvantages, and therefore, the development of an efficient method for in-situ and real-time detection of heavy metal residues is of great importance. The aptamer-based sensors offer distinct advantages over antibodies and emerged as a robust sensing platform against various heavy metals due to their high sensitivity, ease of production, simple operations, excellent specificity, better stability, low immunogenicity, and cost-effectiveness. The nucleic acid aptamers in conjugation with nanomaterials can bind to the metal ions with good specificity/selectivity and can be used for on-site monitoring of metal ion residues. This review aimed to provide background information about nanomaterials-based aptasensor, recent advancements in aptamer conjunction on nanomaterials surface, the role of nanomaterials in improving signal transduction, recent progress of nanomaterials-based aptasening procedures (from 2010 to 2022), and future perspectives toward the practical applications of nanomaterials-based aptasensors against hazardous metal ions for food safety and environmental monitoring.
Collapse
Affiliation(s)
- Salim Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Zahid Hussain
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Ismat Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Edward Kamya
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Shah Mehmood
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| |
Collapse
|
14
|
Khoshbin Z, Moeenfard M, Zahraee H, Davoodian N. A fluorescence imaging-supported aptasensor for sensitive monitoring of cadmium pollutant in diverse samples: A critical role of metal organic frameworks. Talanta 2022; 246:123514. [DOI: 10.1016/j.talanta.2022.123514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022]
|
15
|
Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8188-8206. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food safety is an issue that cannot be ignored at any time because of the great impact of food contaminants on people's daily life, social production, and the economy. Because of the extensive demand for high-quality food, it is necessary to develop rapid, reliable, and efficient devices for food contaminant detection. Microfluidic paper-based analytical devices (μPADs) have been applied in a variety of detection fields owing to the advantages of low-cost, ease of handling, and portability. This review systematically discusses the latest progress of μPADs, including the fundamentals of fabrication as well as applications in the detection of chemical and biological hazards in foods, hoping to provide suitable screening strategies for contaminants in foods and accelerating the technology transformation of μPADs from the lab into the field.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jiarui Cui
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liu Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Jinan, 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
16
|
Role of Förster Resonance Energy Transfer in Graphene-Based Nanomaterials for Sensing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Förster resonance energy transfer (FRET)-based fluorescence sensing of various target analytes has been of growing interest in the environmental, bioimaging, and diagnosis fields. Graphene-based zero- (0D) to two-dimensional (2D) nanomaterials, such as graphene quantum dots (GQDs), graphene oxide (GO), reduced graphene oxide (rGO), and graphdiyne (GD), can potentially be employed as donors/acceptors in FRET-based sensing approaches because of their unique electronic and photoluminescent properties. In this review, we discuss the basics of FRET, as well as the role of graphene-based nanomaterials (GQDs, GO, rGO, and GD) for sensing various analytes, including cations, amino acids, explosives, pesticides, biomolecules, bacteria, and viruses. In addition, the graphene-based nanomaterial sensing strategy could be applied in environmental sample analyses, and the reason for the lower detection ranges (micro- to pico-molar concentration) could also be explained in detail. Challenges and future directions for designing nanomaterials with a new sensing approach and better sensing performance will also be highlighted.
Collapse
|
17
|
Tarapoulouzi M, Ortone V, Cinti S. Heavy metals detection at chemometrics-powered electrochemical (bio)sensors. Talanta 2022; 244:123410. [DOI: 10.1016/j.talanta.2022.123410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/04/2023]
|
18
|
Altuner EE, Ozalp VC, Yilmaz MD, Sudagidan M, Aygun A, Acar EE, Tasbasi BB, Sen F. Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles. CHEMOSPHERE 2022; 297:134077. [PMID: 35218784 DOI: 10.1016/j.chemosphere.2022.134077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
This study, it is aimed to develop an electrochemical aptasensor that can detect phosphate ions using 3.3'5.5' tetramethylbenzidine (TMB). It is based on the principle of converting the binding affinity of the target molecule phosphate ion (PO43-) into an electrochemical signal with specific aptamer sequences for the aptasensor to be developed. The aptamer structure served as a gate for the TMB to be released and was used to trap the TMB molecule in mesoporous silica nanoparticles (MSNPs). The samples for this study were characterized by transmission electron spectroscopy (TEM), Brunner-Emmet-Teller, dynamic light scattering&electrophoretic light scattering, and induction coupled plasma atomic emission spectroscopy. According to TEM analysis, MSNPs have a morphologically hexagonal structure and an average size of 208 nm. In this study, palladium-carbon nanoparticles (Pd/C NPs) with catalytic reaction were used as an alternative to the biologically used horseradish peroxidase (HRP) enzyme for the release of TMB in the presence of phosphate ions. The limit of detection (LOD) was calculated as 0.983 μM, the limit of determination (LOQ) was calculated as 3.276 μM, and the dynamic linear phosphate range was found to be 50-1000 μM. The most important advantage of this bio-based aptasensor assembly is that it does not contain molecules such as a protein that cannot be stored for a long time at room temperature, so its shelf life is very long compared to similar systems developed with antibodies. The proposed sensor shows good recovery in phosphate ion detection and is considered to have great potential among electrochemical sensors.
Collapse
Affiliation(s)
- Elif Esra Altuner
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye.
| | - Veli Cengiz Ozalp
- Medical School, Department of Medical Biology, Atilim University, 06830, Ankara, Turkiye.
| | - M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Mert Sudagidan
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Aysenur Aygun
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye
| | - Elif Esma Acar
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Behiye Busra Tasbasi
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Fatih Sen
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye.
| |
Collapse
|
19
|
|
20
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Zamanian J, Khoshbin Z, Abnous K, Taghdisi SM, Hosseinzadeh H, Danesh NM. Current progress in aptamer-based sensing tools for ultra-low level monitoring of Alzheimer's disease biomarkers. Biosens Bioelectron 2022; 197:113789. [PMID: 34798498 DOI: 10.1016/j.bios.2021.113789] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) as common late-life dementia is pathologically associated with the irreversible and progressive disorder, misfolding, deposition, and accumulation of the brain proteins. Especially, the formation of fibrous amyloid plaques by aggregation of amyloid-β peptides is the pathological cause of this neurologic disorder disease. Besides, tau protein isoforms destabilize the microtubule filaments through post-translational modifications and induce nerve cells' death. Amyloid-β peptides and tau proteins are considered as the critical symptom and reliable molecular biomarkers for the early diagnosis of AD. AD is characterized by impaired thinking proficiencies, cognitive decline, memory loss, and behavioral disability. Since there is no efficacious therapy for AD at present, the development of precise sensing tools for the early diagnosis of this disease is essential and crucial. Aptamer-based biosensors (aptasensors) have acquired utmost importance in the field of AD healthcare, due to excellent sensitivity and specificity, ease-of-use, cost-effectiveness, portability, and rapid assay time. Here, we highlight the recent developments and novel perspectives in the field of aptasensor design to quantitatively monitor the AD biomarkers. Finally, some results are represented to achieve a promising viewpoint for introducing the novel aptasensor test kits in the future.
Collapse
Affiliation(s)
- Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic, Iran
| | - Noor Mohammd Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Passive Defense, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
22
|
Shi H, Jiang S, Liu B, Liu Z, Reis NM. Modern microfluidic approaches for determination of ions. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Carbazole‐based dual‐functional chemosensor: Colorimetric sensor for Co
2+
and fluorescent sensor for Cu
2+
and its application. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
25
|
Abdollahiyan P, Hasanzadeh M, Pashazadeh-Panahi P, Seidi F. Application of Cys A@AuNPs supported amino acids towards rapid and selective identification of Hg(II) and Cu(II) ions in aqueous solution: An innovative microfluidic paper-based (μPADs) colorimetric sensing platform. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Zou X, Ji Y, Li H, Wang Z, Shi L, Zhang S, Wang T, Gong Z. Recent advances of environmental pollutants detection via paper-based sensing strategy. LUMINESCENCE 2021; 36:1818-1836. [PMID: 34342392 DOI: 10.1002/bio.4130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Paper has become one of the most promising substrates for building low-cost and powerful sensing platforms due to its self-pumping ability and compatibility with multiple patterning methods. Paper-based sensors have been greatly developed in the field of environmental monitoring. In this review, we introduced the research and application of paper-based sensors in environmental monitoring, focusing on the deposition and patterning methods of building paper-based sensors, and summarized the applications of detecting environmental pollutants, including metal ions, anions, explosives, neurotoxins, volatile organic compounds, and small molecules. In addition, the development prospects and challenges of promoting paper-based sensors are also discussed. The current review will provide references for the construction of portable paper-based sensors, and has implications for the field of on-site real-time detection of the environment.
Collapse
Affiliation(s)
- Xue Zou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yayun Ji
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hangzhou Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhaoli Wang
- Chengdu Academy of Environmental Sciences, Chengdu, China
| | - Linhong Shi
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shengli Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tengfei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Tai WC, Chang YC, Chou D, Fu LM. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review. BIOSENSORS 2021; 11:260. [PMID: 34436062 PMCID: PMC8393526 DOI: 10.3390/bios11080260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
In recent years, microfluidic lab-on-paper devices have emerged as a rapid and low-cost alternative to traditional laboratory tests. Additionally, they were widely considered as a promising solution for point-of-care testing (POCT) at home or regions that lack medical infrastructure and resources. This review describes important advances in microfluidic lab-on-paper diagnostics for human health monitoring and disease diagnosis over the past five years. The review commenced by explaining the choice of paper, fabrication methods, and detection techniques to realize microfluidic lab-on-paper devices. Then, the sample pretreatment procedure used to improve the detection performance of lab-on-paper devices was introduced. Furthermore, an in-depth review of lab-on-paper devices for disease measurement based on an analysis of urine samples was presented. The review concludes with the potential challenges that the future development of commercial microfluidic lab-on-paper platforms for human disease detection would face.
Collapse
Affiliation(s)
- Wei-Chun Tai
- Department of Oral and Maxillofacial Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Yu-Chi Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
| | - Dean Chou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
28
|
Alahmad W, Varanusupakul P, Varanusupakul P. Recent Developments and Applications of Microfluidic Paper-Based Analytical Devices for the Detection of Biological and Chemical Hazards in Foods: A Critical Review. Crit Rev Anal Chem 2021; 53:233-252. [PMID: 34304654 DOI: 10.1080/10408347.2021.1949695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, food safety has become a major concern for the sustainability of global public health. Through the production and distribution steps, food can be contaminated by either chemical hazards or pathogens, and the determination of these plays a critical role in the processes of ensuring food safety. Therefore, the development of analytical tools that can provide rapid screening of these hazards is highly necessary. Microfluidic paper-based analytical devices (µPADs) have advanced significantly in recent years as they are rapid and low-cost analytical screening tools for testing contaminated food products. This review focuses on recent developments of µPADs for various applications in the food safety field. A description of the fabrication of selected papers is briefly discussed, and evaluation of the μPADs' performance with regard to their precision and accuracy as well as their limits of detection is critically assessed. The advantages and disadvantages of these devices are highlighted.
Collapse
Affiliation(s)
- Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
29
|
Wang H, Wang L, Xiu Y, Zhang S, Wang S, Niu X. Penicillin biosensor based on rhombus-shaped porous carbon/hematoxylin/penicillinase. J Food Sci 2021; 86:3505-3516. [PMID: 34287896 DOI: 10.1111/1750-3841.15841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
In this experiment, we designed an electrochemical sensor using penicillinase (Pen X)-rhombus porous carbon (RPC) as the detection element and hematoxylin as the indicator to detect low concentrations of penicillin sodium (Pen G). A differential pulse voltammetry (DPV) method was used to detect Pen G in the concentration range of 10-8 -10-5 mg·mL-1 under optimal experimental conditions. The results showed that the peak current value and the logarithm of Pen G concentration showed a good linear relationship (R2 = 0.9915), and the LOD was 2.68 × 10-7 mg·mL-1 (S/N = 3). The actual milk samples were detected by the addition method and compared with the high-performance liquid phase method; no significant difference was found in the detection results. The working electrode prepared by cross-linking method not only extends the service life of the sensor, but also improves the sensitivity and reproducibility of the sensor. It can also be used to detect the Pen G residue in the actual milk samples repeatedly. PRACTICAL APPLICATION: In this study, an electrochemical sensor for the rapid detection of penicillin sodium in milk was prepared, which has good sensitivity and fast detection speed.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Li Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Yi Xiu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Shaoqi Zhang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People's Republic of China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
30
|
Guo W, Zhang C, Ma T, Liu X, Chen Z, Li S, Deng Y. Advances in aptamer screening and aptasensors' detection of heavy metal ions. J Nanobiotechnology 2021; 19:166. [PMID: 34074287 PMCID: PMC8171055 DOI: 10.1186/s12951-021-00914-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution has become more and more serious with industrial development and resource exploitation. Because heavy metal ions are difficult to be biodegraded, they accumulate in the human body and cause serious threat to human health. However, the conventional methods to detect heavy metal ions are more strictly to the requirements by detection equipment, sample pretreatment, experimental environment, etc. Aptasensor has the advantages of strong specificity, high sensitivity and simple preparation to detect small molecules, which provides a new direction platform in the detection of heavy metal ions. This paper reviews the selection of aptamers as target for heavy metal ions since the 21th century and aptasensors application for detection of heavy metal ions that were reported in the past five years. Firstly, the selection methods for aptamers with high specificity and high affinity are introduced. Construction methods and research progress on sensor based aptamers as recognition element are also introduced systematically. Finally, the challenges and future opportunities of aptasensors in detecting heavy metal ions are discussed.
Collapse
Affiliation(s)
- Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| |
Collapse
|
31
|
Correction pen as a hydrophobic/lipophobic barrier plotter integrated with paper-based chips and a mini UV-torch to implement all-in-one device for determination of carbazochrome. Anal Chim Acta 2021; 1172:338684. [PMID: 34119023 DOI: 10.1016/j.aca.2021.338684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
The design of a cheap, simple, and handy sensing system for rapid quantitation of pharmaceuticals becomes mandatory to ease drug development procedures, quality control, health care, etc. This work describes a simple, innovative, and easily manufactured paper-based device using a correction pen as a plotter for hydrophobic/lipophobic barriers and graphene quantum dots for recognition and quantification of the hemostatic drug carbazochrome, via fluorescence turn-off mechanism mediated by the inner filter effect. A smartphone-based all-in-one device fitted with an inexpensive 365 nm flashlight as a UV light source and a free image processing software was developed for rapid and reliable interpretation of the fluorescence change from the paper-based device upon introduction of the drug. The simple and convenient steps permit the analysis of many samples in a very short time. The smartphone-based all-in-one device featured excellent sensitivity for carbazochrome with a limit of detection equals to 12 ng/detection zone and good %recovery (100.0 ± 0.4). The reliability of the device was ascertained by favorable statistical comparison with the analogous optimized conventional fluorimetry method and a reference HPLC method. The device has been successfully applied for versatile quantitation of carbazochrome in tablets and on manufacturing equipment surfaces with excellent recoveries. The device offers many green aspects that definitely assist the implementation of the sustainability concept to analytical laboratories. The cost-efficiency, reliability, and ease of fabrication as well as the greenness and user friendship qualify the device for wide application in low-income communities.
Collapse
|
32
|
Ng HY, Lee WC, Kung CT, Li LC, Lee CT, Fu LM. Recent Advances in Microfluidic Devices for Contamination Detection and Quality Inspection of Milk. MICROMACHINES 2021; 12:558. [PMID: 34068982 PMCID: PMC8156775 DOI: 10.3390/mi12050558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Milk is a necessity for human life. However, it is susceptible to contamination and adulteration. Microfluidic analysis devices have attracted significant attention for the high-throughput quality inspection and contaminant analysis of milk samples in recent years. This review describes the major proposals presented in the literature for the pretreatment, contaminant detection, and quality inspection of milk samples using microfluidic lab-on-a-chip and lab-on-paper platforms in the past five years. The review focuses on the sample separation, sample extraction, and sample preconcentration/amplification steps of the pretreatment process and the determination of aflatoxins, antibiotics, drugs, melamine, and foodborne pathogens in the detection process. Recent proposals for the general quality inspection of milk samples, including the viscosity and presence of adulteration, are also discussed. The review concludes with a brief perspective on the challenges facing the future development of microfluidic devices for the analysis of milk samples in the coming years.
Collapse
Affiliation(s)
- Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan;
| | - Lung-Chih Li
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
33
|
Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. LAB ON A CHIP 2021; 21:1433-1453. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lab-on-paper, or microfluidic paper-based analytical devices (μPADs), use paper as a substrate material, and are patterned with a system of microchannels, reaction zones and sensing elements to perform analysis and detection. The sample transfer in such devices is performed by capillary action. As a result, external driving forces are not required, and hence the size and cost of the device are significantly reduced. Lab-on-paper devices have thus attracted significant attention for point-of-care medical diagnostic purposes in recent years, particularly in less-developed regions of the world lacking medical resources and infrastructures. This review discusses the major advances in lab-on-paper technology for blood analysis and diagnosis in the past five years. The review focuses particularly on the many clinical applications of lab-on-paper devices, including diabetes diagnosis, acute myocardial infarction (AMI) detection, kidney function diagnosis, liver function diagnosis, cholesterol and triglyceride (TG) analysis, sickle-cell disease (SCD) and phenylketonuria (PKU) analysis, virus analysis, C-reactive protein (CRP) analysis, blood ion analysis, cancer factor analysis, and drug analysis. The review commences by introducing the basic transmission principles, fabrication methods, structural characteristics, detection techniques, and sample pretreatment process of modern lab-on-paper devices. A comprehensive review of the most recent applications of lab-on-paper devices to the diagnosis of common human diseases using blood samples is then presented. The review concludes with a brief summary of the main challenges and opportunities facing the lab-on-paper technology field in the coming years.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
34
|
Chen H, Wei L, Guo X, Hai C, Xu L, Zhang L, Lan W, Zhou C, She Y, Fu H. Determination of l-theanine in tea water using fluorescence-visualized paper-based sensors based on CdTe quantum dots/corn carbon dots and nano-porphyrin with chemometrics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2552-2560. [PMID: 33063338 DOI: 10.1002/jsfa.10882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The quality of tea is influenced by numerous factors, especially l-theanine, which is one of the important markers used to evaluate the sweetness and freshness of tea. Sensitive, rapid, and accurate detection of l-theanine is therefore useful to identify the grade and quality of tea. RESULTS A high-sensitivity, paper-based fluorescent sensor combined with chemometrics was established to detect l-theanine in tea water based on CdTe quantum dots / corn carbon dots and nano tetra pyridel-porphine zinc (ZnTPyP). To verify the reliability of this method, fluorescence spectra and fluorescence-visualized paper-based sensors were compared. The fluorescence spectrum method demonstrated a linear range of 1 to 10 000 nmol L-1 and a limit of detection (LOD) of 0.19 nmol L-1 . In the fluorescence-visualized paper-based sensors there was a linear range of 10-1000 nmol L-1 , and the LOD was 10 nmol L-1 . Partial least squares discriminant analysis (PLSDA) and partial least squares regression analysis (PLSR) were used successfully to determine l-theanine accurately in tea water with this approach. The accuracy of the PLSDA model was 100% both in the training set and the predicting set, and the correlation coefficient between the actual concentration and the predicted concentration was greater than 0.9997 in the PLSR model. CONCLUSION This fluorescence-visualized paper-based sensor, combined with chemometrics, could be applied efficiently to the practical analysis of tea water samples, which provides a new idea to ensure the flavor and quality of tea. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Liuna Wei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaoming Guo
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chengying Hai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xu
- College of Material and Chemical Engineering, Tongren University, Tongren, China
| | - Lei Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chunsong Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- International Environmental Protection City Technology Limited Company (IEPCT), Yixing, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
35
|
Electrochemical Behaviour of Real-Time Sensor for Determination Mercury in Cosmetic Products Based on PANI/MWCNTs/AuNPs/ITO. COSMETICS 2021. [DOI: 10.3390/cosmetics8010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mercury is a common ingredient found in skin lightening soaps, creams, and makeup-cleansing products. It may cause skin rashes, skin discolouration, and scarring, as well as a reduction in the skin’s resistance to bacterial and fungal infections. By looking at this scenario, developing a sensor that involved a simple procedure and fasts for real-time detection without affecting mercury sensitivity is urgently needed. For that reason, a fast and sensitive electrochemical method was developed to determine mercury in cosmetic products with the composition of polyaniline/multi-walled carbon nanotubes/gold nanoparticles/indium tin oxide sheet using methylene blue as a redox indicator. The significantly enhanced electrochemical performance was observed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In order to detect mercury qualitatively and quantitatively, deposition potential and deposition time were respectively optimised to be 0.10 V and 70 s. The modified sensor was revealed a wide detection range of mercury from 0.01 to 10.00 ppm with a limit of detection of 0.08 ppm. The modified sensor towards mercury with a correlation coefficient (r2) was of 0.9948. Multiple cycling, reproducibility, and consistency of different modified sensors were investigated to verify the modified sensor’s performance. The developed sensing platform was highly selective toward mercury among the pool of possible interferents, and the stability of the developed sensor was ensured for at least 21 days after 10 repeated uses. The proposed method is a fast and simple procedure technique for analysing the mercury levels in cosmetic products.
Collapse
|
36
|
Zhu M, Wang S. Functional Nucleic‐Acid‐Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Min Zhu
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| | - Shan Wang
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| |
Collapse
|