1
|
Mohamed H, Child SA, Doherty DZ, Bruning JB, Bell SG. Structural determination and characterisation of the CYP105Q4 cytochrome P450 enzyme from Mycobacterium marinum. Arch Biochem Biophys 2024; 754:109950. [PMID: 38430969 DOI: 10.1016/j.abb.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.
Collapse
Affiliation(s)
- Hebatalla Mohamed
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - Stella A Child
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Adhikari A, Shakya S, Shrestha S, Aryal D, Timalsina KP, Dhakal D, Khatri Y, Parajuli N. Biocatalytic role of cytochrome P450s to produce antibiotics: A review. Biotechnol Bioeng 2023; 120:3465-3492. [PMID: 37691185 DOI: 10.1002/bit.28548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C-H, C-C, and C-N bonds, including heteroatom oxidation, oxidative C-C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sajan Shakya
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Shreesti Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Dipa Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kavi Prasad Timalsina
- Department of Biotechnology, National College, Tribhuvan University, Kathmandu, Nepal
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, USA
| | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
3
|
Kim DR, Lee SI, Kwak YS. Unraveling the Role of Cytochrome P450 as a Key Regulator Lantipeptide Production in Streptomyces globisporus. THE PLANT PATHOLOGY JOURNAL 2023; 39:566-574. [PMID: 38081316 PMCID: PMC10721394 DOI: 10.5423/ppj.oa.08.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to investigate the regulation of lantipeptide production in Streptomyces globisporus SP6C4, which produces the novel antifungal lantipeptides conprimycin and grisin, and to identify the role of cytochrome P450 (P450) in tis regulation. To investigate the regulation of lantipeptide production, we created gene deletion mutants, including ΔP450, ΔtsrD, ΔlanM, ΔP450ΔtsrD, and ΔP450ΔlanM. These mutants were characterized in terms of their morphology, sporulation, attachment, and antifungal activity against Fusarium oxysporum. The gene deletion mutants showed distinct characteristics compared to the wild-type strain. Among them, the ΔP450ΔlanM double mutant exhibited a recovery of antifungal activity against F. oxysporum, indicating that P450 plays a significant role in regulating lantipeptide production in S. globisporus SP6C4. Our findings highlight the significant role of P450 in the regulation of lantipeptide production and morphological processes in S. globisporus. The results suggest a potential link between P450-mediated metabolic pathways and the regulation of growth and secondary metabolism in SP6C4, thereby highlighting P450 as a putative target for the development of new antifungal agents.
Collapse
Affiliation(s)
- Da-Ran Kim
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Su In Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Youn-Sig Kwak
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
4
|
Kim V, Kim D, Lee S, Lee G, Lee SA, Kang LW, Kim D. Structural characterization and fatty acid epoxidation of CYP184A1 from Streptomyces avermitilis. Arch Biochem Biophys 2022; 727:109338. [PMID: 35779593 DOI: 10.1016/j.abb.2022.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
The genome of Streptomyces avermitilis contains 33 cytochrome P450 genes. Among the P450 gene products of S. avermitilis, we characterized the biochemical function and structural aspects of CYP184A1. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that CYP184A1 induced an epoxidation reaction to produce 9,10-epoxystearic acid. Steady-state kinetic analysis yielded a kcat value of 0.0067 min-1 and a Km value 10 μM. The analysis of its crystal structures illustrated that the overall CYP184A1 structure adopts the canonical scaffold of cytochrome P450 and possesses a narrow and deep substrate pocket architecture that is required for binding to linear chain fatty acids. In the structure of the CYP184A1 oleic acid complex (CYP184A1-OA), C9-C10 of oleic acid was bound to heme for the productive epoxidation reaction. This study elucidates the roles of P450 enzymes in the oxidative metabolism of fatty acids in Streptomyces species.
Collapse
Affiliation(s)
- Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Dogyeong Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Sunggyu Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Gyuhyeong Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Sang-A Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea.
| |
Collapse
|
5
|
Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation. PLoS One 2020; 15:e0243984. [PMID: 33315957 PMCID: PMC7735643 DOI: 10.1371/journal.pone.0243984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Brown rot fungi have great potential in biorefinery wood conversion systems because they are the primary wood decomposers in coniferous forests and have an efficient lignocellulose degrading system. Their initial wood degradation mechanism is thought to consist of an oxidative radical-based system that acts sequentially with an enzymatic saccharification system, but the complete molecular mechanism of this system has not yet been elucidated. Some studies have shown that wood degradation mechanisms of brown rot fungi have diversity in their substrate selectivity. Gloeophyllum trabeum, one of the most studied brown rot species, has broad substrate selectivity and even can degrade some grasses. However, the basis for this broad substrate specificity is poorly understood. In this study, we performed RNA-seq analyses on G. trabeum grown on media containing glucose, cellulose, or Japanese cedar (Cryptomeria japonica) as the sole carbon source. Comparison to the gene expression on glucose, 1,129 genes were upregulated on cellulose and 1,516 genes were upregulated on cedar. Carbohydrate Active enZyme (CAZyme) genes upregulated on cellulose and cedar media by G. trabeum included glycoside hyrolase family 12 (GH12), GH131, carbohydrate esterase family 1 (CE1), auxiliary activities family 3 subfamily 1 (AA3_1), AA3_2, AA3_4 and AA9, which is a newly reported expression pattern for brown rot fungi. The upregulation of both terpene synthase and cytochrome P450 genes on cedar media suggests the potential importance of these gene products in the production of secondary metabolites associated with the chelator-mediated Fenton reaction. These results provide new insights into the inherent wood degradation mechanism of G. trabeum and the diversity of brown rot mechanisms.
Collapse
|
6
|
Kim V, Lim YR, Lee I, Lee JH, Han S, Pham TV, Kim H, Lee R, Kang LW, Kim D. Structural insights into CYP107G1 from rapamycin-producing Streptomyces rapamycinicus. Arch Biochem Biophys 2020; 692:108544. [PMID: 32822639 DOI: 10.1016/j.abb.2020.108544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
Rapamycin is a clinically important macrolide agent with immunosuppressant and antiproliferative properties, produced by the actinobacterium, Streptomyces rapamycinicus. Two cytochrome P450 enzymes are involved in the biosynthesis of rapamycin. CYP107G1 and CYP122A2 catalyze the oxidation reactions of C27 and C9 of pre-rapamycin, respectively. To understand the structural and biochemical features of P450 enzymes in rapamycin biosynthesis, the CYP107G1 and CYP122A2 genes were cloned, their recombinant proteins were expressed in Escherichia coli, and the purified enzymes were characterized. Both enzymes displayed low spin states in the absolute spectra of ferric forms, and the titrations with rapamycin induced type I spectral changes with Kd values of 4.4 ± 0.4 and 3.0 ± 0.3 μM for CYP107G1 and CYP122A2, respectively. The X-ray crystal structures of CYP107G1 and its co-crystal complex with everolimus, a clinical rapamycin derivative, were determined at resolutions of 2.9 and 3.0 Å, respectively. The overall structure of CYP107G1 adopts the canonical scaffold of cytochrome P450 and possesses large substrate pocket. The distal face of the heme group is exposed to solvents to accommodate macrolide access. When the structure of the everolimus-bound CYP107G1 complex (CYP107G1-Eve) was compared to that of the ligand-free CYP107G1 form, no significant conformational change was observed. Hence, CYP107G1 has a relatively rigid structure with versatile loops to accommodate a bulky substrate. The everolimus molecule is bound to the substrate-binding pocket in the shape of a squeezed donut, and its elongated structure is bound perpendicular to a planar heme plane and I-helix.
Collapse
Affiliation(s)
- Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Inho Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Jong-Ha Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Sangjun Han
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Tan-Viet Pham
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea.
| |
Collapse
|
7
|
Mnguni FC, Padayachee T, Chen W, Gront D, Yu JH, Nelson DR, Syed K. More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus, Cyanobacteria, and Mycobacterium. Int J Mol Sci 2020; 21:ijms21134814. [PMID: 32646068 PMCID: PMC7369989 DOI: 10.3390/ijms21134814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Unraveling the role of cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins present in living and non-living entities, in secondary metabolite synthesis is gaining momentum. In this direction, in this study, we analyzed the genomes of 203 Streptomyces species for P450s and unraveled their association with secondary metabolism. Our analyses revealed the presence of 5460 P450s, grouped into 253 families and 698 subfamilies. The CYP107 family was found to be conserved and highly populated in Streptomyces and Bacillus species, indicating its key role in the synthesis of secondary metabolites. Streptomyces species had a higher number of P450s than Bacillus and cyanobacterial species. The average number of secondary metabolite biosynthetic gene clusters (BGCs) and the number of P450s located in BGCs were higher in Streptomyces species than in Bacillus, mycobacterial, and cyanobacterial species, corroborating the superior capacity of Streptomyces species for generating diverse secondary metabolites. Functional analysis via data mining confirmed that many Streptomyces P450s are involved in the biosynthesis of secondary metabolites. This study was the first of its kind to conduct a comparative analysis of P450s in such a large number (203) of Streptomyces species, revealing the P450s’ association with secondary metabolite synthesis in Streptomyces species. Future studies should include the selection of Streptomyces species with a higher number of P450s and BGCs and explore the biotechnological value of secondary metabolites they produce.
Collapse
Affiliation(s)
- Fanele Cabangile Mnguni
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|
8
|
Dutta S, Yu SM, Jeong SC, Lee YH. High-throughput analysis of genes involved in biocontrol performance of Pseudomonas fluorescens NBC275 against Gray mold. J Appl Microbiol 2019; 128:265-279. [PMID: 31574191 DOI: 10.1111/jam.14475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023]
Abstract
AIMS Many physiological and microbial characteristics influence the biocontrol performance of the biological control agents (BCAs) in agricultural fields. To implement effective biocontrol, the contribution of specific genes, mechanisms and traits to the biocontrol performance of BCAs need to be characterized and explored in greater detail. METHODS AND RESULTS In this study, a transposon (Tn) mutant library using the BCA Pseudomonas fluorescens NBC275 (Pf275) was generated to explore genes and bacterial characteristics involved in antifungal activity and biocontrol performance. Among the Tn mutants, 205 strains showing variations in antifungal activity compared to wild-type (WT) were selected and further analysed for biocontrol efficacy against gray mold in pepper fruits. The genes involved in pyoverdine biosynthesis (pvdI and pvdD) and chitin-binding protein (gbpA) played essential roles in the antifungal activity and biocontrol capacity of Pf275. In addition, a mutation in phlD completely abolished the antifungal activity and significantly suppressed the biocontrol ability of the strain. Genes affecting antifungal activity of Pf275 significantly influenced swimming motility, which was identified as an important trait for the biocontrol ability of the bacterial strain. CONCLUSIONS Overall, our results suggest that antifungal compound production, siderophore biosynthesis and swimming motility synergistically contribute to Pf275 biocontrol performance. The utility of this library was demonstrated by identifying genes for antagonism and biocontrol ability in this BCA strain. The functional roles of many genes identified as contributing to antagonism and in vivo biocontrol activity require further study. SIGNIFICANCE AND IMPACT OF THIS STUDY Genes contributing to antifungal activity and biocontrol performance of P. fluorescens were identified and highlighted by Tn mutagenesis, which will give insight to improve the biocontrol performance of this BCA.
Collapse
Affiliation(s)
- S Dutta
- Division of Biotechnology, Chonbuk National University, Iksan-si, Jeollabuk-do, Republic of Korea
| | - S-M Yu
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| | - S C Jeong
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| | - Y H Lee
- Division of Biotechnology, Chonbuk National University, Iksan-si, Jeollabuk-do, Republic of Korea.,Advanced Institute of Environment and Bioscience, Plant Medical Research Center, and Institute of Bio-industry, Chonbuk National University, Ikansi-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
9
|
Cho MA, Han S, Lim YR, Kim V, Kim H, Kim D. Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents. Biomol Ther (Seoul) 2019; 27:127-133. [PMID: 30562877 PMCID: PMC6430224 DOI: 10.4062/biomolther.2018.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
The study of the genus Streptomyces is of particular interest because it produces a wide array of clinically important bioactive molecules. The genomic sequencing of many Streptomyces species has revealed unusually large numbers of cytochrome P450 genes, which are involved in the biosynthesis of secondary metabolites. Many macrolide biosynthetic pathways are catalyzed by a series of enzymes in gene clusters including polyketide and non-ribosomal peptide synthesis. In general, Streptomyces P450 enzymes accelerate the final, post-polyketide synthesis steps to enhance the structural architecture of macrolide chemistry. In this review, we discuss the major Streptomyces P450 enzymes research focused on the biosynthetic processing of macrolide therapeutic agents, with an emphasis on their biochemical mechanisms and structural insights.
Collapse
Affiliation(s)
- Myung-A Cho
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Songhee Han
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| |
Collapse
|
10
|
Jeffreys LN, Girvan HM, McLean KJ, Munro AW. Characterization of Cytochrome P450 Enzymes and Their Applications in Synthetic Biology. Methods Enzymol 2018; 608:189-261. [PMID: 30173763 DOI: 10.1016/bs.mie.2018.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytochrome P450 monooxygenase enzymes (P450s) catalyze a diverse array of chemical transformations, most originating from the insertion of an oxygen atom into a substrate that binds close to the P450 heme. The oxygen is delivered by a highly reactive heme iron-oxo species (compound I) and, according to the chemical nature of the substrate and its position in the active site, the P450 can catalyze a wide range of reactions including, e.g., hydroxylation, reduction, decarboxylation, sulfoxidation, N- and O-demethylation, epoxidation, deamination, CC bond formation and breakage, nitration, and dehalogenation. In this chapter, we describe the structural, biochemical, and catalytic properties of the P450s, along with spectroscopic and analytical methods used to characterize P450 enzymes and their redox partners. Important uses of P450 enzymes are highlighted, including how various P450s have been exploited for applications in synthetic biology.
Collapse
Affiliation(s)
- Laura N Jeffreys
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Hazel M Girvan
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Kirsty J McLean
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Andrew W Munro
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
11
|
Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 2017; 34:1141-1172. [PMID: 28758170 PMCID: PMC5585785 DOI: 10.1039/c7np00034k] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
12
|
Lim YR, Han S, Kim JH, Park HG, Lee GY, Le TK, Yun CH, Kim D. Characterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and Its Role in the Biosynthesis of Secondary Metabolites. Biomol Ther (Seoul) 2017; 25:171-176. [PMID: 27956713 PMCID: PMC5340542 DOI: 10.4062/biomolther.2016.182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022] Open
Abstract
Streptomyces avermitilis produces clinically useful drugs such as avermectins and oligomycins. Its genome contains approximately 33 cytochrome P450 genes and they seem to play important roles in the biosynthesis of many secondary metabolites. The SAV_7130 gene from S. avermitilis encodes CYP158A3. The amino acid sequence of this enzyme has high similarity with that of CYP158A2, a biflaviolin synthase from S. coelicolor A3(2). Recombinant S. avermitilis CYP158A3 was heterologously expressed and purified. It exhibited the typical P450 Soret peak at 447 nm in the reduced CO-bound form. Type I binding spectral changes were observed when CYP158A3 was titrated with myristic acid; however, no oxidative product was formed. An analog of flaviolin, 2-hydroxynaphthoquinone (2-OH NQ) displayed similar type I binding upon titration with purified CYP158A3. It underwent an enzymatic reaction forming dimerized product. A homology model of CYP158A3 was superimposed with the structure of CYP158A2, and the majority of structural elements aligned. These results suggest that CYP158A3 might be an orthologue of biflaviolin synthase, catalyzing C-C coupling reactions during pigment biosynthesis in S. avermitilis.
Collapse
Affiliation(s)
- Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Songhee Han
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Joo-Hwan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Ga-Young Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| |
Collapse
|
13
|
Han S, Pham TV, Kim JH, Lim YR, Park HG, Jeong D, Yun CH, Chun YJ, Kang LW, Kim D. Structural insights into the binding of lauric acid to CYP107L2 from Streptomyces avermitilis. Biochem Biophys Res Commun 2016; 482:902-908. [PMID: 27890614 DOI: 10.1016/j.bbrc.2016.11.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 01/27/2023]
Abstract
Streptomyces avermitilis is an actinobacterium known to produce clinically useful macrolides including avermectins. CYP107L2 from S. avermitilis shares a high sequence similarity with the PikC (CYP107L1) from S. venezuelae. To elucidate the structural features of CYP107L2, we conducted biochemical and structural characterization of CYP107L2 from S. avermitilis. The CYP107L2 gene was cloned, and its recombinant protein was expressed and purified. The CYP107L2 showed a low-spin state of heme, and the reduced form yielded the CO difference spectra with a maximal absorption at 449 nm. Binding of pikromycin and lauric acid yielded the typical type I spectra with Kd values of 4.8 ± 0.3 and 111 ± 9 μM, respectively. However, no metabolic product was observed in the enzyme reaction. X-ray crystal structures of the ligand-free CYP107L2 and its complex with lauric acid were determined at the resolution of 2.6 and 2.5 Å, respectively. CYP107L2 showed a well-conserved CYP structure with a wide-open substrate-binding cavity. The lauric acid is bound mainly via hydrophobic interactions with the carboxylate group of lauric acid coordinated to the heme of P450. Glu-40 and Leu-382 residues in the CYP107L2 complex with lauric acid showed significant conformational changes to provide plentiful room for the lauric acid in the substrate-binding site.
Collapse
Affiliation(s)
- Songhee Han
- Department of Biological Sciences, Konkuk University, Seoul 05025 South Korea
| | - Tan-Viet Pham
- Department of Biological Sciences, Konkuk University, Seoul 05025 South Korea; Department of Biotechnology, Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Joo-Hwan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 South Korea
| | - Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul 05025 South Korea
| | - Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 05025 South Korea
| | - Dabin Jeong
- Department of Biological Sciences, Konkuk University, Seoul 05025 South Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul 05025 South Korea.
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 South Korea.
| |
Collapse
|
14
|
Han S, Pham TV, Kim JH, Lim YR, Park HG, Cha GS, Yun CH, Chun YJ, Kang LW, Kim D. Structural Analysis of the Streptomyces avermitilis CYP107W1-Oligomycin A Complex and Role of the Tryptophan 178 Residue. Mol Cells 2016; 39:211-6. [PMID: 26883908 PMCID: PMC4794603 DOI: 10.14348/molcells.2016.2226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/06/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
CYP107W1 from Streptomyces avermitilis is a cytochrome P450 enzyme involved in the biosynthesis of macrolide oligomycin A. A previous study reported that CYP107W1 regioselectively hydroxylated C12 of oligomycin C to produce oligomycin A, and the crystal structure of ligand free CYP107W1 was determined. Here, we analyzed the structural properties of the CYP107W1-oligomycin A complex and characterized the functional role of the Trp178 residue in CYP107W1. The crystal structure of the CYP107W1 complex with oligomycin A was determined at a resolution of 2.6 Å. Oligomycin A is bound in the substrate access channel on the upper side of the prosthetic heme mainly by hydrophobic interactions. In particular, the Trp178 residue in the active site intercalates into the large macrolide ring, thereby guiding the substrate into the correct binding orientation for a productive P450 reaction. A Trp178 to Gly mutation resulted in the distortion of binding titration spectra with oligomycin A, whereas binding spectra with azoles were not affected. The Gly178 mutant's catalytic turnover number for the 12-hydroxylation reaction of oligomycin C was highly reduced. These results indicate that Trp178, located in the open pocket of the active site, may be a critical residue for the productive binding conformation of large macrolide substrates.
Collapse
Affiliation(s)
- Songhee Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701
Korea
| | - Tan-Viet Pham
- Department of Biological Sciences, Konkuk University, Seoul 143-701
Korea
| | - Joo-Hwan Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701
Korea
| | - Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul 143-701
Korea
| | - Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 143-701
Korea
| | - Gun-Su Cha
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757,
Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757,
Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 156-756,
Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul 143-701
Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701
Korea
| |
Collapse
|
15
|
Haslinger K, Cryle MJ. Structure of OxyAtei: completing our picture of the glycopeptide antibiotic producing Cytochrome P450 cascade. FEBS Lett 2016; 590:571-81. [DOI: 10.1002/1873-3468.12081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Max J. Cryle
- Max Planck Institute for Medical Research; Heidelberg Germany
| |
Collapse
|
16
|
A Streptomyces coelicolor host for the heterologous expression of Type III polyketide synthase genes. Microb Cell Fact 2015; 14:145. [PMID: 26376792 PMCID: PMC4573997 DOI: 10.1186/s12934-015-0335-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/03/2015] [Indexed: 11/30/2022] Open
Abstract
Background Recent advances in genome sequencing, combined with bioinformatic analysis, has led to the identification of numerous novel natural product gene clusters, particularly in actinomycetes of terrestrial and marine origin. Many of these gene clusters encode uncharacterised Type III polyketide synthases. To facilitate the study of these genes and their potentially novel products, we set out to construct an actinomycete expression host specifically designed for the heterologous expression of Type III PKS genes and their gene clusters. Results A derivative of Streptomyces coelicolor A3(2) designed for the expression of Type III polyketide synthase (PKS) genes was constructed from the previously engineered expression strain S. coelicolor M1152 [Δact Δred Δcpk Δcda rpoB(C1298T)] by removal of all three of the endogenous Type III PKS genes (gcs,srsA,rppA) by PCR targeting. The resulting septuple deletion mutant, M1317, proved to be an effective surrogate host for the expression of actinobacterial Type III PKS genes: expression of the reintroduced gcs gene from S. coelicolor and of the heterologous rppA gene from Streptomyces venezuelae under the control of the constitutive ermE* promoter resulted in copious production of germicidin and flaviolin, respectively. Conclusions The newly constructed expression host S. coelicolor M1317 should be particularly useful for the discovery and analysis of new Type III polyketide metabolites.
Collapse
|
17
|
Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 2015; 44:6320-39. [PMID: 25764171 PMCID: PMC4375017 DOI: 10.1039/c4dt03559c] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination chemistry studies, have provided insight into the crucial role that siderophores play in bacterial iron homeostasis. The importance of understanding the fundamental chemistry underlying bacterial life has been highlighted evermore in recent years because of the emergence of antibiotic-resistant bacteria and the need to prevent the global rise of these superbugs. Increasing reports of siderophores functioning in capacities other than iron transport have appeared recently, but reports of "non-classical" siderophore functions have long paralleled those of iron transport. One particular non-classical function of these iron chelators, namely antibiotic activity, was documented before the role of siderophores in iron transport was established. In this Perspective, we present an exposition of past and current work into non-classical functions of siderophores and highlight the directions in which we anticipate that this research is headed. Examples include the ability of siderophores to function as zincophores, chalkophores, and metallophores for a variety of other metals, sequester heavy metal toxins, transport boron, act as signalling molecules, regulate oxidative stress, and provide antibacterial activity.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
18
|
Han S, Pham TV, Kim JH, Lim YR, Park HG, Cha GS, Yun CH, Chun YJ, Kang LW, Kim D. Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch Biochem Biophys 2015; 575:1-7. [PMID: 25849761 DOI: 10.1016/j.abb.2015.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 02/01/2023]
Abstract
Streptomyces avermitilis contains 33 cytochrome P450 genes in its genome, many of which play important roles in the biosynthesis process of antimicrobial agents. Here, we characterized the biochemical function and structure of CYP107W1 from S. avermitilis, which is responsible for the 12-hydroxylation reaction of oligomycin C. CYP107W1 was expressed and purified from Escherichia coli. Purified proteins exhibited the typical CO-binding spectrum of P450. Interaction of oligomycin C and oligomycin A (12-hydroxylated oligomycin C) with purified CYP107W1 resulted in a type I binding with Kd values of 14.4 ± 0.7 μM and 2.0 ± 0.1 μM, respectively. LC-mass spectrometry analysis showed that CYP107W1 produced oligomycin A by regioselectively hydroxylating C12 of oligomycin C. Steady-state kinetic analysis yielded a kcat value of 0.2 min(-1) and a Km value of 18 μM. The crystal structure of CYP107W1 was determined at 2.1 Å resolution. The overall P450 folding conformations are well conserved, and the open access binding pocket for the large macrolide oligomycin C was observed above the distal side of heme. This study of CYP107W1 can help a better understanding of clinically important P450 enzymes as well as their optimization and engineering for synthesizing novel antibacterial agents and other pharmaceutically important compounds.
Collapse
Affiliation(s)
- Songhee Han
- Konkuk University, Department of Biological Sciences, Seoul 143-701, Republic of Korea
| | - Tan-Viet Pham
- Konkuk University, Department of Biological Sciences, Seoul 143-701, Republic of Korea
| | - Joo-Hwan Kim
- Konkuk University, Department of Biological Sciences, Seoul 143-701, Republic of Korea
| | - Young-Ran Lim
- Konkuk University, Department of Biological Sciences, Seoul 143-701, Republic of Korea
| | - Hyoung-Goo Park
- Konkuk University, Department of Biological Sciences, Seoul 143-701, Republic of Korea
| | - Gun-Su Cha
- Chonnam National University, School of Biological Sciences and Technology, Gwangju 500-757, Republic of Korea
| | - Chul-Ho Yun
- Chonnam National University, School of Biological Sciences and Technology, Gwangju 500-757, Republic of Korea
| | - Young-Jin Chun
- Chung-Ang University, College of Pharmacy, Seoul 156-756, Republic of Korea
| | - Lin-Woo Kang
- Konkuk University, Department of Biological Sciences, Seoul 143-701, Republic of Korea.
| | - Donghak Kim
- Konkuk University, Department of Biological Sciences, Seoul 143-701, Republic of Korea.
| |
Collapse
|
19
|
Exploring the electron transfer pathway in the oxidation of avermectin by CYP107Z13 in Streptomyces ahygroscopicus ZB01. PLoS One 2014; 9:e98916. [PMID: 24905717 PMCID: PMC4048220 DOI: 10.1371/journal.pone.0098916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Streptomyces ahygroscopicus ZB01 can effectively oxidize 4″-OH of avermectin to form 4″-oxo-avermectin. CYP107Z13 is responsible for this site-specific oxidation in ZB01. In the present study, we explored the electron transfer pathway in oxidation of avermectin by CYP107Z13 in ZB01. A putative [3Fe-4S] ferredoxin gene fd68 and two possible NADH-dependent ferredoxin reductase genes fdr18 and fdr28 were cloned from the genomic DNA of ZB01. fd68 gene disruption mutants showed no catalytic activity in oxidation of avermectin to form 4″-oxo-avermectin. To clarify whether FdR18 and FdR28 participate in the electron transfer during avermectin oxidation by CYP107Z13, two whole-cell biocatalytic systems were designed in E. coli BL21 (DE3), with one co-expressing CYP107Z13, Fd68 and FdR18 and the other co-expressing CYP107Z13, Fd68 and FdR28. Both of the two biocatalytic systems were found to be able to mediate the oxidation of avermectin to form 4″-oxo-avermectin. Thus, we propose an electron transfer pathway NADH→FdR18/FdR28→Fd68→CYP107Z13 for oxidation of avermectin to form 4″-oxo-avermectin in ZB01.
Collapse
|