1
|
Gybeľ T, Čada Š, Klementová D, Schwalm MP, Berger BT, Šebesta M, Knapp S, Bryja V. Splice variants of CK1α and CK1α-like: Comparative analysis of subcellular localization, kinase activity, and function in the Wnt signaling pathway. J Biol Chem 2024; 300:107407. [PMID: 38796065 PMCID: PMC11255964 DOI: 10.1016/j.jbc.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024] Open
Abstract
Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/β-catenin pathway, which promotes the degradation of β-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/β-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of β-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/β-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate β-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/β KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-β-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/β-catenin pathway at the level of β-catenin and Axin.
Collapse
Affiliation(s)
- Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Darja Klementová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin P Schwalm
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; Structural Genomics Consortium, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, Heidelberg, Germany
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; Structural Genomics Consortium, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Marek Šebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; Structural Genomics Consortium, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, Heidelberg, Germany
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
2
|
Bustos VH, Sunkari YK, Sinha A, Pulina M, Bispo A, Hopkins M, Lam A, Kriegsman SF, Mui E, Chang E, Jedlicki A, Rosenthal H, Flajolet M, Sinha SC. Rational Development of a Small-Molecule Activator of CK1γ2 That Decreases C99 and Beta-Amyloid Levels. ACS Chem Biol 2024; 19:37-47. [PMID: 38079390 DOI: 10.1021/acschembio.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ), C99, and Tau in vulnerable areas of the brain. Despite extensive research, current strategies to lower Aβ levels have shown limited efficacy in slowing the cognitive decline associated with AD. Recent findings suggest that C99 may also play a crucial role in the pathogenesis of AD. Our laboratory has discovered that CK1γ2 phosphorylates Presenilin 1 at the γ-secretase complex, leading to decreased C99 and Aβ levels. Thus, CK1γ2 activation appears as a promising therapeutic target to lower both C99 and Aβ levels. In this study, we demonstrate that CK1γ2 is inhibited by intramolecular autophosphorylation and describe a high-throughput screen designed to identify inhibitors of CK1γ2 autophosphorylation. We hypothesize that these inhibitors could lead to CK1γ2 activation and increased PS1-Ser367 phosphorylation, ultimately reducing C99 and Aβ levels. Using cultured cells, we investigated the impact of these compounds on C99 and Aβ concentrations and confirmed that CK1γ2 activation effectively reduced their levels. Our results provide proof of concept that CK1γ2 is an attractive therapeutic target for AD. Future studies should focus on the identification of specific compounds that can inhibit CK1γ2 autophosphorylation and evaluate their efficacy in preclinical models of AD. These studies will pave the way for the development of novel therapeutics for the treatment of AD.
Collapse
Affiliation(s)
- Victor Hugo Bustos
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Maria Pulina
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Ashley Bispo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Maya Hopkins
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Alison Lam
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Sydney F Kriegsman
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Emily Mui
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Emily Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Ana Jedlicki
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Hannah Rosenthal
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Subhash C Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
3
|
Lambert M, Gebel J, Trejtnar C, Wesch N, Bozkurt S, Adrian-Allgood M, Löhr F, Münch C, Dötsch V. Fuzzy interactions between the auto-phosphorylated C-terminus and the kinase domain of CK1δ inhibits activation of TAp63α. Sci Rep 2023; 13:16423. [PMID: 37777570 PMCID: PMC10542812 DOI: 10.1038/s41598-023-43515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
The p53 family member TAp63α plays an important role in maintaining the genetic integrity in oocytes. DNA damage, in particular DNA double strand breaks, lead to the transformation of the inhibited, only dimeric conformation into the active tetrameric one that results in the initiation of an apoptotic program. Activation requires phosphorylation by the kinase CK1 which phosphorylates TAp63α at four positions. The third phosphorylation event is the decisive step that transforms TAp63α into the active state. This third phosphorylation, however, is ~ 20 times slower than the first two phosphorylation events. This difference in the phosphorylation kinetics constitutes a safety mechanism that allows oocytes with a low degree of DNA damage to survive. So far these kinetic investigations of the phosphorylation steps have been performed with the isolated CK1 kinase domain. However, all CK1 enzymes contain C-terminal extensions that become auto-phosphorylated and inhibit the activity of the kinase. Here we have investigated the effect of auto-phosphorylation of the C-terminus in the kinase CK1δ and show that it slows down phosphorylation of the first two sites in TAp63α but basically inhibits the phosphorylation of the third site. We have identified up to ten auto-phosphorylation sites in the CK1δ C-terminal domain and show that all of them interact with the kinase domain in a "fuzzy" way in which not a single site is particularly important. Through mutation analysis we further show that hydrophobic amino acids following the phosphorylation site are important for a substrate to be able to successfully compete with the auto-inhibitory effect of the C-terminal domain. This auto-phosphorylation adds a new layer to the regulation of apoptosis in oocytes.
Collapse
Affiliation(s)
- Mahil Lambert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Charlotte Trejtnar
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Nicole Wesch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Süleyman Bozkurt
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Martin Adrian-Allgood
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Frankfurt/Main, Germany
- Cardio-Pulmonary Institute, Frankfurt/Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
4
|
Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018; 16:23. [PMID: 29793495 PMCID: PMC5968562 DOI: 10.1186/s12964-018-0236-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development, circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential opportunities for advancing theranostics.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
5
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|
6
|
Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014; 2:535-62. [PMID: 24634836 PMCID: PMC3953959 DOI: 10.1016/j.redox.2014.02.006] [Citation(s) in RCA: 619] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment. Complexity of redox regulation increases along the phylogenetic tree. Complex regulatory networks allow for a high degree of H2O2 biological plasticity. H2O2 modulates gene expression at all steps from transcription to protein synthesis. Fast response (s) is mediated by sensors with high H2O2 reactivity. Low reactivity H2O2 sensors may mediate slow (h) or localized H2O2 responses.
Collapse
Affiliation(s)
- H. Susana Marinho
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Real
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Cyrne
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, IPL, Lisboa, Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Corresponding author.
| |
Collapse
|
7
|
Wang H, Albadawi H, Siddiquee Z, Stone JM, Panchenko MP, Watkins MT, Stone JR. Altered vascular activation due to deficiency of the NADPH oxidase component p22phox. Cardiovasc Pathol 2013; 23:35-42. [PMID: 24035466 DOI: 10.1016/j.carpath.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/04/2013] [Accepted: 08/05/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase play important roles in vascular activation. The p22(phox) subunit is necessary for the activity of NADPH oxidase complexes utilizing Nox1, Nox2, Nox3, and Nox4 catalytic subunits. METHODS We assessed p22(phox)-deficient mice and human tissue for altered vascular activation. RESULTS Mice deficient in p22(phox) were smaller than their wild-type littermates but showed no alteration in basal blood pressure. The wild-type littermates were relatively resistant to forming intimal hyperplasia following carotid ligation, and the intimal hyperplasia that developed was not altered by p22(phox) deficiency. However, at the site of carotid artery ligation, the p22(phox)-deficient mice showed significantly less vascular elastic fiber loss compared with their wild-type littermates. This preservation of elastic fibers was associated with a reduced matrix metallopeptidase (MMP) 12/tissue inhibitor of metalloproteinase (TIMP) 1 expression ratio. A similar decrease in the relative MMP12/TIMP1 expression ratio occurred in human coronary artery smooth muscle cells upon knockdown of the hydrogen peroxide responsive kinase CK1αLS. In the ligated carotid arteries, the p22(phox)-deficient mice showed reduced expression of heterogeneous nuclear ribonucleoprotein C (hnRNP-C), suggesting reduced activity of CK1αLS. In a lung biopsy from a human patient with p22(phox) deficiency, there was also reduced vascular hnRNP-C expression. CONCLUSIONS These findings indicate that NADPH oxidase complexes modulate aspects of vascular activation including vascular elastic fiber loss, the MMP12/TIMP1 expression ratio, and the expression of hnRNP-C. Furthermore, these findings suggest that the effects of NADPH oxidase on vascular activation are mediated in part by protein kinase CK1αLS.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/pathology
- Carotid Artery, Common/enzymology
- Carotid Artery, Common/pathology
- Case-Control Studies
- Casein Kinase Ialpha/genetics
- Casein Kinase Ialpha/metabolism
- Cells, Cultured
- Coronary Vessels/enzymology
- Coronary Vessels/pathology
- Cytochrome b Group/deficiency
- Cytochrome b Group/genetics
- Elastic Tissue/enzymology
- Elastic Tissue/pathology
- Female
- Granulomatous Disease, Chronic/enzymology
- Granulomatous Disease, Chronic/genetics
- Granulomatous Disease, Chronic/pathology
- Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism
- Humans
- Hyperplasia
- Infant
- Male
- Matrix Metalloproteinase 12/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- NADPH Oxidases/deficiency
- NADPH Oxidases/genetics
- Neointima
- RNA Interference
- Reactive Oxygen Species/metabolism
- Tissue Inhibitor of Metalloproteinase-1/metabolism
- Transfection
Collapse
Affiliation(s)
- He Wang
- Center for Systems Biology, Massachusetts General Hospital and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Exploiting the MDM2-CK1α protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth. PLoS One 2012; 7:e43391. [PMID: 22916255 PMCID: PMC3423359 DOI: 10.1371/journal.pone.0043391] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 07/19/2012] [Indexed: 01/29/2023] Open
Abstract
Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α) forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2) oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i) ELISA with recombinant MDM2; (ii) cell lysate pull-down towards endogenous MDM2; (iii) MDM2-CK1α complex-based competition ELISA; and (iv) MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i) function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii) be used as a tool to study NEDDylation of CK1α, and (iii) reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross-talk between NEDDylation, protein kinase signalling, and cell survival.
Collapse
|
9
|
Panchenko MP, Siddiquee Z, Dombkowski DM, Alekseyev YO, Lenburg ME, Walker JD, Macgillivray TE, Preffer FI, Stone JR. Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1562-72. [PMID: 20696773 DOI: 10.2353/ajpath.2010.100327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein kinase CK1alpha regulates several fundamental cellular processes including proliferation and differentiation. Up to four forms of this kinase are expressed in vertebrates resulting from alternative splicing of exons; these exons encode either the L-insert located within the catalytic domain or the S-insert located at the C terminus of the protein. Whereas the L-insert is known to target the kinase to the nucleus, the functional significance of nuclear CK1alphaLS has been unclear. Here we demonstrate that selective L-insert-targeted short hairpin small interfering RNA-mediated knockdown of CK1alphaLS in human vascular endothelial cells and vascular smooth muscle cells impairs proliferation and abolishes hydrogen peroxide-stimulated proliferation of vascular smooth muscle cells, with the cells accumulating in G(0)/G(1). In addition, selective knockdown of CK1alphaLS in cultured human arteries inhibits vascular activation, preventing smooth muscle cell proliferation, intimal hyperplasia, and proteoglycan deposition. Knockdown of CK1alphaLS results in the harmonious down-regulation of its target substrate heterogeneous nuclear ribonucleoprotein C and results in the altered expression or alternative splicing of key genes involved in cellular activation including CXCR4, MMP3, CSF2, and SMURF1. Our results indicate that the nuclear form of CK1alpha in humans, CK1alphaLS, plays a critical role in vascular cell proliferation, cellular activation, and hydrogen peroxide-mediated mitogenic signal transduction.
Collapse
Affiliation(s)
- Mikhail P Panchenko
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Budini M, Jacob G, Jedlicki A, Pérez C, Allende CC, Allende JE. Autophosphorylation of carboxy-terminal residues inhibits the activity of protein kinase CK1alpha. J Cell Biochem 2009; 106:399-408. [PMID: 19115251 DOI: 10.1002/jcb.22019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CK1 constitutes a protein kinase subfamily that is involved in many important physiological processes. However, there is limited knowledge about mechanisms that regulate their activity. Isoforms CK1delta and CK1epsilon were previously shown to autophosphorylate carboxy-terminal sites, a process which effectively inhibits their catalytic activity. Mass spectrometry of CK1alpha and splice variant CK1alphaL has identified the autophosphorylation of the last four carboxyl-end serines and threonines and also for CK1alphaS, the same four residues plus threonine-327 and serine-332 of the S insert. Autophosphorylation occurs while the recombinant proteins are expressed in Escherichia coli. Mutation of four carboxy-terminal phosphorylation sites of CK1alpha to alanine demonstrates that these residues are the principal but not unique sites of autophosphorylation. Treatment of autophosphorylated CK1alpha and CK1alphaS with lambda phosphatase causes an activation of 80-100% and 300%, respectively. Similar treatment fails to stimulate the CK1alpha mutants lacking autophosphorylation sites. Incubation of dephosphorylated enzymes with ATP to allow renewed autophosphorylation causes significant inhibition of CK1alpha and CK1alphaS. The substrate for these studies was a synthetic canonical peptide for CK1 (RRKDLHDDEEDEAMS*ITA). The stimulation of activity seen upon dephosphorylation of CK1alpha and CK1alphaS was also observed using the known CK1 protein substrates DARPP-32, beta-catenin, and CK2beta, which have different CK1 recognition sequences. Autophosphorylation effects on CK1alpha activity are not due to changes in Km(app) for ATP or for peptide substrate but rather to the catalytic efficiency per pmol of enzyme. This work demonstrates that CK1alpha and its splice variants can be regulated by their autophosphorylation status.
Collapse
Affiliation(s)
- Mauricio Budini
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia 8380453 Santiago, Chile
| | | | | | | | | | | |
Collapse
|
11
|
Panchenko MP, Silva N, Stone JR. Up-regulation of a hydrogen peroxide-responsive pre-mRNA binding protein in atherosclerosis and intimal hyperplasia. Cardiovasc Pathol 2008; 18:167-72. [PMID: 18508286 DOI: 10.1016/j.carpath.2008.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/28/2008] [Accepted: 03/16/2008] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Multiple lines of investigation have implicated hydrogen peroxide (H(2)O(2)) as an important endogenous mediator of cell proliferation in the vessel wall. Heterogeneous nuclear ribonucleoprotein C (hnRNP-C), a nuclear pre-mRNA binding protein that plays roles in vertebrate cell proliferation and differentiation, has been identified as a component of a vascular cell signaling pathway activated by low physiologic levels of H(2)O(2). The expression of hnRNP-C in human arteries has not previously been assessed. METHODS Segments of human proximal internal carotid arteries were evaluated for the expression of hnRNP-C by immunohistochemistry. RESULTS In normal proximal internal carotid arteries, hnRNP-C is expressed predominantly by the endothelium, with significantly lower expression by medial smooth muscle. In preatherosclerotic intimal hyperplasia, hnRNP-C is up-regulated in the artery wall, due to the robust expression by the intimal smooth muscle cells, without up-regulation in the medial smooth muscle cells. In arteries with atherosclerotic lesions, there is strong expression of hnRNP-C not only by intimal cells but also by medial smooth muscle cells. CONCLUSIONS The H(2)O(2) responsive pre-mRNA binding protein hnRNP-C is up-regulated in atherosclerosis and in preatherosclerotic intimal hyperplasia in humans, supporting the hypothesis that H(2)O(2) is a regulator of vascular cell proliferation in these conditions. These data also suggest that hnRNP-C may be useful as a marker of vascular cell activation.
Collapse
Affiliation(s)
- Mikhail P Panchenko
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|