1
|
Fonseca WT, Parra Vello T, Lelis GC, Ferreira Deleigo AV, Takahira RK, Martinez DST, de Oliveira RF. Chemical Sensors and Biosensors for Point-of-Care Testing of Pets: Opportunities for Individualized Diagnostics of Companion Animals. ACS Sens 2025. [PMID: 40259889 DOI: 10.1021/acssensors.4c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Point-of-care testing (POCT) is recognized as one of the most disruptive medical technologies for rapid and decentralized diagnostics. Successful commercial examples include portable glucose meters, pregnancy tests, and COVID-19 self-tests. However, compared to advancements in human healthcare, POCT technologies for companion animals (pets) remain significantly underdeveloped. This Review explores the latest advancements in pet POCT and examines the challenges and opportunities in the field for individualized diagnostics of cats and dogs. The most frequent diseases and their respective biomarkers in blood, urine, and saliva are discussed. We examine key strategies for developing the next-generation POCT devices by harnessing the potential of selective (bio)receptors and high-performing transducers such as lateral flow tests and electrochemical (bio)sensors. We also present the most recent research initiatives and the successful commercial pet POCT technologies. We discuss future trends in the field, such the role of biomarker discovery and development of wearable, implantable, and breath sensors. We believe that advancing pet POCT technologies benefits not only animals but also humans and the environment, supporting the One Health approach.
Collapse
Affiliation(s)
- Wilson Tiago Fonseca
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
| | - Tatiana Parra Vello
- Mackenzie Institute for Research in Graphene and Nanotechnologies (MackGraphe), Mackenzie Presbyterian Institute (IPM), 01302-907 São Paulo, Brazil
| | - Gabrielle Coelho Lelis
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), 13083-862 Campinas, Brazil
| | - Ana Vitória Ferreira Deleigo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
- Post-Graduate Program in Materials Science and Technology (POSMAT), São Paulo State University "Júlio de Mesquita Filho" (UNESP), 17033-360 Bauru, Brazil
| | - Regina Kiomi Takahira
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), 18618-687 Botucatu, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
| | - Rafael Furlan de Oliveira
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), 13083-862 Campinas, Brazil
- Post-Graduate Program in Materials Science and Technology (POSMAT), São Paulo State University "Júlio de Mesquita Filho" (UNESP), 17033-360 Bauru, Brazil
- Institute of Physics "Gleb Wataghin" (IFGW), University of Campinas (UNICAMP), 13083-859 Campinas, Brazil
| |
Collapse
|
2
|
Kamoun EA, Elsabahy M, Mohamed Elbadry AM, Abdelazim EB, Mohsen AA, A. Aleem M, Gao H, Eissa NG, Elghamry I, Salim SA. Recent Progress of Polymer-Based Biosensors for Cancer Diagnostic Applications: Natural versus Synthetic Polymers. ACS OMEGA 2025; 10:8816-8831. [PMID: 40092775 PMCID: PMC11904699 DOI: 10.1021/acsomega.4c10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Early diagnosis of cancer can significantly contribute to improving therapeutic outcomes and enhancing survival rates for cancer patients. Polymer-based biosensors have emerged as a promising tool for cancer detection due to their high sensitivity, selectivity, and low cost. These biosensors utilize functionalized polymers in different parts of the body to detect cancer biomarkers in biological samples. This approach offers several advantages over traditional detection methods, including real-time monitoring and noninvasive detection while maintaining high sensitivity and accuracy. This review discusses recent advances in the development of polymer-based biosensors for cancer detection including their design, fabrication, and performance. The essential characteristics of biosensing devices are presented, along with examples for natural and synthetic polymers commonly utilized in biosensors. Furthermore, strategies employed to tailor polymers to improve biosensing applications and future perspectives for the application of polymer-based biosensors in cancer diagnosis are also highlighted. Integrating these advancements will illuminate the potential of polymer-based biosensors as transformative tools in the early detection and management of cancer.
Collapse
Affiliation(s)
- Elbadawy A. Kamoun
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Mahmoud Elsabahy
- Badr
University in Cairo Research Center, Badr
University in Cairo, Badr City, Cairo 11829, Egypt
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | | | - Esraa B. Abdelazim
- Badr
University in Cairo Research Center, Badr
University in Cairo, Badr City, Cairo 11829, Egypt
| | - Abdelrahman A. Mohsen
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo 11456, Egypt
| | - Marwa A. Aleem
- Analytical
Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hui Gao
- State
Key
Laboratory of Separation Membranes and Membrane Processes, School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Noura G. Eissa
- Badr
University in Cairo Research Center, Badr
University in Cairo, Badr City, Cairo 11829, Egypt
- Department
of Pharmaceutics, Faculty of Pharmacy, Zagazig
University, Zagazig 44519, Egypt
| | - Ibrahim Elghamry
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Samar A. Salim
- Biomaterials
for Medical and Pharmaceutical Applications Research Group, Nanotechnology
Research Centre (NTRC), The British University
in Egypt (BUE), El Sherouk
City, Suez Desert Road, Cairo 11837, Egypt
| |
Collapse
|
3
|
Batista Junior AC, Maciel LÍL, Rocha YA, Assis JVB, Chaves AR. Molecularly imprinted polymer-based paper spray ionization mass spectrometry: shaping the future of bioanalysis. Bioanalysis 2025; 17:383-387. [PMID: 40011053 PMCID: PMC11959891 DOI: 10.1080/17576180.2025.2472735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
|
4
|
Chakravorty S, Archana, Lakshmi G, Solanki PR, Kumar A. Trimethylamine N-oxide detection by electrochemical sensor based on screen printed electrode modified with molecularly imprinted polypyrrole-molybdenum(III) sulfide nanosheets. Colloids Surf B Biointerfaces 2024; 244:114164. [PMID: 39180990 DOI: 10.1016/j.colsurfb.2024.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Trimethylamine N-oxide (TMAO) is a gut metabolite produced by dietary L-carnitine and choline metabolism. Its altered level in the serum has been implicated in human health and diseases such as colorectal cancer, chronic kidney diseases, cardiovascular diseases, etc. Early detection of TMAO in body fluids has been presumed to be significant in understanding the pathogenesis and treatment of many diseases. Hence, developing reliable and rapid technologies for its detection may augment our understanding of pathogenesis and diagnosis of diseases. Hence, in the present work, polypyrrole (Ppy)@molybdenum(III)sulfide (Mo2S3) nanosheets (NS) composite molecularly imprinted polymer (MIP) (Ppy@Mo2S3-MIP) based electrochemical sensor has been fabricated for the detection of TMAO. Polypyrrole (Ppy) and Mo2S3 NS have been synthesized by chemical oxidative polymerization and hydrothermal techniques, respectively. The synthesized nanocomposite has been validated using different techniques such as X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The fabricated Ppy@Mo2S3-MIP sensor showed a linear detection range from 30 µM to 210 µM, a sensitivity of 1.21 μA μM-1 cm-2 and a limit of detection as 1.4 μM for the detection of TMAO and found more robust and improved when compared with Ppy-MIP using identical parameters. The fabricated sensor is also highly selective towards TMAO. It can be further used to detect TMAO in human samples such as urine quickly.
Collapse
Affiliation(s)
- Shreeti Chakravorty
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Archana
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gbvs Lakshmi
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
5
|
Piskin E, Cetinkaya A, Unal MA, Özgür E, Atici EB, Uzun L, Ozkan SA. A molecularly imprinted polymer-based detection platform confirmed through molecular modeling for the highly sensitive and selective analysis of ipratropium bromide. J Pharm Biomed Anal 2024; 248:116283. [PMID: 38850885 DOI: 10.1016/j.jpba.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
This study presented a new method to design a MIP-based electrochemical sensor that could improve the selective and sensitive detection of ipratropium bromide (IPR). The polymeric film was designed using 2-hydroxyethyl methacrylate (HEMA) as the basic monomer, 2-hydroxy-2-methylpropiophenone as the initiator, ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, and N-methacryloyl-L-aspartic acid (MAAsp) as the functional monomer. The presence of MAAsp results in the functional groups in imprinting binding sites, while the presence of poly(vinyl alcohol) (PVA) allows the generation of porous materials not only for sensitive sensing but also for avoiding electron transport limitations. Electrochemical characterizations of the changes at each stage of the MIP preparation process were confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In addition, morphological characterizations of the developed sensor were performed using scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Theoretical calculations were also performed to explain/confirm the experimental results better. It was found that the results of the calculations using the DFT approach agreed with the experimental data. The MAAsp-IPR@MIP/GCE sensor was developed using the photopolymerization method, and the sensor surface was obtained by exposure to UV lamp radiation at 365 nm. The improved MIP-based electrochemical sensor demonstrated the ability to measure IPR for standard solutions in the linear operating range of 1.0 × 10-12-1.0 × 10-11 M under optimized conditions. For standard solutions, the limit of detection (LOD) and limit of quantification (LOQ) were obtained as 2.78 × 10-13 and 9.27 × 10-13 M, respectively. The IPR recovery values for the inhalation form were calculated as 101.70 % and 100.34 %, and the mean relative standard deviations (RSD) were less than 0.76 % in both cases. In addition, the proposed modified sensor demonstrated remarkable sensitivity and selectivity for rapid assessment of IPR in inhalation forms. The sensor's unique selectivity is demonstrated by its successful performance even in the presence of IPR impurities.
Collapse
Affiliation(s)
- Ensar Piskin
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkiye; Ankara University, Graduate School of Health Sciences, Ankara, Turkiye
| | - Ahmet Cetinkaya
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkiye.
| | - Mehmet A Unal
- Ankara University, Stem Cell Institute, Ankara, Turkiye
| | - Erdogan Özgür
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkiye
| | | | - Lokman Uzun
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkiye.
| |
Collapse
|
6
|
Shah N, Shah M, Rehan T, Khan A, Majeed N, Hameed A, Bououdina M, Abumousa RA, Humayun M. Molecularly imprinted polymer composite membranes: From synthesis to diverse applications. Heliyon 2024; 10:e36189. [PMID: 39253174 PMCID: PMC11382202 DOI: 10.1016/j.heliyon.2024.e36189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
This review underscores the fundamentals of MIP-CMs and systematically summarizes their synthetic strategies and applications, and potential developments. MIP-CMs are widely acclaimed for their versatility, finding applications in separation, filtration, detection, and trace analysis, as well as serving as scaffolds in a range of analytical, biomedical and industrial contexts. Also characterized by extraordinary selectivity, remarkable sensitivity, and outstanding capability to bind molecules, those membranes are also cost-effective, highly stable, and configurable in terms of recognition and, therefore, inalienable in various application fields. Issues relating to the potential future for the paper are discussed in the last section with the focus on the improvement of resource practical application across different areas. Hence, this review can be seen as a kind of cookbook for the design and fabrication of MIP-CMs with an intention to expand the scope of their application.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Touseef Rehan
- Department of Biochemistry Women University Mardan, Mardan, 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Rasha A Abumousa
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| |
Collapse
|
7
|
Rasoulzadeh F, Amjadi M. A novel fluorescent sensor for selective rifampicin detection based on the bio-inspired molecularly imprinted polymer-AgInS 2/ZnS quantum dots. ANAL SCI 2024; 40:1051-1059. [PMID: 38461465 DOI: 10.1007/s44211-024-00512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/08/2024] [Indexed: 03/12/2024]
Abstract
A fluorescent sensing material based on the ternary core-shell quantum dots with outstanding optical properties and a bio-inspired molecularly imprinted polymer (MIP) as a recognition element has been prepared for selective detection of rifampicin (RFP). Firstly, AgInS2/ZnS core/shell quantum dots (ZAIS QDs) were prepared by a hydrothermal process. Then, the fluorescent sensor was prepared by coating these QDs by a dopamine-based MIP layer. The fluorescence of MIP@ZAIS QDs was quenched by RFP probably due to the photoinduced electron transfer process. The quenching constant was much higher for MIP@ZAIS QDs than the non-imprinted polymer@QDs, indicating that MIP@ZAIS QDs could selectively recognize RFP. Under the optimized conditions, the sensor had a good linear relationship at the RFP concentration range of 5.0 to 300 nM and the limit of detection was 1.25 nM. The respond time of the MIP@ZAIS QDs was 5 min, and the imprinting factor was 6.3. It also showed good recoveries ranging from 98 to 101%, for analysis of human plasma samples. The method is simple and effective for the detection of RFP and offers a practical application for the rapid analysis of human plasma samples.
Collapse
Affiliation(s)
- Farzaneh Rasoulzadeh
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| |
Collapse
|
8
|
Ahmadian-Alam L, Andrade A, Song E. Electrochemical detection of glutamate and histamine using redox-labeled stimuli-responsive polymer as a synthetic target receptor. ACS APPLIED POLYMER MATERIALS 2024; 6:5630-5641. [PMID: 39444408 PMCID: PMC11498899 DOI: 10.1021/acsapm.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Glutamate (Glu) and histamine (His) are two major neurotransmitters that play many critical roles in brain physiological functions and neurological disorders. Therefore, specific and sensitive monitoring of Glu and His is essential in the diagnosis and treatment of various mental health and neurodegenerative disorders. Both being non-electroactive species, direct electrochemical detection of Glu and His has been challenging. Herein, we report a stimuli-responsive polymer-based biosensor for the electrochemical detection of Glu and His. The polymer-based target receptors consist of a linear chain stimuli-responsive templated polymer hybrid that is labeled with an osmium-based redox-active reporter molecules to elicit conformation-dependent electrochemical responses. The polymers are then attached to a gold electrode to implement an electrochemical sensor. The cyclic voltammetry (CV) and square-wave voltammetry (SWV) results confirmed the polymers' conformational changes due to the specific target (i.e., Glu and His) recognition and the corresponding electrochemical detection capabilities. The voltammetry results indicate that this biosensor can be used as a 'signal-on' and 'signal-off' sensors for the detection of Glu and His concentrations, respectively. The developed biosensor also showed excellent regeneration capability by fully recovering the initial current signal after rinsing with deionized water. To further validate the polymer's utility as a target bioreceptor, the surface plasmon resonance (SPR) technique was used to characterize the binding affinity between the designed polymers and the target chemical. The SPR results exhibited the equilibrium dissociation constants (KD) of 2.40 μM and 1.54 μM for the polymer-Glu and polymer-His interactions, respectively. The results obtained this work strongly suggest that the proposed sensing technology could potentially be used as a platform for monitoring non-electroactive neurochemicals from animal models.
Collapse
Affiliation(s)
- Leila Ahmadian-Alam
- Department of Electrical & Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - Arturo Andrade
- Department of Neuroscience, Brown University, Providence, RI 02912, United States
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, United States
| | - Edward Song
- Department of Electrical & Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
9
|
Karrat A, Amine A. Innovative approaches to suppress non-specific adsorption in molecularly imprinted polymers for sensing applications. Biosens Bioelectron 2024; 250:116053. [PMID: 38266615 DOI: 10.1016/j.bios.2024.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic antibodies developed to bind selectively with specific molecules. They function through a particular recognition process involving their cavities and functional groups. Nevertheless, functional groups located outside these cavities are the main cause of non-specific molecule binding, thus reducing the effectiveness of MIPs in sensing applications. This work focused on enhancing the selectivity and performance of MIPs through electrostatic modification with surfactants. The study investigates the use of two surfactants, namely sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB), to eliminate non-specific adsorption in MIPs. The binding isotherms of the target molecule sulfamethoxazole (SMX) on MIPs and non-imprinted polymers (NIPs) were analyzed, showing higher adsorption capacity of MIPs due to the specific cavities. The modification with SDS or CTAB effectively eliminated non-specific adsorption in MIPs. The kinetic adsorption behavior further demonstrated the efficacy of MIP+--SDS/CTAB in the selective adsorption of SMX. Calibration curves showcase the methodology's analytical capabilities, achieving low limit of detection for SMX 6 ng mL-1 using MIP +-SDS. The stability study confirmed that the developed MIP +/--SDS/CTAB remains stable even at high temperatures, demonstrating its suitability for on-site applications. The methodology was successfully applied to detect SMX in milk and water samples, achieving promising recoveries. Overall, the electrostatic modification of MIPs with surfactants emerges as a valuable strategy for enhancing selectivity and performance in target molecule recognition and detection.
Collapse
Affiliation(s)
- Abdelhafid Karrat
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco.
| |
Collapse
|
10
|
Siripuram V, Sunkari YK, Ma F, Nguyen TL, Flajolet M. Reversible and Fully Controllable Generation of Organo-Soluble DNA (osDNA). ACS OMEGA 2024; 9:14771-14780. [PMID: 38585059 PMCID: PMC10993399 DOI: 10.1021/acsomega.3c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 04/09/2024]
Abstract
The present work describes a complete and reversible transformation of DNA's properties allowing solubilization in organic solvents and subsequent chemical modifications that are otherwise not possible in an aqueous medium. Organo-soluble DNA (osDNA) moieties are generated by covalently linking a dsDNA fragment to a polyether moiety with a built-in mechanism, rendering the process perfectly reversible and fully controllable. The precise removal of the polyether moiety frees up the initial DNA fragment, unaltered, both in sequence and nature. The solubility of osDNA was confirmed in six organic solvents of decreasing polarity and six types of osDNAs. As a proof of concept, in the context of DNA-encoded library (DEL) technology, an amidation reaction was successfully performed on osDNA in 100% DMSO. The development of osDNA opens up entirely new avenues for any DNA applications that could benefit from working in nonaqueous solutions, including chemical transformations.
Collapse
Affiliation(s)
- Vijay
Kumar Siripuram
- Laboratory of Molecular and
Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York City, New York 10065, United States
| | - Yashoda Krishna Sunkari
- Laboratory of Molecular and
Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York City, New York 10065, United States
| | - Fei Ma
- Laboratory of Molecular and
Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York City, New York 10065, United States
| | - Thu-Lan Nguyen
- Laboratory of Molecular and
Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York City, New York 10065, United States
| | - Marc Flajolet
- Laboratory of Molecular and
Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York City, New York 10065, United States
| |
Collapse
|
11
|
Li Y, Luo L, Kong Y, Li Y, Wang Q, Wang M, Li Y, Davenport A, Li B. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens Bioelectron 2024; 249:116018. [PMID: 38232451 DOI: 10.1016/j.bios.2024.116018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Molecularly imprinted polymers (MIPs) are the equivalent of natural antibodies and have been widely used as synthetic receptors for the detection of disease biomarkers. Benefiting from their excellent chemical and physical stability, low-cost, relative ease of production, reusability, and high selectivity, MIP-based electrochemical sensors have attracted great interest in disease diagnosis and demonstrated superiority over other biosensing techniques. Here we compare various types of MIP-based electrochemical sensors with different working principles. We then evaluate the state-of-the-art achievements of the MIP-based electrochemical sensors for the detection of different biomarkers, including nucleic acids, proteins, saccharides, lipids, and other small molecules. The limitations, which prevent its successful translation into practical clinical settings, are outlined together with the potential solutions. At the end, we share our vision of the evolution of MIP-based electrochemical sensors with an outlook on the future of this promising biosensing technology.
Collapse
Affiliation(s)
- Yixuan Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Liuxiong Luo
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Yingqi Kong
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Yujia Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Quansheng Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150036, China
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Ying Li
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, WC1N 3BG, UK
| | - Andrew Davenport
- Department of Renal Medicine, University College London, London, NW3 2PF, UK
| | - Bing Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
12
|
Bounoua N, Cetinkaya A, Piskin E, Kaya SI, Ozkan SA. The sensor applications for prostate and lung cancer biomarkers in terms of electrochemical analysis. Anal Bioanal Chem 2024; 416:2277-2300. [PMID: 38279011 DOI: 10.1007/s00216-024-05134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Prostate and lung cancers are the most common types of cancer and affect a large part of the population around the world, causing deaths. Therefore, the rapid identification of cancer can profoundly impact reducing cancer-related death rates and protecting human lives. Significant resources have been dedicated to investigating new methods for early disease detection. Cancer biomarkers encompass various biochemical entities, including nucleic acids, proteins, sugars, small metabolites, cytogenetic and cytokinetic parameters, and whole tumor cells in bodily fluids. These tools can be utilized for various purposes, such as risk assessment, diagnosis, prognosis, treatment efficacy, toxicity evaluation, and predicting a return. Due to these versatile and critical purposes, there are widespread studies on the development of new, sensitive, and selective approaches for the determination of cancer biomarkers. This review illustrates the significant lung and prostate cancer biomarkers and their determination utilizing electrochemical sensors, which have the advantage of improved sensitivity, low cost, and simple analysis. Additionally, approaches such as improving sensitivity with nanomaterials and ensuring selectivity with MIPs are used to increase the performance of the sensor. This review aims to overview the most recent electrochemical biosensor applications for determining vital biomarkers of prostate and lung cancers in terms of nanobiosensors and molecularly imprinted polymer (MIP)-based biosensors.
Collapse
Affiliation(s)
- Nadia Bounoua
- Department of Exact Sciences, Laboratory of the Innovation Sponsorship and the Emerging Institution for Graduates of Higher Education of Sustainable Development and Dealing with Emerging Conditions, Normal Higher School of Bechar, Bechar, Algeria
- Laboratory of Chemical and Environmental Science (LCSE), 8000, Bechar, Algeria
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ensar Piskin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey.
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| |
Collapse
|
13
|
Weber CJ, Clay OM, Lycan RE, Anderson GK, Simoska O. Advances in electrochemical biosensor design for the detection of the stress biomarker cortisol. Anal Bioanal Chem 2024; 416:87-106. [PMID: 37989847 DOI: 10.1007/s00216-023-05047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The monitoring of stress levels in humans has become increasingly relevant, given the recent incline of stress-related mental health disorders, lifestyle impacts, and chronic physiological diseases. Long-term exposure to stress can induce anxiety and depression, heart disease, and risky behaviors, such as drug and alcohol abuse. Biomarker molecules can be quantified in biological fluids to study human stress. Cortisol, specifically, is a hormone biomarker produced in the adrenal glands with biofluid concentrations that directly correlate to stress levels in humans. The rapid, real-time detection of cortisol is necessary for stress management and predicting the onset of psychological and physical ailments. Current methods, including mass spectrometry and immunoassays, are effective for sensitive cortisol quantification. However, these techniques provide only single measurements which pose challenges in the continuous monitoring of stress levels. Additionally, these analytical methods often require trained personnel to operate expensive instrumentation. Alternatively, low-cost electrochemical biosensors enable the real-time detection and continuous monitoring of cortisol levels while also providing adequate analytical figures of merit (e.g., sensitivity, selectivity, sensor response times, detection limits, and reproducibility) in a simple design platform. This review discusses the recent developments in electrochemical biosensor design for the detection of cortisol in human biofluids. Special emphasis is given to biosensor recognition elements, including antibodies, molecularly imprinted polymers (MIPs), and aptamers, as critical components of electrochemical biosensors for cortisol detection. Furthermore, the advantages and limiting factors of various electrochemical techniques and sensing in complex biofluid matrices are overviewed. Remarks on the current challenges and future perspectives regarding electrochemical biosensors for stress monitoring are provided, including matrix effects (pH dependence and biological interferences), wearability, and large-scale production.
Collapse
Affiliation(s)
- Courtney J Weber
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Olivia M Clay
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Reese E Lycan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Gracie K Anderson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
14
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
15
|
Li W, Xiang J, Han J, Man M, Chen L, Li B. An electrochemical molecularly imprinted microfluidic paper-based chip for detection of inflammatory biomarkers IL-6 and PCT. Analyst 2023; 148:5896-5904. [PMID: 37847494 DOI: 10.1039/d3an01367g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Based on surface biomolecular imprinting technology, a rotary microfluidic electrochemical paper-based chip (MIP-ePADs) was proposed for sensitive and selective detection of human interleukin 6 (IL-6) and procalcitonin (PCT). Compared with the traditional method, the sample can be added directly on the MIP-ePAD by rotating the working electrode, which avoids the loss of the liquid to be tested and greatly simplifies the process of electropolymerization imprinting and template elution. Our experimental results show that linear concentration ranges of IL-6 and PCT in the electrochemical molecularly imprinted microfluidic paper-based chip ranged from 0.01 to 5 ng mL-1, with their detection limits being 3.5 and 2.1 pg mL-1, respectively. For the detection of actual serum samples, there was no significant difference between the results of MIP-ePADs and the traditional electrochemiluminescence method used in hospitals, indicating that the paper-based chip can be used for stable and accurate analysis and detection. The chip greatly reduces the cost of clinical trials due to its advantages of easy preparation and low cost. The chip can be used for the analysis of non-antibody inflammation markers and can be widely used in home and hospital treatment detection. This method will not only play an important role in rapid detection, but also provide new ideas for the improvement of rapid detection technology.
Collapse
Affiliation(s)
- Wenpeng Li
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, China.
| | - Jiawen Xiang
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Jinglong Han
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, China.
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
16
|
Song X, Fredj Z, Zheng Y, Zhang H, Rong G, Bian S, Sawan M. Biosensors for waterborne virus detection: Challenges and strategies. J Pharm Anal 2023; 13:1252-1268. [PMID: 38174120 PMCID: PMC10759259 DOI: 10.1016/j.jpha.2023.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2024] Open
Abstract
Waterborne viruses that can be harmful to human health pose significant challenges globally, affecting health care systems and the economy. Identifying these waterborne pathogens is essential for preventing diseases and protecting public health. However, handling complex samples such as human and wastewater can be challenging due to their dynamic and complex composition and the ultralow concentration of target analytes. This review presents a comprehensive overview of the latest breakthroughs in waterborne virus biosensors. It begins by highlighting several promising strategies that enhance the sensing performance of optical and electrochemical biosensors in human samples. These strategies include optimizing bioreceptor selection, transduction elements, signal amplification, and integrated sensing systems. Furthermore, the insights gained from biosensing waterborne viruses in human samples are applied to improve biosensing in wastewater, with a particular focus on sampling and sample pretreatment due to the dispersion characteristics of waterborne viruses in wastewater. This review suggests that implementing a comprehensive system that integrates the entire waterborne virus detection process with high-accuracy analysis could enhance virus monitoring. These findings provide valuable insights for improving the effectiveness of waterborne virus detection, which could have significant implications for public health and environmental management.
Collapse
Affiliation(s)
- Xixi Song
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
17
|
Sathirapongsasuti N, Panaksri A, Jusain B, Boonyagul S, Pechprasarn S, Jantanasakulwong K, Suksuwan A, Thongkham S, Tanadchangsaeng N. Enhancing protein trapping efficiency of graphene oxide-polybutylene succinate nanofiber membrane via molecular imprinting. Sci Rep 2023; 13:15398. [PMID: 37717111 PMCID: PMC10505162 DOI: 10.1038/s41598-023-42646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Filtration of biological liquids has been widely employed in biological, medical, and environmental investigations due to its convenience; many could be performed without energy and on-site, particularly protein separation. However, most available membranes are universal protein absorption or sub-fractionation due to molecule sizes or properties. SPMA, or syringe-push membrane absorption, is a quick and easy way to prepare biofluids for protein evaluation. The idea of initiating SPMA was to filter proteins from human urine for subsequent proteomic analysis. In our previous study, we developed nanofiber membranes made from polybutylene succinate (PBS) composed of graphene oxide (GO) for SPMA. In this study, we combined molecular imprinting with our developed PBS fiber membranes mixed with graphene oxide to improve protein capture selectivity in a lock-and-key fashion and thereby increase the efficacy of protein capture. As a model, we selected albumin from human serum (ABH), a clinically significant urine biomarker, for proteomic application. The nanofibrous membrane was generated utilizing the electrospinning technique with PBS/GO composite. The PBS/GO solution mixed with ABH was injected from a syringe and transformed into nanofibers by an electric voltage, which led the fibers to a rotating collector spinning for fiber collection. The imprinting process was carried out by removing the albumin protein template from the membrane through immersion of the membrane in a 60% acetonitrile solution for 4 h to generate a molecular imprint on the membrane. Protein trapping ability, high surface area, the potential for producing affinity with proteins, and molecular-level memory were all evaluated using the fabricated membrane morphology, protein binding capacity, and quantitative protein measurement. This study revealed that GO is a controlling factor, increasing electrical conductivity and reducing fiber sizes and membrane pore areas in PBS-GO-composites. On the other hand, the molecular imprinting did not influence membrane shape, nanofiber size, or density. Human albumin imprinted membrane could increase the PBS-GO membrane's ABH binding capacity from 50 to 83%. It can be indicated that applying the imprinting technique in combination with the graphene oxide composite technique resulted in enhanced ABH binding capabilities than using either technique individually in membrane fabrication. The suitable protein elution solution is at 60% acetonitrile with an immersion time of 4 h. Our approach has resulted in the possibility of improving filter membranes for protein enrichment and storage in a variety of biological fluids.
Collapse
Affiliation(s)
- Nuankanya Sathirapongsasuti
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pli, Samut Prakan, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Benjabhorn Jusain
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Suejit Pechprasarn
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Chiang Mai, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Acharee Suksuwan
- The Halal Science Center, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Somprasong Thongkham
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | | |
Collapse
|
18
|
Tomichan R, Sharma A, Akash K, Siddiqui AA, Dubey A, Upadhyay TK, Kumar D, Pandey S, Nagraik R. Insight of smart biosensors for COVID-19: A review. LUMINESCENCE 2023; 38:1102-1110. [PMID: 36577837 PMCID: PMC9880657 DOI: 10.1002/bio.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The review discusses the diagnostic application of biosensors as point-of-care devices in the COVID-19 pandemic. Biosensors are important analytical tools that can be used for the robust and effective detection of infectious diseases in real-time. In this current scenario, the utilization of smart, efficient biosensors for COVID-19 detection is increasing and we have included a few smart biosensors such as smart and intelligent based biosensors, plasmonic biosensors, field effect transistor (FET) biosensors, smart optical biosensors, surface enhanced Raman scattering (SERS) biosensor, screen printed electrode (SPE)-based biosensor, molecular imprinted polymer (MIP)-based biosensor, MXene-based biosensor and metal-organic frame smart sensor. Their significance as well as the benefits and drawbacks of each kind of smart sensor are mentioned in depth. Furthermore, we have compiled a list of various biosensors which have been developed across the globe for COVID-19 and have shown promise as commercial detection devices. Significant challenges in the development of effective diagnostic methods are discussed and recommendations have been made for better diagnostic outcomes to manage the ongoing pandemic effectively.
Collapse
Affiliation(s)
- Rosemary Tomichan
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Avinash Sharma
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - K. Akash
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Adeeb Ahmad Siddiqui
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Amit Dubey
- Computational Chemistry and Drug Discovery DivisionQuanta Calculus Pvt. LtdKushinagarUttar PradeshIndia
- Department of Pharmacology, Saveetha Dental College and HospitalSaveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences, Animal Cell Culture and Immunobiochemistry LabParul UniversityVadodaraGujaratIndia
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Sadanand Pandey
- Department of Chemistry, College of Natural SciencesYeungnam UniversityGyeongsanGyeongbukSouth Korea
| | - Rupak Nagraik
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
19
|
Zhang L, Gao J, Luo K, Li J, Zeng Y. Protein synergistic action-based development and application of a molecularly imprinted chiral sensor for highly stereoselective recognition of S-fluoxetine. Biosens Bioelectron 2023; 223:115027. [PMID: 36580815 DOI: 10.1016/j.bios.2022.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
In order to improve the recognition performance of MIPs sensors in chiral drug enantiomers, a novel a highly selective molecular recognition method based on protein-assisted immobilization of chiral molecular conformation was developed. S-fluoxetine (S-FLX) as the target chiral molecule, human serum albumin (HSA), which has a high affinity and strong interactions with S-FLX, was screened from 11 proteins to serve as an auxiliary recognition unit for the fixation of chiral conformation. By incorporating HSA into the preparation of molecularly imprinted polymers (MIPs), the natural chirality and high stereoselectivity of the protein were leveraged for the induction and fixation of the stereo conformation of S-FLX, refinement of internal structures of the imprinted cavities. The sensor exhibited excellent chiral recognition ability and high detection sensitivity. The changes of probe signal intensity of the MIPs/HSA sensor were positively correlated with the logarithmic concentration of S-FLX in the range of 1.0 × 10-16-1.0 × 10-11 mol L-1, where a detection limit of 6.43 × 10-17 mol L-1 was achieved (DL = 3δb/K). The selectivity of MIPs/HSA sensor in recognizing S-FLX was increased by 18.5 times and the sensitivity was increased by 2.6 times after the incorporation of HSA. The developed sensor was successfully used for the analysis of S-FLX in fluoxetine hydrochloride capsules.
Collapse
Affiliation(s)
- Lianming Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610000, China.
| | - Jingxia Gao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Kui Luo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Ying Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610000, China
| |
Collapse
|
20
|
Molecularly Imprinted Polymer Nanospheres with Hydrophilic Shells for Efficient Molecular Recognition of Heterocyclic Aromatic Amines in Aqueous Solution. Molecules 2023; 28:molecules28052052. [PMID: 36903298 PMCID: PMC10004106 DOI: 10.3390/molecules28052052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Heterocyclic aromatic amine molecularly imprinted polymer nanospheres with surface-bound dithioester groups (haa-MIP) were firstly synthesized via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization. Then, a series of core-shell structural heterocyclic aromatic amine molecularly imprinted polymer nanospheres with hydrophilic shells (MIP-HSs) were subsequently prepared by grafting the hydrophilic shells on the surface of haa-MIP via on-particle RAFT polymerization of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA), and diethylaminoethyl methacrylate (DEAEMA). The haa-MIP nanospheres showed high affinity and specific recognition toward harmine and its structural analogs in organic solution of acetonitrile, but lost the specific binding ability in aqueous solution. However, after the grafting of the hydrophilic shells on the haa-MIP particles, the surface hydrophilicity and water dispersion stability of the polymer particles of MIP-HSs greatly improved. The binding of harmine by MIP-HSs with hydrophilic shells in aqueous solutions is about two times higher than that of NIP-HSs, showing an efficient molecular recognition of heterocyclic aromatic amines in aqueous solution. The effect of hydrophilic shell structure on the molecular recognition property of MIP-HSs was further compared. MIP-PIA with carboxyl groups containing hydrophilic shells showed the highest selective molecular recognition ability to heterocyclic aromatic amines in aqueous solution.
Collapse
|
21
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
22
|
Zhang Y, Wang Q, Zhao X, Ma Y, Zhang H, Pan G. Molecularly Imprinted Nanomaterials with Stimuli Responsiveness for Applications in Biomedicine. Molecules 2023; 28:molecules28030918. [PMID: 36770595 PMCID: PMC9919331 DOI: 10.3390/molecules28030918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The review aims to summarize recent reports of stimuli-responsive nanomaterials based on molecularly imprinted polymers (MIPs) and discuss their applications in biomedicine. In the past few decades, MIPs have been proven to show widespread applications as new molecular recognition materials. The development of stimuli-responsive nanomaterials has successfully endowed MIPs with not only affinity properties comparable to those of natural antibodies but also the ability to respond to external stimuli (stimuli-responsive MIPs). In this review, we will discuss the synthesis of MIPs, the classification of stimuli-responsive MIP nanomaterials (MIP-NMs), their dynamic mechanisms, and their applications in biomedicine, including bioanalysis and diagnosis, biological imaging, drug delivery, disease intervention, and others. This review mainly focuses on studies of smart MIP-NMs with biomedical perspectives after 2015. We believe that this review will be helpful for the further exploration of stimuli-responsive MIP-NMs and contribute to expanding their practical applications especially in biomedicine in the near future.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qinghe Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiao Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou 730071, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Correspondence: (Y.M.); (G.P.)
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (Y.M.); (G.P.)
| |
Collapse
|
23
|
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:248. [PMID: 36677999 PMCID: PMC9863567 DOI: 10.3390/nano13020248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.
Collapse
|
24
|
Sergeyeva T, Piletska O, Piletsky S. Rationally designed molecularly imprinted polymer membranes as antibody and enzyme mimics in analytical biotechnology. BBA ADVANCES 2022; 3:100070. [PMID: 37082261 PMCID: PMC10074925 DOI: 10.1016/j.bbadva.2022.100070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The paper is a self-review of works on development of new approaches to formation of mimics of receptor and catalytic sites of biological macromolecules in the structure of highly cross-linked polymer membranes and thin films. The general strategy for formation of the binding sites in molecularly imprinted polymer (MIP) membranes and thin films was described. A selective recognition of a number of food toxins, endocrine disruptors and metabolites is based on the results of computational modeling data for the prediction and optimization of their structure. A strategy proposed for the design of the artificial binding sites in MIP membranes was supported by the research performed by the authors on development of a number of the MIP membrane-based affinity and catalytic biosensors for selective and sensitive measurement (detection limits 0.3-100 nM) of the target analytes. Novel versatile approaches aimed at improving sensitivity of the developed biosensor systems were discussed.
Collapse
Affiliation(s)
- Tetyana Sergeyeva
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., 03680, Kyiv, Ukraine
| | - Olena Piletska
- University of Leicester, Department of Chemistry, Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Sergiy Piletsky
- University of Leicester, Department of Chemistry, Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
25
|
Yuan Q, Wang Y, Wang S, Li R, Ma J, Wang Y, Sun R, Luo Y. Adenine imprinted beads as a novel selective extracellular DNA extraction method reveals underestimated prevalence of extracellular antibiotic resistance genes in various environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158570. [PMID: 36075418 DOI: 10.1016/j.scitotenv.2022.158570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Despite severe threats of extracellular antibiotic resistance genes (eARGs) towards public health in various environments, advanced studies have been hindered mainly by ineffective extracellular DNA (exDNA) extraction methods, which is challenged by trace levels of exDNA and inference from abundant coexisting compounds. This study developed a highly selective exDNA extraction method based on molecular imprinting technology (MIT) by using adenine as the template for the first time. Results suggested that adenine imprinted beads were rough spheres at an average size of 0.39 ± 0.07 μm. They effectively adsorbed DNA in the absence of chaotropic agents, with superior capacity (796.2 mg/g), rate (0.0066/s) and regarding DNA of variable lengths, even the ultra-short DNA (<100 bp). They were also highly selective towards DNA, circumventing the interference of competitive compounds' interference. These properties contribute to efficient exDNA extraction (71 %-119 %) from various environmental samples. Specifically, adenine imprinted beads enabled significantly higher extraction rates of eARGs from river, air and vegetable samples (69 %-95 %) compared to that by commercial DNA extraction products (16 %-62 %). The adenine imprinted beads-based method reveals underestimated eARG levels in the environment and the corresponding risks, and thus will thus be a powerful tool for advanced exDNA research.
Collapse
Affiliation(s)
- Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yi Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shangjie Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruiqing Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junlu Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yijing Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Antiochia R. Electrochemical biosensors for SARS-CoV-2 detection: Voltametric or impedimetric transduction? Bioelectrochemistry 2022; 147:108190. [PMID: 35738049 PMCID: PMC9188450 DOI: 10.1016/j.bioelechem.2022.108190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Abstract
During the COVID-19 pandemic, electrochemical biosensors have shown several advantages including accuracy, low cost, possibility of miniaturization and portability, which make them an interesting testing method for rapid point-of-care (POC) detection of SARS-CoV-2 infection, allowing the detection of both viral RNA and viral antigens. Herein, we reviewed advancements in electrochemical biosensing platforms towards the detection of SARS-CoV-2 based on voltametric and impedimetric transduction modes, highlighting the advantages and drawbacks of the two methods.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
27
|
Liu Z, Zhou Q, Wang D, Duan Y, Zhang X, Yang Y, Xu Z. β-Cyclodextrin-Based Supramolecular Imprinted Fiber Array for Highly Selective Detection of Parabens. Int J Mol Sci 2022; 23:ijms231810753. [PMID: 36142665 PMCID: PMC9500753 DOI: 10.3390/ijms231810753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022] Open
Abstract
A novel high-throughput array analytical platform based on derived β-cyclodextrin supramolecular imprinted polymer (SMIP) fibers was constructed to achieve selective enrichment and removal of parabens. SMIP fiber arrays have abundant imprinting sites and introduce the host−guest inclusion effect of the derived β-cyclodextrin, which is beneficial to significantly improve the adsorption ability of fiber for parabens. Upon combination with HPLC, a specific and sensitive recognition method was developed with a low limit of detection (0.003−0.02 µg/L, S/N = 3) for parabens analysis in environmental water. This method has a good linearity (R > 0.9994) in the linear range of 0.01−200 µg/L. The proposed SMIP fiber array with high-throughput adsorption capacity has great potential in monitoring water pollution, which also provides a reliable reference for the analysis of more categories of pharmaceutical and personal care product pollutants.
Collapse
|
28
|
Wang X, Lu D, Liu Y, Wang W, Ren R, Li M, Liu D, Liu Y, Liu Y, Pang G. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation. BIOSENSORS 2022; 12:bios12080566. [PMID: 35892464 PMCID: PMC9394270 DOI: 10.3390/bios12080566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 05/07/2023]
Abstract
Biosensors are powerful analytical tools used to identify and detect target molecules. Electrochemical biosensors, which combine biosensing with electrochemical analysis techniques, are efficient analytical instruments that translate concentration signals into electrical signals, enabling the quantitative and qualitative analysis of target molecules. Electrochemical biosensors have been widely used in various fields of detection and analysis due to their high sensitivity, superior selectivity, quick reaction time, and inexpensive cost. However, the signal changes caused by interactions between a biological probe and a target molecule are very weak and difficult to capture directly by using detection instruments. Therefore, various signal amplification strategies have been proposed and developed to increase the accuracy and sensitivity of detection systems. This review serves as a reference for biosensor and detector research, as it introduces the research progress of electrochemical signal amplification strategies in olfactory and taste evaluation. It also discusses the latest signal amplification strategies currently being employed in electrochemical biosensors for nanomaterial development, enzyme labeling, and nucleic acid amplification techniques, and highlights the most recent work in using cell tissues as biosensitive elements.
Collapse
Affiliation(s)
- Xinqian Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Dingqiang Lu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Ruijuan Ren
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China;
| | - Ming Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Danyang Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yujiao Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yixuan Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Guangchang Pang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| |
Collapse
|
29
|
Rahmati Z, Roushani M. SARS-CoV-2 virus label-free electrochemical nanohybrid MIP-aptasensor based on Ni 3(BTC) 2 MOF as a high-performance surface substrate. Mikrochim Acta 2022; 189:287. [PMID: 35852630 PMCID: PMC9295095 DOI: 10.1007/s00604-022-05357-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022]
Abstract
A dual recognition biosensor was developed via introducing aptamer strings and molecular imprinting polymer (MIP) for the selective detection of intact SARS-CoV-2 virus based on screen printed carbon electrode (SPCE) modified with nickel-benzene tricarboxylic acid-metal–organic framework (Ni3(BTC)2 MOF) synthesized by in situ growth method, SARS-CoV-2 S protein-specific amino-aptamer and electropolymerization of dopamine (ePDA). The proposed biosensor showed an excellent linear relationship between charge transfer resistance (Rct) and increase in virus concentration in the range 10 to 108 plaque-forming units/mL (PFU/mL) with a low detection limit of 3.3 ± 0.04 PFU/mL and response time of 20 min. Compared with single-element sensors (aptamer or MIP), it showed higher selectivity for the SARS-CoV-2 virus and facilitated detection in real samples.
Collapse
Affiliation(s)
- Zeinab Rahmati
- Department of Chemistry, Faculty of Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran.
| |
Collapse
|
30
|
Asano N, Sugihara S, Suye SI, Fujita S. Electrospun Porous Nanofibers with Imprinted Patterns Induced by Phase Separation of Immiscible Polymer Blends. ACS OMEGA 2022; 7:19997-20005. [PMID: 35721947 PMCID: PMC9202247 DOI: 10.1021/acsomega.2c01798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 06/11/2023]
Abstract
Nanofibrous nonwoven fabrics have attracted attention as porous adsorbents with high specific surface areas for the safe and efficient treatment of spilled organic dyes and petroleum. For this purpose, a method of fabricating porous nanofibers with high specific surface areas would be highly beneficial. In this study, the phase separation in nanofibers electrospun from blended solutions of immiscible polymers [poly(styrene) (PS) and poly(vinylpyrrolidone) (PVP)] was investigated. The removal of PVP as a sacrificial polymer afforded the imprinting of mesopores (40-70 nm) in the PS nanofibers. The effects of solution composition (PS/PVP in N,N-dimethylformamide) on the structure formation in the fibers were investigated. The nanofibers thus obtained could selectively adsorb low-molecular-weight hydrophobic dyes, such as Nile Red and Oil Red O. Thus, it is expected that the combined approach of electrospinning of immiscible polymer blends and phase separation-induced patterning can be applied to the fabrication of functional nanofibers for diverse applications.
Collapse
Affiliation(s)
- Narumi Asano
- Department
of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| | - Shinji Sugihara
- Life
Science Innovation Center, University of
Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
- Department
of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| | - Shin-ichiro Suye
- Department
of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
- Life
Science Innovation Center, University of
Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department
of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
- Life
Science Innovation Center, University of
Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
31
|
Anion Exchange Affinity-Based Controllable Surface Imprinting Synthesis of Ultrathin Imprinted Films for Protein Recognition. Polymers (Basel) 2022; 14:polym14102011. [PMID: 35631893 PMCID: PMC9144501 DOI: 10.3390/polym14102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Anion exchange affinity-based controllable surface imprinting is an effective approach to overcome low imprinting efficiency and high non-specific binding capacity. The template proteins were first immobilized on the anchored tetraalkylammonium groups of the nanoparticles via anion exchange affinity-based interactions, enabling monolayer sorption using a low template concentration. The combined use of surface-initiated photoiniferter-mediated polymerization to precisely control the imprinted film thickness, allowing the formation of homogeneous binding cavities, and the construction of effective binding sites resulted in a low non-specific binding capacity and high imprinting efficiency. The obtained imprinted films benefited from the anion exchange mechanism, exhibiting a higher imprinting factor and faster binding rate than the reference material. Binding tests revealed that the binding strength and selective recognition properties could be tuned to a certain extent by adjusting the NaCl concentration. Additionally, in contrast to the harsh template elution conditions of the covalent immobilization approach, over 80% of the template molecules were readily removed from the imprinted films using supersonic elution with an aqueous mixture of NaCl and HAc. Introducing template immobilization by anion exchange interactions to the synthesis of imprinted materials may provide a new approach for effective biomacromolecular imprinting.
Collapse
|
32
|
Molecularly Imprinted Polymer-Based Sensors for SARS-CoV-2: Where Are We Now? Biomimetics (Basel) 2022; 7:biomimetics7020058. [PMID: 35645185 PMCID: PMC9149885 DOI: 10.3390/biomimetics7020058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Since the first reported case of COVID-19 in 2019 in China and the official declaration from the World Health Organization in March 2021 as a pandemic, fast and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has played a major role worldwide. For this reason, various methods have been developed, comprising reverse transcriptase-polymerase chain reaction (RT-PCR), immunoassays, clustered regularly interspaced short palindromic repeats (CRISPR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and bio(mimetic)sensors. Among the developed methods, RT-PCR is so far the gold standard. Herein, we give an overview of the MIP-based sensors utilized since the beginning of the pandemic.
Collapse
|
33
|
Nechvátalová M, Urban J. Current trends in the development of polymer-based monolithic stationary phases. ANALYTICAL SCIENCE ADVANCES 2022; 3:154-164. [PMID: 38715639 PMCID: PMC10989626 DOI: 10.1002/ansa.202100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
This review focuses on the development and applications of organic polymer monoliths, with special attention to the literature published in 2021. The latest protocols in the preparation of polymer monoliths are discussed. In particular, tailored surface modification using nanomaterials, the development of chiral stationary phases and development of stationary phases for capillary electrochromatography are reviewed. Furthermore, the optimization of pore forming solvents composition is also discussed. Finally, the use of monolithic stationary phases in sample treatment using solid-phase extraction and enrichment methods, molecularly imprinted polymers and enzymatic reactors is mentioned.
Collapse
Affiliation(s)
| | - Jiří Urban
- Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
34
|
Zidarič T, Finšgar M, Maver U, Maver T. Artificial Biomimetic Electrochemical Assemblies. BIOSENSORS 2022; 12:44. [PMID: 35049673 PMCID: PMC8773559 DOI: 10.3390/bios12010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
Rapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes for a better understanding of biological and physiological functions are becoming increasingly prominent. In this regard, biosensors represent a powerful tool to meet these requirements. Recent decades have seen biosensors gaining popularity due to their ability to design sensor platforms that are selective to determine target analytes. Naturally generated receptor units have a high affinity for their targets, which provides the selectivity of a device. However, such receptors are subject to instability under harsh environmental conditions and have consequently low durability. By applying principles of supramolecular chemistry, molecularly imprinted polymers (MIPs) can successfully replace natural receptors to circumvent these shortcomings. This review summarizes the recent achievements and analytical applications of electrosynthesized MIPs, in particular, for the detection of protein-based biomarkers. The scope of this review also includes the background behind electrochemical readouts and the origin of the gate effect in MIP-based biosensors.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|