1
|
Lee G, Park Y, Hwang J, Han B, Kim Y, Kim HJ. Absorption of nitrogen dioxide via a non-packing scrubber using a sulfite/thiosulfate complex absorbent. CHEMOSPHERE 2025; 378:144387. [PMID: 40215873 DOI: 10.1016/j.chemosphere.2025.144387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
The conventional packing-type scrubber was found to exhibit high efficiency in treating exhaust gases. However, achieving effective performance requires large surface areas of packing materials, leading to a substantial pressure drop and a large energy consumption. Therefore, the present study demonstrates the advantages of a non-packing scrubbing system and investigates the effect of thiosulfate (S2O32-) ion on NO2 absorption using a sulfite solution. The efficiency of the system with 0.1 M Na2SO3 solution increased substantially upon the addition of 0.1 M Na2S2O3 and maintained an efficiency of 90 % over extended periods. It also improved the absorbent oxidation ratio of O2 to NO2 from 13.6 to 3.9 mol O2 (mol NO2-1) because the Na2S2O3 was regarded as an effective oxidation inhibitor. Therefore, the total chemical usage for 450 min was lowered by a factor of 11.3 (to 0.192 mol d-1) when 0.1 M Na2S2O3-assisted 0.1 M Na2SO3 solution was used. This analysis showed that the addition of S2O32- ion can improve the NO2 removal efficiency and lower the chemical usage. In addition, because the implementation of the PHRS substantially reduces the pressure drop below 0.01 hPa in the scrubbing system, the cost-effective adaptation of the PHRS is feasible.
Collapse
Affiliation(s)
- Gwangtaek Lee
- Department of Urban Environment Research, Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Yewon Park
- Department of Urban Environment Research, Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea; Department of Mechanical Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Bangwoo Han
- Department of Urban Environment Research, Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea; University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Yongjin Kim
- Department of Urban Environment Research, Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Hak Joon Kim
- Department of Urban Environment Research, Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea; University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Daraghmeh DN, Karaman R. The Redox Process in Red Blood Cells: Balancing Oxidants and Antioxidants. Antioxidants (Basel) 2024; 14:36. [PMID: 39857370 PMCID: PMC11762794 DOI: 10.3390/antiox14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Red blood cells (RBCs) are a vital component of the body's oxygen supply system. In addition to being pro-oxidants, they are also essential components of the body's antioxidant defense mechanism. RBCs are susceptible to both endogenous and exogenous sources of oxidants. Oxyhemoglobin autoxidation is the primary source of endogenous RBC oxidant production, which produces superoxide radicals and hydrogen peroxide. Potent exogenous oxidants from other blood cells and the surrounding endothelium can also enter RBCs. Both enzymatic (like glutathione peroxidase) and non-enzymatic (like glutathione) mechanisms can neutralize oxidants. These systems are generally referred to as oxidant scavengers or antioxidants, and they work to neutralize these harmful molecules (i.e., oxidants). While their antioxidative capabilities are essential to their physiological functions and delivering oxygen to tissues, their pro-oxidant behavior plays a part in several human pathologies. The redox-related changes in RBCs can have an impact on their function and fate. The balance between pro-oxidants and antioxidants determines the oxidative status of cells, which affects signal transduction, differentiation, and proliferation. When pro-oxidant activity exceeds antioxidative capacity, oxidative stress occurs, leading to cytotoxicity. This type of stress has been linked to various pathologies, including hemolytic anemia. This review compiles the most recent literature investigating the connections between RBC redox biochemistry, antioxidants, and diverse disorders.
Collapse
Affiliation(s)
- Dala N. Daraghmeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine;
| | | |
Collapse
|
3
|
da Silva GS, Hernandes MBB, Toledo Junior JC. The Ubiquity of the Reaction of the Labile Iron Pool That Attenuates Peroxynitrite-Dependent Oxidation Intracellularly. Biomolecules 2024; 14:871. [PMID: 39062585 PMCID: PMC11274960 DOI: 10.3390/biom14070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Although the labile iron pool (LIP) biochemical identity remains a topic of debate, it serves as a universal homeostatically regulated and essential cellular iron source. The LIP plays crucial cellular roles, being the source of iron that is loaded into nascent apo-iron proteins, a process akin to protein post-translational modification, and implicated in the programmed cell death mechanism known as ferroptosis. The LIP is also recognized for its reactivity with chelators, nitric oxide, and peroxides. Our recent investigations in a macrophage cell line revealed a reaction of the LIP with the oxidant peroxynitrite. In contrast to the LIP's pro-oxidant interaction with hydrogen peroxide, this reaction is rapid and attenuates the peroxynitrite oxidative impact. In this study, we demonstrate the existence and antioxidant characteristic of the LIP and peroxynitrite reaction in various cell types. Beyond its potential role as a ubiquitous complementary or substitute protection system against peroxynitrite for cells, the LIP and peroxynitrite reaction may influence cellular iron homeostasis and ferroptosis by changing the LIP redox state and LIP binding properties and reactivity.
Collapse
Affiliation(s)
| | | | - José Carlos Toledo Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| |
Collapse
|
4
|
Takahashi M, Sakamoto A, Morikawa H. Atmospheric nitrogen dioxide suppresses the activity of phytochrome interacting factor 4 to suppress hypocotyl elongation. PLANTA 2024; 260:42. [PMID: 38958765 PMCID: PMC11222245 DOI: 10.1007/s00425-024-04468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.
Collapse
Affiliation(s)
- Misa Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan.
| | - Atsushi Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan
| | - Hiromichi Morikawa
- School of Science, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan
| |
Collapse
|
5
|
Möller MN, Vitturi DA. The chemical biology of dinitrogen trioxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 8:100026. [PMID: 38957295 PMCID: PMC11218869 DOI: 10.1016/j.rbc.2024.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Dinitrogen trioxide (N 2 O 3 ) mediates low-molecular weight and protein S- and N-nitrosation, with recent reports suggesting a role in the formation of nitrating intermediates as well as in nitrite-dependent hypoxic vasodilatation. However, the reactivity ofN 2 O 3 in biological systems results in an extremely short half-life that renders this molecule essentially undetectable by currently available technologies. As a result, evidence for in vivoN 2 O 3 formation derives from the detection of nitrosated products as well as from in vitro kinetic determinations, isotopic labeling studies, and spectroscopic analyses. This review will discuss mechanisms ofN 2 O 3 formation, reactivity and decomposition, as well as address the role of sub-cellular localization as a key determinant of its actions. Finally, evidence will be discussed supporting different roles forN 2 O 3 as a biologically relevant signaling molecule.
Collapse
Affiliation(s)
- Matías N. Möller
- Laboratorio Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Darío A. Vitturi
- Department of Pathology. University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|
7
|
Lu H, Niu L, Yu L, Jin K, Zhang J, Liu J, Zhu X, Wu Y, Zhang Y. Cancer phototherapy with nano-bacteria biohybrids. J Control Release 2023; 360:133-148. [PMID: 37315693 DOI: 10.1016/j.jconrel.2023.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The utilization of light for therapeutic interventions, also known as phototherapy, has been extensively employed in the treatment of a wide range of illnesses, including cancer. Despite the benefits of its non-invasive nature, phototherapy still faces challenges pertaining to the delivery of phototherapeutic agents, phototoxicity, and light delivery. The incorporation of nanomaterials and bacteria in phototherapy has emerged as a promising approach that leverages the unique properties of each component. The resulting nano-bacteria biohybrids exhibit enhanced therapeutic efficacy when compared to either component individually. In this review, we summarize and discuss the various strategies for assembling nano-bacteria biohybrids and their applications in phototherapy. We provide a comprehensive overview of the properties and functionalities of nanomaterials and cells in the biohybrids. Notably, we highlight the roles of bacteria beyond their function as drug vehicles, particularly their capacity to produce bioactive molecules. Despite being in its early stage, the integration of photoelectric nanomaterials and genetically engineered bacteria holds promise as an effective biosystem for antitumor phototherapy. The utilization of nano-bacteria biohybrids in phototherapy is a promising avenue for future investigation, with the potential to enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Luqi Niu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Lin Yu
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.
| | - Yong Zhang
- Department of Biomedical Engineering, National University of Singapore, 119077, Singapore; National University of Singapore Research Institute, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
8
|
Abduvokhidov D, Yusupov M, Shahzad A, Attri P, Shiratani M, Oliveira MC, Razzokov J. Unraveling the Transport Properties of RONS across Nitro-Oxidized Membranes. Biomolecules 2023; 13:1043. [PMID: 37509079 PMCID: PMC10377474 DOI: 10.3390/biom13071043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of cold atmospheric plasma (CAP) in biomedical applications has received significant interest, due to its ability to generate reactive oxygen and nitrogen species (RONS). Upon exposure to living cells, CAP triggers alterations in various cellular components, such as the cell membrane. However, the permeation of RONS across nitrated and oxidized membranes remains understudied. To address this gap, we conducted molecular dynamics simulations, to investigate the permeation capabilities of RONS across modified cell membranes. This computational study investigated the translocation processes of less hydrophilic and hydrophilic RONS across the phospholipid bilayer (PLB), with various degrees of oxidation and nitration, and elucidated the impact of RONS on PLB permeability. The simulation results showed that less hydrophilic species, i.e., NO, NO2, N2O4, and O3, have a higher penetration ability through nitro-oxidized PLB compared to hydrophilic RONS, i.e., HNO3, s-cis-HONO, s-trans-HONO, H2O2, HO2, and OH. In particular, nitro-oxidation of PLB, induced by, e.g., cold atmospheric plasma, has minimal impact on the penetration of free energy barriers of less hydrophilic species, while it lowers these barriers for hydrophilic RONS, thereby enhancing their translocation across nitro-oxidized PLB. This research contributes to a better understanding of the translocation abilities of RONS in the field of plasma biomedical applications and highlights the need for further analysis of their role in intracellular signaling pathways.
Collapse
Affiliation(s)
- Davronjon Abduvokhidov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Information Technologies, Tashkent International University of Education, Imom Bukhoriy 6, Tashkent 100207, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
| | - Maksudbek Yusupov
- R&D Center, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan
- Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Aamir Shahzad
- Modeling and Simulation Laboratory, Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan
| | - Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Maria C Oliveira
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- School of Engineering, Akfa University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan
| |
Collapse
|
9
|
Greaver T, McDow S, Phelan J, Kaylor SD, Herrick JD, Jovan S. Synthesis of lichen response to gaseous nitrogen: ammonia versus nitrogen dioxide. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2023; 292:1-13. [PMID: 37475978 PMCID: PMC10355123 DOI: 10.1016/j.atmosenv.2022.119396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The dominant chemical form of nitrogen pollution in the atmosphere in the U.S. is shifting from oxidized nitrogen, primarily from combustion of fossil fuels, to reduced nitrogen from agricultural animal waste and fertilizer applications. Does it matter to lichens? In this synthesis, we characterize U.S. air concentrations of the most ubiquitous gaseous forms of reduced and oxidized nitrogen, NO2 and NH3, respectively, and their direct effects on lichens. In the U.S., the 3-year average (2017-2019) of the annual mean for each monitoring site ranges up to 56.4 μg NO2 m-3 (~30 ppb) and 6 μg NH3 m-3 (~9 ppb). The spatial coverage of current routine monitoring of NO2 and NH3 likely does not accurately represent exposures of NO2 to ecosystems in rural areas or capture spikes of NH3 concentrations proximal to intensive agriculture, which are documented to exceed 700 μg NH3 m-3 (~1000 ppb) for short durations. Both NO2 and NH3 can act as nutrients to lichens, but as exposures rise, both can cause physiological stress and mortality that then change community composition and diversity. There is a growing body of evidence that lichen community composition is altered at current levels of exposure in the U.S. with estimated no effect or lowest effect concentrations from <1-3 μg m-3 NO2 and <1 μg m-3 NH3. Better spatial characterization of both NO2 and NH3 concentrations, especially near intensive agriculture, would help to characterize the extent of the impacts across the U.S. These findings are discussed in the context of U.S. air pollution policy.
Collapse
Affiliation(s)
- Tara Greaver
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Stephen McDow
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | | | - S. Douglas Kaylor
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Jeffrey D. Herrick
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Sarah Jovan
- USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR 97205, USA
| |
Collapse
|
10
|
Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022; 10:biomedicines10123051. [PMID: 36551806 PMCID: PMC9776363 DOI: 10.3390/biomedicines10123051] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Natural antioxidants from fruits and vegetables, meats, eggs and fish protect cells from the damage caused by free radicals. They are widely used to reduce food loss and waste, minimizing lipid oxidation, as well as for their effects on health through pharmaceutical preparations. In fact, the use of natural antioxidants is among the main efforts made to relieve the pressure on natural resources and to move towards more sustainable food and pharmaceutical systems. Alternative food waste management approaches include the valorization of by-products as a source of phenolic compounds for functional food formulations. In this review, we will deal with the chemistry of antioxidants, including their molecular structures and reaction mechanisms. The biochemical aspects will also be reviewed, including the effects of acidity and temperature on their partitioning in binary and multiphasic systems. The poor bioavailability of antioxidants remains a huge constraint for clinical applications, and we will briefly describe some delivery systems that provide for enhanced pharmacological action of antioxidants via drug targeting and increased bioavailability. The pharmacological activity of antioxidants can be improved by designing nanotechnology-based formulations, and recent nanoformulations include nanoparticles, polymeric micelles, liposomes/proliposomes, phytosomes and solid lipid nanoparticles, all showing promising outcomes in improving the efficiency and bioavailability of antioxidants. Finally, an overview of the pharmacological effects, therapeutic properties and future choice of antioxidants will be incorporated.
Collapse
|
11
|
Incoming new IUPAB councilor 2021: Ana Denicola. Biophys Rev 2021; 13:827-830. [DOI: 10.1007/s12551-021-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022] Open
|
12
|
Condeles AL, Toledo Junior JC. The Labile Iron Pool Reacts Rapidly and Catalytically with Peroxynitrite. Biomolecules 2021; 11:1331. [PMID: 34572543 PMCID: PMC8466499 DOI: 10.3390/biom11091331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
While investigating peroxynitrite-dependent oxidation in murine RAW 264.7 macrophage cells, we observed that removal of the Labile Iron Pool (LIP) by chelation increases the intracellular oxidation of the fluorescent indicator H2DCF, so we concluded that the LIP reacts with peroxynitrite and decreases the yield of peroxynitrite-derived oxidants. This was a paradigm-shifting finding in LIP biochemistry and raised many questions. In this follow-up study, we address fundamental properties of the interaction between the LIP and peroxynitrite by using the same cellular model and fluorescence methodology. We have identified that the reaction between the LIP and peroxynitrite has catalytic characteristics, and we have estimated that the rate constant of the reaction is in the range of 106 to 107 M-1s-1. Together, these observations suggest that the LIP represents a constitutive peroxynitrite reductase system in RAW 264.7 cells.
Collapse
Affiliation(s)
| | - José Carlos Toledo Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil;
| |
Collapse
|
13
|
Casaretto E, Signorelli S, Gallino JP, Vidal S, Borsani O. Endogenous • NO accumulation in soybean is associated with initial stomatal response to water deficit. PHYSIOLOGIA PLANTARUM 2021; 172:564-576. [PMID: 33159328 DOI: 10.1111/ppl.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
Drought is the main cause of productivity losses in soybean plants, triggering physiological and biochemical responses, stomatal closure being essential to prevent water losses and thus mitigate the negative effects of drought. Abscisic acid (ABA) is the main molecule involved in stomatal closure under drought conditions along with nitric oxide (• NO). However, the role of • NO in this process is not yet fully understood and contrasting findings about its role have been reported. Most of the assays in the literature have been carried out under in vitro conditions using • NO donors or scavengers, but little is known about the effects of endogenously produced • NO under drought conditions. This study is aimed to determine the pattern of endogenous • NO accumulation from the establishment of water stress and how this relates to stomatal closure and other biochemical and physiological responses. The analysis of soybean plant responses to drought revealed no correlation between whole-leaf • NO accumulation and typical water-deficit stress markers. Moreover, • NO accumulation did not explain oxidative damage induced by drought. However, endogenous • NO content correlated with the early stomatal closure. Analysis of stomatal behavior and endogenous • NO content in guard cells through epidermal peel technique showed a stomatal population with high variation in stomatal opening and • NO content under the initial stages of water stress, even when ABA responses are activated. Our data suggest that upon early stress perception, soybean plants respond by accumulating • NO in the guard cells to inhibit stomatal closure, potentially through the inhibition of ABA responses.
Collapse
Affiliation(s)
- Esteban Casaretto
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Signorelli
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Juan P Gallino
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Omar Borsani
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
14
|
Signorelli S, Sainz M, Tabares-da Rosa S, Monza J. The Role of Nitric Oxide in Nitrogen Fixation by Legumes. FRONTIERS IN PLANT SCIENCE 2020; 11:521. [PMID: 32582223 PMCID: PMC7286274 DOI: 10.3389/fpls.2020.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/06/2020] [Indexed: 05/26/2023]
Abstract
The legume-rhizobia symbiosis is an important process in agriculture because it allows the biological nitrogen fixation (BNF) which contributes to increasing the levels of nitrogen in the soil. Nitric oxide (⋅NO) is a small free radical molecule having diverse signaling roles in plants. Here we present and discuss evidence showing the role of ⋅NO during different stages of the legume-rhizobia interaction such as recognition, infection, nodule development, and nodule senescence. Although the mechanisms by which ⋅NO modulates this interaction are not fully understood, we discuss potential mechanisms including its interaction with cytokinin, auxin, and abscisic acid signaling pathways. In matures nodules, a more active metabolism of ⋅NO has been reported and both the plant and rhizobia participate in ⋅NO production and scavenging. Although ⋅NO has been shown to induce the expression of genes coding for NITROGENASE, controlling the levels of ⋅NO in mature nodules seems to be crucial as ⋅NO was shown to be a potent inhibitor of NITROGENASE activity, to induce nodule senescence, and reduce nitrogen assimilation. In this sense, LEGHEMOGLOBINS (Lbs) were shown to play an important role in the scavenging of ⋅NO and reactive nitrogen species (RNS), potentially more relevant in senescent nodules. Even though ⋅NO can reduce NITROGENASE activity, most reports have linked ⋅NO to positive effects on BNF. This can relate mainly to the regulation of the spatiotemporal distribution of ⋅NO which favors some effects over others. Another plausible explanation for this observation is that the negative effect of ⋅NO requires its direct interaction with NITROGENASE, whereas the positive effect of ⋅NO is related to its signaling function, which results in an amplifier effect. In the near future, it would be interesting to explore the role of environmental stress-induced ⋅NO in BNF.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sofía Tabares-da Rosa
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Jorge Monza
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Möller MN, Rios N, Trujillo M, Radi R, Denicola A, Alvarez B. Detection and quantification of nitric oxide-derived oxidants in biological systems. J Biol Chem 2019; 294:14776-14802. [PMID: 31409645 PMCID: PMC6779446 DOI: 10.1074/jbc.rev119.006136] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The free radical nitric oxide (NO•) exerts biological effects through the direct and reversible interaction with specific targets (e.g. soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO•-derived reactive species are typically short-lived, and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this study, we describe the biologically relevant characteristics of the reactive species formed downstream from NO•, and we discuss the approaches currently available for the analysis of NO•, nitrogen dioxide (NO2•), dinitrogen trioxide (N2O3), nitroxyl (HNO), and peroxynitrite (ONOO-/ONOOH), as well as peroxynitrite-derived hydroxyl (HO•) and carbonate anion (CO3•-) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO2-), nitrate (NO3-), nitrosyl-metal complexes, S-nitrosothiols, and 3-nitrotyrosine. Moreover, we highlight state-of-the-art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO•-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
16
|
Kamm A, Przychodzen P, Kuban-Jankowska A, Jacewicz D, Dabrowska AM, Nussberger S, Wozniak M, Gorska-Ponikowska M. Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide 2019; 93:102-114. [PMID: 31541733 DOI: 10.1016/j.niox.2019.09.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
Elevated levels of reactive nitrogen species, alteration in redox balance and deregulated redox signaling are common hallmarks of cancer progression and chemoresistance. However, depending on the cellular context, distinct reactive nitrogen species are also hypothesized to mediate cytotoxic activity and are thus used in anticancer therapies. We present here the dual face of nitric oxide and its derivatives in cancer biology. Main derivatives of nitric oxide, such as nitrogen dioxide and peroxynitrite cause cell death by inducing protein and lipid peroxidation and/or DNA damage. Moreover, they control the activity of important protein players within the pro- and anti-apoptotic signaling pathways. Thus, the control of intracellular reactive nitrogen species may become a sophisticated tool in anticancer strategies.
Collapse
Affiliation(s)
- Anna Kamm
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Paulina Przychodzen
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Michal Wozniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland; Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| |
Collapse
|
17
|
Diffusion and Transport of Reactive Species Across Cell Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:3-19. [PMID: 31140168 DOI: 10.1007/978-3-030-11488-6_1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This chapter includes an overview of the structure of cell membranes and a review of the permeability of membranes to biologically relevant oxygen and nitrogen reactive species, namely oxygen, singlet oxygen, superoxide, hydrogen peroxide, hydroxyl radical, nitric oxide, nitrogen dioxide, peroxynitrite and also hydrogen sulfide. Physical interactions of these species with cellular membranes are discussed extensively, but also their relevance to chemical reactions such as lipid peroxidation. Most of these species are involved in different cellular redox processes ranging from physiological pathways to damaging reactions against biomolecules. Cell membranes separate and compartmentalize different processes, inside or outside cells, and in different organelles within cells. The permeability of these membranes to reactive species varies according to the physicochemical properties of each molecule. Some of them, such as nitric oxide and oxygen, are small and hydrophobic and can traverse cellular membranes virtually unhindered. Nitrogen dioxide and hydrogen sulfide find a slightly higher barrier to permeation, but still their diffusion is largely unimpeded by cellular membranes. In contrast, the permeability of cellular membranes to the more polar hydrogen peroxide, is up to five orders of magnitude lower, allowing the formation of concentration gradients, directionality and effective compartmentalization of its actions which can be further regulated by specific aquaporins that facilitate its diffusion through membranes. The compartmentalizing effect on anionic species such as superoxide and peroxynitrite is even more accentuated because of the large energetic barrier that the hydrophobic interior of membranes presents to ions that may be overcome by protonation or the use of anion channels. The large difference in cell membrane permeability for different reactive species indicates that compartmentalization is possible for some but not all of them.
Collapse
|
18
|
Takahashi M, Arimura GI, Morikawa H. Dual nitrogen species involved in foliar uptake of nitrogen dioxide in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2019; 14:e1582263. [PMID: 30810449 PMCID: PMC6512919 DOI: 10.1080/15592324.2019.1582263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Foliar uptake of nitrogen dioxide (NO2) is governed by its reactive absorption mechanism, by which NO2 molecules diffuse through cell wall layers and simultaneously react with apoplastic ascorbate to form nitrous acid, which freely diffuses across plasmalemma. However, whether free diffusion of nitrous acid is the sole mechanism of foliar uptake of NO2 remains unknown. The involvement of ammonia-inhibitable nitrite transporters in the foliar uptake of NO2, as reported in nitrite transport in Arabidopsis roots, is also unknown. In this study, we treated Arabidopsis thaliana leaves with methionine sulfoximine (MSX) to inhibit incorporation of ammonia into glutamate and exposed them to 4 ppm 15N-labeled NO2 for 4 h in light followed by quantification of total nitrogen, reduced nitrogen, and ammonia nitrogen derived from NO2 using mass spectrometry and capillary electrophoresis. The total nitrogen derived from NO2 in leaves without MSX treatment was 587.0 nmol NO2/g fresh weight, of which more than 65% was recovered as reduced nitrogen. In comparison, MSX treatment decreased the total nitrogen and reduced nitrogen derived from NO2 by half. Thus, half of the foliar uptake of NO2 is not attributable to passive diffusion of nitrous acid but to ammonia-inhibitable nitrite transport. Foliar uptake of NO2 is mediated by a dual mechanism in A. thaliana: nitrous acid-free diffusion and nitrite transporter-mediated transport.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Gen-Ichiro Arimura
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
19
|
Takahashi M, Morikawa H. Nitrate, but not nitrite, derived from nitrogen dioxide accumulates in Arabidopsis leaves following exposure to 15N-labeled nitrogen dioxide. PLANT SIGNALING & BEHAVIOR 2019; 14:1559579. [PMID: 30601096 PMCID: PMC6373841 DOI: 10.1080/15592324.2018.1559579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
It is known that when plant leaves are exposed to exogenously applied nitrogen dioxide (NO2), nitrogen derived from NO2 is reduced to amino acid nitrogen. However, whether this is the sole metabolic fate of exogenously applied NO2 is unclear. In this study, Arabidopsis leaves were exposed to 4 ppm 15N-labeled NO2 for 4 h in light, followed by capillary ion analysis and elemental analysis-mass spectrometry with an elemental analyzer connected directly to a mass spectrometer. We found that leaf cells exposed to 15N-labeled NO2 accumulated a large amount of 15N-labeled nitrate. Neither 15N-labeled nitrite nor endogenous nitrite was present in exposed leaves. It is likely that exogenously applied NO2 is first converted to nitrite, and that nitrite is oxidized to nitrate in Arabidopsis leaf cells. The complete disappearance of nitrite derived from exogenously applied NO2 and endogenous nitrite supports this mechanism.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
20
|
Möller MN, Denicola A. Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching. Free Radic Biol Med 2018; 128:137-143. [PMID: 29673655 DOI: 10.1016/j.freeradbiomed.2018.04.553] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Oxygen and nitric oxide are small hydrophobic molecules that usually need to diffuse a considerable distance to accomplish their biological functions and necessarily need to traverse several lipid membranes. Different methods have been used to study the diffusion of these molecules in membranes and herein we focus in the quenching of fluorescence of pyrenes inserted in the membrane. The pyrene derivatives have long fluorescence lifetimes (around 200 ns) that make them very sensitive to fluorescence quenching by nitric oxide, oxygen and other paramagnetic species. Results show that the apparent diffusion coefficients in membranes are similar to those in water, indicating that diffusion of these molecules in membranes is not considerably limited by the lipids. This high apparent diffusion in membranes is a consequence of both a favorable partition of these molecules in the hydrophobic interior of membranes and a high diffusion coefficient. Altering the composition of the membrane results in slight changes in diffusion, indicating that in most cases the lipid membranes will not hinder the passage of oxygen or nitric oxide. The diffusion of nitric oxide in the lipid core of low density lipoprotein is also very high, supporting its role as an antioxidant. In contrast to the high permeability of membranes to nitric oxide and oxygen, the permeability to other reactive species such as hydrogen peroxide and peroxynitrous acid is nearly five orders of magnitude lower.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
21
|
Takahashi M, Morikawa H. A novel role for PsbO1 in photosynthetic electron transport as suggested by its light-triggered selective nitration in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2018; 13:e1513298. [PMID: 30230951 PMCID: PMC6259825 DOI: 10.1080/15592324.2018.1513298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure of Arabidopsis leaves to nitrogen dioxide (NO2) results in the selective nitration of specific proteins, such as PsbO1. The 9th tyrosine residue (9Tyr) of PsbO1 has been identified as the nitration site. This nitration is triggered by light and inhibited by photosynthetic electron transport inhibitors. During protein nitration, tyrosyl and NO2 radicals are formed concurrently and combine rapidly to form 3-nitrotyrosine. A selective oxidation mechanism for 9Tyr of PsbO1 is required. We postulated that, similar to 161Tyr of D1, 9Tyr of PsbO1 is selectively photo-oxidized by photosynthetic electron transport in response to illumination to a tyrosyl radical. In corroboration, after reappraising our oxygen evolution analysis, the nitration of PsbO1 proved responsible for decreased oxygen evolution from the thylakoid membranes. NO2 is reportedly taken into cells as nitrous acid, which dissociates to form NO2-. NO2- may be oxidized into NO2 by the oxygen-evolving complex. Light may synchronize this reaction with tyrosyl radical formation. These findings suggest a novel role for PsbO1 in photosynthetic electron transport.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
22
|
Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol 2018; 14:618-625. [PMID: 29154193 PMCID: PMC5694970 DOI: 10.1016/j.redox.2017.09.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
In this review we provide an analysis of the biochemistry of peroxynitrite and tyrosine nitration. Peroxynitrite is the product of the diffusion-controlled reaction between superoxide (O2•-) and nitric oxide (•NO). This process is in competition with the enzymatic dismutation of O2•- and the diffusion of •NO across cells and tissues and its reaction with molecular targets (e.g. guanylate cyclase). Understanding the kinetics and compartmentalization of the O2•- / •NO interplay is critical to rationalize the shift of •NO from a physiological mediator to a cytotoxic intermediate. Once formed, peroxynitrite (ONOO- and ONOOH; pKa = 6,8) behaves as a strong one and two-electron oxidant towards a series of biomolecules including transition metal centers and thiols. In addition, peroxynitrite anion can secondarily evolve to secondary radicals either via its fast reaction with CO2 or through proton-catalyzed homolysis. Thus, peroxynitrite can participate in direct (bimolecular) and indirect (through secondary radical intermediates) oxidation reactions; through these processes peroxynitrite can participate as cytotoxic effector molecule against invading pathogens and/or as an endogenous pathogenic mediator. Peroxynitrite can cause protein tyrosine nitration in vitro and in vivo. Indeed, tyrosine nitration is a hallmark of the reactions of •NO-derived oxidants in cells and tissues and serves as a biomarker of oxidative damage. Protein tyrosine nitration can mediate changes in protein structure and function that affect cell homeostasis. Tyrosine nitration in biological systems is a free radical process that can be promoted either by peroxynitrite-derived radicals or by other related •NO-dependent oxidative processes. Recently, mechanisms responsible of tyrosine nitration in hydrophobic biostructures such as membranes and lipoproteins have been assessed and involve the parallel occurrence and connection with lipid peroxidation. Experimental strategies to reveal the proximal oxidizing mechanism during tyrosine nitration in given pathophysiologically-relevant conditions include mapping and identification of the tyrosine nitration sites in specific proteins.
Collapse
Affiliation(s)
- Silvina Bartesaghi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay.
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
23
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
24
|
Arieli R. Nanobubbles Form at Active Hydrophobic Spots on the Luminal Aspect of Blood Vessels: Consequences for Decompression Illness in Diving and Possible Implications for Autoimmune Disease-An Overview. Front Physiol 2017; 8:591. [PMID: 28861003 PMCID: PMC5559548 DOI: 10.3389/fphys.2017.00591] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023] Open
Abstract
Decompression illness (DCI) occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed “active hydrophobic spots” (AHS). The lung surfactant dipalmitoylphosphatidylcholine (DPPC), was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic—a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1) Variability between bubblers and non-bubblers. (2) An age-related effect and adaptation. (3) The increased risk of DCI on a second dive. (4) Symptoms of neurologic decompression sickness. (5) Preconditioning before a dive. (6) A bi-phasic mechanism of bubble expansion. (7) Increased bubble formation with depth. (8) Endothelial injury. (9) The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their transformation into autoantigens.
Collapse
Affiliation(s)
- Ran Arieli
- Israel Naval Medical Institute, Israel Defence ForceHaifa, Israel.,Eliachar Research Laboratory, Western Galilee Medical CenterNahariya, Israel
| |
Collapse
|
25
|
Batthyány C, Bartesaghi S, Mastrogiovanni M, Lima A, Demicheli V, Radi R. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects. Antioxid Redox Signal 2017; 26:313-328. [PMID: 27324931 PMCID: PMC5326983 DOI: 10.1089/ars.2016.6787] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. CRITICAL ISSUES Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. FUTURE DIRECTIONS The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.
Collapse
Affiliation(s)
- Carlos Batthyány
- 1 Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- 3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay .,4 Departamento de Educación Médica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- 2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- 1 Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Verónica Demicheli
- 2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- 2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
26
|
Takahashi M, Shigeto J, Shibata T, Sakamoto A, Morikawa H. Differential abilities of nitrogen dioxide and nitrite to nitrate proteins in thylakoid membranes isolated from Arabidopsis leaves. PLANT SIGNALING & BEHAVIOR 2016; 11:e1237329. [PMID: 27661771 PMCID: PMC5117089 DOI: 10.1080/15592324.2016.1237329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/09/2016] [Indexed: 05/09/2023]
Abstract
Exposure of Arabidopsis leaves to nitrogen dioxide (NO2) results in nitration of specific chloroplast proteins. To determine whether NO2 itself and/or nitrite derived from NO2 can nitrate proteins, Arabidopsis thylakoid membranes were isolated and treated with NO2-bubbled or potassium nitrite (KNO2) buffer, followed by protein extraction, electrophoresis, and immunoblotting using an anti-3-nitrotyrosine (NT) antibody. NO2 concentrations in the NO2-bubbled buffer were calculated by numerically solving NO2 dissociation kinetic equations. The two buffers were adjusted to have identical nitrite concentrations. Both treatments yielded an NT-immunopositive band that LC/MS identified as PSBO1. The difference in the band intensity between the 2 treatments was designated nitration by NO2. Both NO2 and nitrite mediated nitration of proteins, and the nitration ability per unit NO2 concentration was ∼100-fold greater than that of nitrite.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Jun Shigeto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tatsuo Shibata
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
27
|
Möller MN, Li Q, Chinnaraj M, Cheung HC, Lancaster JR, Denicola A. Solubility and diffusion of oxygen in phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2923-2930. [PMID: 27614191 DOI: 10.1016/j.bbamem.2016.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022]
Abstract
The transport of oxygen and other nonelectrolytes across lipid membranes is known to depend on both diffusion and solubility in the bilayer, and to be affected by changes in the physical state and by the lipid composition, especially the content of cholesterol and unsaturated fatty acids. However, it is not known how these factors affect diffusion and solubility separately. Herein we measured the partition coefficient of oxygen in liposome membranes of dilauroyl-, dimiristoyl- and dipalmitoylphosphatidylcholine in buffer at different temperatures using the equilibrium-shift method with electrochemical detection. The apparent diffusion coefficient was measured following the fluorescence quenching of 1-pyrenedodecanoate inserted in the liposome bilayers under the same conditions. The partition coefficient varied with the temperature and the physical state of the membrane, from below 1 in the gel state to above 2.8 in the liquid-crystalline state in DMPC and DPPC membranes. The partition coefficient was directly proportional to the partial molar volume and was then associated to the increase in free-volume in the membrane as a function of temperature. The apparent diffusion coefficients were corrected by the partition coefficients and found to be nearly the same, with a null dependence on viscosity and physical state of the membrane, probably because the pyrene is disturbing the surrounding lipids and thus becoming insensitive to changes in membrane viscosity. Combining our results with those of others, it is apparent that both solubility and diffusion increase when increasing the temperature or when comparing a membrane in the gel to one in the fluid state.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| | - Qian Li
- Department of Anesthesiology, Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mathivanan Chinnaraj
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Herbert C Cheung
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jack R Lancaster
- Departments of Pharmacology and Chemical Biology, Medicine, and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
28
|
Corpas FJ. Reactive Nitrogen Species (RNS) in Plants Under Physiological and Adverse Environmental Conditions: Current View. PROGRESS IN BOTANY 2016:97-119. [PMID: 0 DOI: 10.1007/124_2016_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
29
|
Takahashi M, Shigeto J, Sakamoto A, Izumi S, Asada K, Morikawa H. Dual selective nitration in Arabidopsis: Almost exclusive nitration of PsbO and PsbP, and highly susceptible nitration of four non-PSII proteins, including peroxiredoxin II E. Electrophoresis 2015; 36:2569-78. [DOI: 10.1002/elps.201500145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 06/24/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| | - Jun Shigeto
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| | - Shunsuke Izumi
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| | - Kozi Asada
- Faculty of Engineering; Fukuyama University; Fukuyama Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| |
Collapse
|
30
|
Damasceno FC, Facci RR, da Silva TM, Toledo JC. Mechanisms and kinetic profiles of superoxide-stimulated nitrosative processes in cells using a diaminofluorescein probe. Free Radic Biol Med 2014; 77:270-80. [PMID: 25242205 DOI: 10.1016/j.freeradbiomed.2014.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/01/2014] [Accepted: 09/06/2014] [Indexed: 11/18/2022]
Abstract
In this study, we examined the mechanisms and kinetic profiles of intracellular nitrosative processes using diaminofluorescein (DAF-2) as a target in RAW 264.7 cells. The intracellular formation of the fluorescent, nitrosated product diaminofluorescein triazol (DAFT) from both endogenous and exogenous nitric oxide (NO) was prevented by deoxygenation and by cell membrane-permeable superoxide (O2(-)) scavengers but not by extracellular bovine Cu,Zn-SOD. In addition, the DAFT formation rate decreased in the presence of cell membrane-permeable Mn porphyrins that are known to scavenge peroxynitrite (ONOO(-)) but was enhanced by HCO3(-)/CO2. Together, these results indicate that nitrosative processes in RAW 264.7 cells depend on endogenous intracellular O2(-) and are stimulated by ONOO(-)/CO2-derived radical oxidants. The N2O3 scavenger sodium azide (NaN3) only partially attenuated the DAFT formation rate and only with high NO (>120 nM), suggesting that DAFT formation occurs by nitrosation (azide-susceptible DAFT formation) and predominantly by oxidative nitrosylation (azide-resistant DAFT formation). Interestingly, the DAFT formation rate increased linearly with NO concentrations of up to 120-140 nM but thereafter underwent a sharp transition and became insensitive to NO. This behavior indicates the sudden exhaustion of an endogenous cell substrate that reacts rapidly with NO and induces nitrosative processes, consistent with the involvement of intracellular O2(-). On the other hand, intracellular DAFT formation stimulated by a fixed flux of xanthine oxidase-derived extracellular O2(-) that also occurs by nitrosation and oxidative nitrosylation increased, peaked, and then decreased with increasing NO, as previously observed. Thus, our findings complementarily show that intra- and extracellular O2(-)-dependent nitrosative processes occurring by the same chemical mechanisms do not necessarily depend on NO concentration and exhibit different unusual kinetic profiles with NO dynamics, depending on the biological compartment in which NO and O2(-) interact.
Collapse
Affiliation(s)
- Fernando Cruvinel Damasceno
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Rômulo Rodrigues Facci
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Thalita Marques da Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - José Carlos Toledo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
31
|
Coitiño EL, Mella A, Cárdenas-Jirón GI. Theoretical assessment of the photosensitization mechanisms of porphyrin–ruthenium(II) complexes for the formation of reactive oxygen species. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Wrenn SP, Small E, Dan N. Bubble nucleation in lipid bilayers: A mechanism for low frequency ultrasound disruption. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1192-7. [DOI: 10.1016/j.bbamem.2012.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/18/2012] [Accepted: 12/31/2012] [Indexed: 12/14/2022]
|
33
|
Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:137-46. [PMID: 23352412 DOI: 10.1016/j.plantsci.2012.12.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 05/21/2023]
Abstract
Water stress is one of the most severe problems for plant growth and productivity. Using the legume Lotus japonicus exposed to water stress, a comparative analysis of key components in metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were made. After water stress treatment plants accumulated proline 23 and 10-fold in roots and leaves respectively, compared with well-watered plants. Significant changes in metabolism of RNS and ROS were observed, with an increase in both protein tyrosine nitration and lipid peroxidation, which indicate that water stress induces a nitro-oxidative stress. In roots, ·NO content was increased and S-nitrosoglutathione reductase activity was reduced by 23%, wherein a specific protein nitration pattern was observed. As part of this response, activity of NADPH-generating dehydrogenases was also affected in roots resulting in an increase of the NADPH/NADP(+) ratio. Our results suggest that in comparison with leaves, roots are significantly affected by water stress inducing an increase in proline and NO content which could highlight multiple functions for these metabolites in water stress adaptation, recovery and signaling. Thus, it is proposed that water stress generates a spatial distribution of nitro-oxidative stress with the oxidative stress component being higher in leaves whereas the nitrosative stress component is higher in roots.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, CP 12900 Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
34
|
Thom SR, Yang M, Bhopale VM, Milovanova TN, Bogush M, Buerk DG. Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury. J Appl Physiol (1985) 2012; 114:550-8. [PMID: 23264541 DOI: 10.1152/japplphysiol.01386.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inert gases diffuse into tissues in proportion to ambient pressure, and when pressure is reduced, gas efflux forms bubbles due to the presence of gas cavitation nuclei that are predicted based on theory but have never been characterized. Decompression stress triggers elevations in number and diameter of circulating annexin V-coated microparticles (MPs) derived from vascular cells. Here we show that ∼10% MPs from wild-type (WT) but not inflammatory nitric oxide synthase-2 (iNOS) knockout (KO) mice increase in size when exposed to elevated air pressure ex vivo. This response is abrogated by a preceding exposure to hydrostatic pressure, demonstrating the presence of a preformed gas phase. These MPs have lower density than most particles, 10-fold enrichment in iNOS, and generate commensurately more reactive nitrogen species (RNS). Surprisingly, RNS only slowly diffuse from within MPs unless particles are subjected to osmotic stress or membrane cholesterol is removed. WT mice treated with iNOS inhibitor and KO mice exhibit less decompression-induced neutrophil activation and vascular leak. Contrary to injecting naïve mice with MPs from wild-type decompressed mice, injecting KO MPs triggers fewer proinflammatory events. We conclude that nitrogen dioxide is a nascent gas nucleation site synthesized in some MPs and is responsible for initiating postdecompression inflammatory injuries.
Collapse
Affiliation(s)
- Stephen R Thom
- Institute for Environmental Medicine, Univ. of Pennsylvania, Philadelphia, PA 19104-6068, USA.
| | | | | | | | | | | |
Collapse
|