1
|
Majdi Yazdi M, Saran S, Mrozowich T, Lehnert C, Patel TR, Sanders DAR, Palmer DRJ. Asparagine-84, a regulatory allosteric site residue, helps maintain the quaternary structure of Campylobacter jejuni dihydrodipicolinate synthase. J Struct Biol 2019; 209:107409. [PMID: 31678256 DOI: 10.1016/j.jsb.2019.107409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023]
Abstract
Dihydrodipicolinate synthase (DHDPS) from Campylobacter jejuni is a natively homotetrameric enzyme that catalyzes the first unique reaction of (S)-lysine biosynthesis and is feedback-regulated by lysine through binding to an allosteric site. High-resolution structures of the DHDPS-lysine complex have revealed significant insights into the binding events. One key asparagine residue, N84, makes hydrogen bonds with both the carboxyl and the α-amino group of the bound lysine. We generated two mutants, N84A and N84D, to study the effects of these changes on the allosteric site properties. However, under normal assay conditions, N84A displayed notably lower catalytic activity, and N84D showed no activity. Here we show that these mutations disrupt the quaternary structure of DHDPS in a concentration-dependent fashion, as demonstrated by size-exclusion chromatography, multi-angle light scattering, dynamic light scattering, small-angle X-ray scattering (SAXS) and high-resolution protein crystallography.
Collapse
Affiliation(s)
- Mohadeseh Majdi Yazdi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Sagar Saran
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler Mrozowich
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Cheyanne Lehnert
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada; Li Ka Shing Institute of Virology and DiscoveryLab, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
2
|
Atkinson SC, Dogovski C, Wood K, Griffin MDW, Gorman MA, Hor L, Reboul CF, Buckle AM, Wuttke J, Parker MW, Dobson RCJ, Perugini MA. Substrate Locking Promotes Dimer-Dimer Docking of an Enzyme Antibiotic Target. Structure 2018; 26:948-959.e5. [PMID: 29804823 DOI: 10.1016/j.str.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022]
Abstract
Protein dynamics manifested through structural flexibility play a central role in the function of biological molecules. Here we explore the substrate-mediated change in protein flexibility of an antibiotic target enzyme, Clostridium botulinum dihydrodipicolinate synthase. We demonstrate that the substrate, pyruvate, stabilizes the more active dimer-of-dimers or tetrameric form. Surprisingly, there is little difference between the crystal structures of apo and substrate-bound enzyme, suggesting protein dynamics may be important. Neutron and small-angle X-ray scattering experiments were used to probe substrate-induced dynamics on the sub-second timescale, but no significant changes were observed. We therefore developed a simple technique, coined protein dynamics-mass spectrometry (ProD-MS), which enables measurement of time-dependent alkylation of cysteine residues. ProD-MS together with X-ray crystallography and analytical ultracentrifugation analyses indicates that pyruvate locks the conformation of the dimer that promotes docking to the more active tetrameric form, offering insight into ligand-mediated stabilization of multimeric enzymes.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Lilian Hor
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, VIC 3086, Australia
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joachim Wuttke
- Juelich Centre for Neutron Science (JCNS), at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Juelich GmbH, Lichtenstrasse 1, Garching 85 747, Germany
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag, Christchurch 4800, New Zealand
| | - Matthew A Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
3
|
Xu J, Han M, Ren X, Zhang W. Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of l-lysine in Escherichia coli. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Gordon SE, Weber DK, Downton MT, Wagner J, Perugini MA. Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation. PLoS Comput Biol 2016; 12:e1004811. [PMID: 26967332 PMCID: PMC4788353 DOI: 10.1371/journal.pcbi.1004811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/12/2016] [Indexed: 11/29/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the diaminopimelate pathway of bacteria, yielding amino acids required for cell wall and protein biosyntheses. The essentiality of the enzyme to bacteria, coupled with its absence in humans, validates DHDPS as an antibacterial drug target. Conventional drug design efforts have thus far been unsuccessful in identifying potent DHDPS inhibitors. Here, we make use of contemporary molecular dynamics simulation and Markov state models to explore the interactions between DHDPS from the human pathogen Staphylococcus aureus and its cognate substrate, pyruvate. Our simulations recover the crystallographic DHDPS-pyruvate complex without a priori knowledge of the final bound structure. The highly conserved residue Arg140 was found to have a pivotal role in coordinating the entry of pyruvate into the active site from bulk solvent, consistent with previous kinetic reports, indicating an indirect role for the residue in DHDPS catalysis. A metastable binding intermediate characterized by multiple points of intermolecular interaction between pyruvate and key DHDPS residue Arg140 was found to be a highly conserved feature of the binding trajectory when comparing alternative binding pathways. By means of umbrella sampling we show that these binding intermediates are thermodynamically metastable, consistent with both the available experimental data and the substrate binding model presented in this study. Our results provide insight into an important enzyme-substrate interaction in atomistic detail that offers the potential to be exploited for the discovery of more effective DHDPS inhibitors and, in a broader sense, dynamic protein-drug interactions. Interactions between proteins and ligands underpin many important biological processes, such as binding of substrates to their cognate enzymes in the process of catalysis. These interactions are complex, often requiring several intermediate steps to fully transition into the bound state. Here, we have used computational simulation to study binding of pyruvate to Dihydrodipicolinate synthase (DHDPS), an enzyme in the bacterial diaminopimelate pathway. In bacteria, such as the human pathogen S. aureus, DHDPS functions to make building blocks necessary for protein and bacterial cell wall biosyntheses. As the enzyme is absent in humans, yet essential for bacterial growth, DHDPS is a valid target for broad-range antibiotics. However, known DHDPS inhibitors show poor potency. One avenue that has not yet been taken into consideration for inhibitor design is the dynamics of DHDPS’s interaction with its reaction substrates (e.g. pyruvate). Using molecular dynamics simulation, we find that pyruvate binding to DHDPS must pass through a transition intermediate ‘hotspot’ in which the substrate is held in place by a dense network of noncovalent bonds. Given that many of the protein residues involved in this interaction are also shared by DHDPS from many pathogenic bacteria, this binding intermediate ‘hotspot’ may help in development of better broad-range DHDPS inhibitors.
Collapse
Affiliation(s)
- Shane E. Gordon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Daniel K. Weber
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew T. Downton
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - John Wagner
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
5
|
Conly CJT, Skovpen YV, Li S, Palmer DRJ, Sanders DAR. Tyrosine 110 Plays a Critical Role in Regulating the Allosteric Inhibition of Campylobacter jejuni Dihydrodipicolinate Synthase by Lysine. Biochemistry 2014; 53:7396-406. [DOI: 10.1021/bi5012157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuylar J. T. Conly
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - Yulia V. Skovpen
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - Shuo Li
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
6
|
Crystal structure and in silico studies of dihydrodipicolinate synthase (DHDPS) from Aquifex aeolicus. Extremophiles 2014; 18:973-85. [PMID: 24996798 DOI: 10.1007/s00792-014-0667-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS, E.C.4.2.1.52) catalyzes the first committed step in the lysine biosynthetic pathway: the condensation of (S)-aspartate semialdehyde and pyruvate to form (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, we report the crystal structure of DHDPS from a hyperthermophilic bacterium Aquifex aeolicus (AqDHDPS). L-Lysine is used as an important animal feed additive where the production is at the level of 1.5 million tons per year. The biotechnological manufacture of lysine has been going for more than 50 years which includes over synthesis and reverse engineering of DHDPS. AqDHDPS revealed a unique disulfide linkage which is not conserved in the homologues of AqDHDPS. In silico mutation of C139A and intermolecular ion-pair residues and the subsequent molecular dynamics simulation of the mutants showed that these residues are critical for the stability of AqDHDPS tetramer. MD simulations of AqDHDPS at three different temperatures (303, 363 and 393 K) revealed that the molecule is stable at 363 K. Thus, this structural and in silico study of AqDHDPS likely provides additional details towards the rational and structure-based design of hyper-L-lysine producing bacterial strains.
Collapse
|
7
|
Nazmi AR, Schofield LR, Dobson RC, Jameson GB, Parker EJ. Destabilization of the Homotetrameric Assembly of 3-Deoxy-d-Arabino-Heptulosonate-7-Phosphate Synthase from the Hyperthermophile Pyrococcus furiosus Enhances Enzymatic Activity. J Mol Biol 2014; 426:656-73. [DOI: 10.1016/j.jmb.2013.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 12/30/2022]
|
8
|
Erzeel E, Van Bochaute P, Thu TT, Angenon G. Medicago truncatula dihydrodipicolinate synthase (DHDPS) enzymes display novel regulatory properties. PLANT MOLECULAR BIOLOGY 2013; 81:401-415. [PMID: 23329373 DOI: 10.1007/s11103-013-0008-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Lysine biosynthesis in plants is tightly regulated by feedback inhibition of the end product on the first enzyme of the lysine-specific branch, dihydrodipicolinate synthase (DHDPS). Three complete DHDPS coding sequences and one partial sequence were obtained in Medicago truncatula via inverse PCR. Analysis of the MtDHDPS sequences indicated the presence of isozymes (MtDHDPS2 and MtDHDPS3) with multiple amino acid substitutions on positions previously shown to be involved in feedback inhibition and of residues important for catalytic activity, possibly affecting the enzymatic properties of these isoforms. Sequences similar to MtDHDPS2 and 3 are present in Lotus japonicus and Glycine max, suggesting the existence of a specific conserved class of DHDPS genes within the Fabaceae family. The MtDHDPS genes were found by quantitative RT-PCR analysis to be expressed in an organ-specific manner in M. truncatula. All four MtDHDPS enzymes were expressed separately in Escherichia coli, revealing a strongly reduced sensitivity of the MtDHDPS2 protein to lysine feedback inhibition and a severely reduced activity of the MtDHDPS3 protein. Remarkably, MtDHDPS3 expression in Arabidopsis thaliana produced transgenic plants with a significantly increased threonine level, suggesting a dominant DHDPS inhibiting role of this isoform. This is supported by co-expression experiments in E. coli which indicate that AtDHDPS and MtDHDPS3 interact and may form hetero-oligomers with strongly reduced enzymatic activity. In conclusion, analysis of DHDPS in M. truncatula revealed the presence of unique isozymes displaying novel regulatory properties.
Collapse
Affiliation(s)
- Ellen Erzeel
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | |
Collapse
|
9
|
Riedel TJ, Knight J, Murray MS, Milliner DS, Holmes RP, Lowther WT. 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:1544-52. [PMID: 22771891 PMCID: PMC3418427 DOI: 10.1016/j.bbadis.2012.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 01/25/2023]
Abstract
Mutations in the gene encoding for 4-hydroxy-2-oxoglutarate aldolase (HOGA) are associated with an excessive production of oxalate in Primary Hyperoxaluria type 3 (PH3). This enzyme is the final step of the hydroxyproline degradation pathway within the mitochondria and catalyzes the cleavage of 4-hydroxy-2-oxoglutarate (HOG) to pyruvate and glyoxylate. No analyses have been performed to assess the consequences of the mutations identified, particularly for those variants that produce either full-length or nearly full-length proteins. In this study, the expression, stability, and activity of nine PH3 human HOGA variants were examined. Using recombinant protein produced in Escherichia coli as well as transfected Chinese hamster ovary (CHO) cells, it was found that all nine PH3 variants are quite unstable, have a tendency to aggregate, and retain no measurable activity. A buildup of HOG was confirmed in the urine, sera and liver samples from PH3 patients. To determine how HOG is cleaved in the absence of HOGA activity, the ability of N-acetylneuraminate aldolase (NAL) to cleave HOG was evaluated. NAL showed minimal activity towards HOG. Whether the expected buildup of HOG in mitochondria could inhibit glyoxylate reductase (GR), the enzyme mutated in PH2, was also evaluated. GR was inhibited by HOG but not by 2-hydroxyglutarate or 2-oxoglutarate. Thus, one hypothetical component of the molecular basis for the excessive oxalate production in PH3 appears to be the inhibition of GR by HOG, resulting in a phenotype similar to PH2.
Collapse
Affiliation(s)
- Travis J. Riedel
- Center for Structural Biology and Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - John Knight
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael S. Murray
- Center for Structural Biology and Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Dawn S. Milliner
- Mayo Clinic Hyperoxaluria Center, Divisions of Nephrology and Hypertension, and Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ross P. Holmes
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - W. Todd Lowther
- Center for Structural Biology and Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One 2011; 6:e26021. [PMID: 21998747 PMCID: PMC3188589 DOI: 10.1371/journal.pone.0026021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background 4-hydroxy-2-oxoglutarate (HOG) aldolase is a unique enzyme in the hydroxyproline degradation pathway catalyzing the cleavage of HOG to pyruvate and glyoxylate. Mutations in this enzyme are believed to be associated with the excessive production of oxalate in primary hyperoxaluria type 3 (PH3), although no experimental data is available to support this hypothesis. Moreover, the identity, oligomeric state, enzymatic activity, and crystal structure of human HOGA have not been experimentally determined. Methodology/Principal Findings In this study human HOGA (hHOGA) was identified by mass spectrometry of the mitochondrial enzyme purified from bovine kidney. hHOGA performs a retro-aldol cleavage reaction reminiscent of the trimeric 2-keto-3-deoxy-6-phosphogluconate aldolases. Sequence comparisons, however, show that HOGA is related to the tetrameric, bacterial dihydrodipicolinate synthases, but the reaction direction is reversed. The 1.97 Å resolution crystal structure of hHOGA bound to pyruvate was determined and enabled the modeling of the HOG-Schiff base intermediate and the identification of active site residues. Kinetic analyses of site-directed mutants support the importance of Lys196 as the nucleophile, Tyr168 and Ser77 as components of a proton relay, and Asn78 and Ser198 as unique residues that facilitate substrate binding. Conclusions/Significance The biochemical and structural data presented support that hHOGA utilizes a type I aldolase reaction mechanism, but employs novel residue interactions for substrate binding. A mapping of the PH3 mutations identifies potential rearrangements in either the active site or the tetrameric assembly that would likely cause a loss in activity. Altogether, these data establish a foundation to assess mutant forms of hHOGA and how their activity could be pharmacologically restored.
Collapse
|
11
|
Pearce FG, Dobson RCJ, Jameson GB, Perugini MA, Gerrard JA. Characterization of monomeric dihydrodipicolinate synthase variant reveals the importance of substrate binding in optimizing oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1900-9. [PMID: 21803176 DOI: 10.1016/j.bbapap.2011.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 01/15/2023]
Abstract
To gain insights into the role of quaternary structure in the TIM-barrel family of enzymes, we introduced mutations to the DHDPS enzyme of Thermotoga maritima, which we have previously shown to be a stable tetramer in solution. These mutations were aimed at reducing the number of salt bridges at one of the two tetramerization interface of the enzyme, which contains many more interactions than the well characterized equivalent interface of the mesophilic Escherichia coli DHDPS enzyme. The resulting variants had altered quaternary structure, as shown by analytical ultracentrifugation, gel filtration liquid chromatography, and small angle X-ray scattering, and X-ray crystallographic studies confirmed that one variant existed as an independent monomer, but with few changes to the secondary and tertiary structure. Reduction of higher order assembly resulted in a loss of thermal stability, as measured by a variety of methods, and impaired catalytic function. Binding of pyruvate increased the oligomeric status of the variants, with a concomitant increase in thermal stability, suggesting a role for substrate binding in optimizing stable, higher order structures. The results of this work show that the salt bridges located at the tetramerization interface of DHDPS play a significant role in maintaining higher order structures, and demonstrate the importance of quaternary structure in determining protein stability and in the optimization of enzyme catalysis.
Collapse
Affiliation(s)
- F Grant Pearce
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|