1
|
Pilat JM, Brown RE, Chen Z, Berle NJ, Othon AP, Washington MK, Anant SA, Kurokawa S, Ng VH, Thompson JJ, Jacobse J, Goettel JA, Lee E, Choksi YA, Lau KS, Short SP, Williams CS. SELENOP modifies sporadic colorectal carcinogenesis and WNT signaling activity through LRP5/6 interactions. J Clin Invest 2023; 133:e165988. [PMID: 37166989 PMCID: PMC10313376 DOI: 10.1172/jci165988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic CRC. In human single-cell cRNA-Seq (scRNA-Seq) data sets, we discovered that SELENOP expression rose as normal colon stem cells transformed into adenomas that progressed into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involved conditional, intestinal epithelium-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as in CRC and noncancer cell lines. Selenop-KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining the mechanism of action of SELENOP, we mapped protein-protein interactions between SELENOP and the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). Last, we confirmed that SELENOP-LRP5/6 interactions contributed to the effects of SELENOP on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.
Collapse
Affiliation(s)
| | - Rachel E. Brown
- Program in Cancer Biology
- Medical Scientist Training Program, and
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
| | - Nathaniel J. Berle
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | | | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Suguru Kurokawa
- Department of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | | | | | - Justin Jacobse
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Jeremy A. Goettel
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ethan Lee
- Program in Cancer Biology
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ken S. Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Surgery, VUMC, Nashville, Tennessee, USA
| | - Sarah P. Short
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher S. Williams
- Program in Cancer Biology
- Medical Scientist Training Program, and
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Yang Y, Li D, Wu W, Huang D, Zheng H, Aihaiti Y. A Pan-Cancer Analysis of the Role of Selenoprotein P mRNA in Tumorigenesis. Int J Gen Med 2021; 14:7471-7485. [PMID: 34754222 PMCID: PMC8568700 DOI: 10.2147/ijgm.s332031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background Selenium (Se) exhibits its anti-carcinogenic properties by regulating the redox system. However, the relationship between selenoprotein P (SeP), mRNA (SELENOP mRNA) and tumorigenesis remains unclear. Plasma SeP transports Se to various target tissues and has antioxidant characteristics. The present study aimed to explore the multifaceted pan-cancer properties of SELENOP in terms of its tissue-specific expression, prognostic value, immune function, and signaling pathway enrichment. Patients and Methods The expression profile of SELENOP was determined in 33 tumor types and survival, pathway enrichment, and correlation analyses were conducted based on TCGA database. The relationship between SELENOP expression and immune infiltration and macrophage subtype gene markers was investigated using the TIMER and GEPIA. Results SELENOP gene expression was decreased in many cancer tissues, but was upregulated in brain lower grade glioma (LGG). Furthermore, SELENOP expression was associated with a better prognosis in most cancers, but a poorer prognosis in LGG and uterine corpus endometrioid carcinoma (UCEC). Our results showed that SELENOP was correlated with infiltration level of six immune cell types, where SELENOP also showed a strong correlation with macrophages in some cancer types. However, we failed to determine macrophage polarization in 33 tumor types. SELENOP negatively regulated vascular endothelial cell proliferation in LGG and UCEC and epidermal cell differentiation in six tumor types. In contrast, upregulation was related to immune function, including T cell activation, B cell-mediated immunity, adaptive immune response and immune response regulation cell surface receptor signaling pathways in another six tumor types. Conclusion These findings highlighted the tissue-specific expression, prognostic value and immune characteristics of SELENOP in pan-cancer, and provided insights for illustrating the role of SELENOP in tumorigenesis.
Collapse
Affiliation(s)
- Yanni Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, People's Republic of China.,Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Daning Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Wentao Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Dingxing Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Haishi Zheng
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Zhang DG, Zhao T, Xu XJ, Lv WH, Luo Z. Dietary Marginal and Excess Selenium Increased Triglycerides Deposition, Induced Endoplasmic Reticulum Stress and Differentially Influenced Selenoproteins Expression in the Anterior and Middle Intestines of Yellow Catfish Pelteobagrus fulvidraco. Antioxidants (Basel) 2021; 10:antiox10040535. [PMID: 33805536 PMCID: PMC8067157 DOI: 10.3390/antiox10040535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential micro-mineral and plays important roles in antioxidant responses, and also influences lipid metabolism and selenoprotein expression in vertebrates, but the effects and mechanism remain unknown. The study was undertaken to decipher the insights into dietary Se influencing lipid metabolism and selenoprotein expression in the anterior and middle intestine (AI and MI) of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (weight: 8.27 ± 0.03 g) were fed a 0.03- (M-Se), 0.25- (A-Se), or 6.39- (E-Se) mg Se/kg diet for 12 wk. AI and MI were analyzed for triglycerides (TGs) and Se concentrations, histochemistry and immunofluorescence, enzyme activities, and gene and protein levelsassociated with antioxidant responses, lipid metabolism, endoplasmic reticulum (ER) stress, and selenoproteome. Compared to the A-Se group, M-Se and E-Se diets significantly decreased weight gain (WG) and increased TGs concentration in the AI and MI. In the AI, compared with A-Se group, M-Se and E-Se diets significantly increased activities of fatty acid synthase, expression of lipogenic genes, and suppressed lipolysis. In the MI, compared to the A-Se group, M-Se and E-Se diets significantly increased activities of lipogenesis and expression of lipogenic genes. Compared with A-Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the AI and MI, and M-Se diet did not significantly reduce GPX activities in the AI and MI. Compared with the A- Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the plasma and liver, and M-Se diet significantly reduced GPX activities in the plasma and liver. Compared with the A-Se group, M-Se and E-Se groups also increased glucose-regulated protein 78 (GRP78, ER stress marker) protein expression of the intestine. Dietary Se supplementation also differentially influenced the expression of the 28 selenoproteins in the AI and MI, many of which possessed antioxidant characteristics. Compared with the A-Se group, the M-Se group significantly decreased mRNA levels of txnrd2 and txnrd3, but made no difference on mRNA levels of these seven GPX proteins in the MI. Moreover, we characterized sterol regulatory element binding protein 1c (SREBP1c) binding sites of three ER-resident proteins (selenom, selenon, and selenos) promoters, and found that Se positively controlled selenom, selenon, and selenos expression via SREBP1c binding to the selenom, selenon, and selenos promoter. Thus, dietary marginal and excess Se increased TGs deposition of yellow catfish P. fulvidraco, which might be mediated by ER-resident selenoproteins expression and ER stress.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Xiao-Jian Xu
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Wu-Hong Lv
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: or ; Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114
| |
Collapse
|
4
|
Alhasan R, Kharma A, Leroy P, Jacob C, Gaucher C. Selenium Donors at the Junction of Inflammatory Diseases. Curr Pharm Des 2020; 25:1707-1716. [PMID: 31267853 DOI: 10.2174/1381612825666190701153903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022]
Abstract
Selenium is an essential non-metal trace element, and the imbalance in the bioavailability of selenium is associated with many diseases ranking from acute respiratory distress syndrome, myocardial infarction and renal failure (Se overloading) to diseases associated with chronic inflammation like inflammatory bowel diseases, rheumatoid arthritis, and atherosclerosis (Se unload). The only source of selenium is the diet (animal and cereal sources) and its intestinal absorption is limiting for selenocysteine and selenomethionine synthesis and incorporation in selenoproteins. In this review, after establishing the link between selenium and inflammatory diseases, we envisaged the potential of selenium nanoparticles and organic selenocompounds to compensate the deficit of selenium intake from the diet. With high selenium loading, nanoparticles offer a low dosage to restore selenium bioavailability whereas organic selenocompounds can play a role in the modulation of their antioxidant or antiinflammatory activities.
Collapse
Affiliation(s)
- Rama Alhasan
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | - Pierre Leroy
- Universite de Lorraine, CITHEFOR, F-54000 Nancy, France
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | | |
Collapse
|
5
|
Campo-Sabariz J, Moral-Anter D, Brufau MT, Briens M, Pinloche E, Ferrer R, Martín-Venegas R. 2-Hydroxy-(4-methylseleno)butanoic Acid Is Used by Intestinal Caco-2 Cells as a Source of Selenium and Protects against Oxidative Stress. J Nutr 2019; 149:2191-2198. [PMID: 31504719 DOI: 10.1093/jn/nxz190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Selenium (Se) participates in different functions in humans and other animals through its incorporation into selenoproteins as selenocysteine. Inadequate dietary Se is considered a risk factor for several chronic diseases associated with oxidative stress. OBJECTIVE The role of 2-hydroxy-(4-methylseleno)butanoic acid (HMSeBA), an organic form of Se used in animal nutrition, in supporting selenoprotein synthesis and protecting against oxidative stress was investigated in an in vitro model of intestinal Caco-2 cells. METHODS Glutathione peroxidase (GPX) and thioredoxin reductase (TXNRD) activities, selenoprotein P1 protein (SELENOP) and gene (SELENOP) expression, and GPX1 and GPX2 gene expression were studied in Se-deprived (FBS removal) and further HMSeBA-supplemented (0.1-625 μM, 72 h) cultures. The effect of HMSeBA supplementation (12.5 and 625 μM, 24 h) on oxidative stress induced by H2O2 (1 mM) was evaluated by the production of reactive oxygen species (ROS), 4-hydroxy-2-nonenal (4-HNE) adducts, and protein carbonyl residues compared with a sodium selenite control (SS, 5 μM). RESULTS Se deprivation induced a reduction (P < 0.05) in GPX activity (62%), GPX1 expression, and both SELENOP (33%) and SELENOP expression. In contrast, an increase (P < 0.05) in GPX2 expression and no effect in TXNRD activity (P = 0.09) were observed. HMSeBA supplementation increased (P < 0.05) GPX activity (12.5-625 μM, 1.68-1.82-fold) and SELENOP protein expression (250 and 625 μM, 1.87- and 2.04-fold). Moreover, HMSeBA supplementation increased (P < 0.05) GPX1 (12.5 and 625 μM), GPX2 (625 μM), and SELENOP (12.5 and 625 μM) expression. HMSeBA (625 μM) was capable of decreasing (P < 0.05) ROS (32%), 4-HNE adduct (49%), and protein carbonyl residue (75%) production after H2O2 treatment. CONCLUSION Caco-2 cells can use HMSeBA as an Se source for selenoprotein synthesis, resulting in protection against oxidative stress.
Collapse
Affiliation(s)
- Joan Campo-Sabariz
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - David Moral-Anter
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - M Teresa Brufau
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | | | | | - Ruth Ferrer
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Raquel Martín-Venegas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Seiler KM, Waye SE, Kong W, Kamimoto K, Bajinting A, Goo WH, Onufer EJ, Courtney C, Guo J, Warner BW, Morris SA. Single-Cell Analysis Reveals Regional Reprogramming During Adaptation to Massive Small Bowel Resection in Mice. Cell Mol Gastroenterol Hepatol 2019; 8:407-426. [PMID: 31195149 PMCID: PMC6718927 DOI: 10.1016/j.jcmgh.2019.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The small intestine (SI) displays regionality in nutrient and immunological function. Following SI tissue loss (as occurs in short gut syndrome, or SGS), remaining SI must compensate, or "adapt"; the capacity of SI epithelium to reprogram its regional identity has not been described. Here, we apply single-cell resolution analyses to characterize molecular changes underpinning adaptation to SGS. METHODS Single-cell RNA sequencing was performed on epithelial cells isolated from distal SI of mice following 50% proximal small bowel resection (SBR) vs sham surgery. Single-cell profiles were clustered based on transcriptional similarity, reconstructing differentiation events from intestinal stem cells (ISCs) through to mature enterocytes. An unsupervised computational approach to score cell identity was used to quantify changes in regional (proximal vs distal) SI identity, validated using immunofluorescence, immunohistochemistry, qPCR, western blotting, and RNA-FISH. RESULTS Uniform Manifold Approximation and Projection-based clustering and visualization revealed differentiation trajectories from ISCs to mature enterocytes in sham and SBR. Cell identity scoring demonstrated segregation of enterocytes by regional SI identity: SBR enterocytes assumed more mature proximal identities. This was associated with significant upregulation of lipid metabolism and oxidative stress gene expression, which was validated via orthogonal analyses. Observed upstream transcriptional changes suggest retinoid metabolism and proximal transcription factor Creb3l3 drive proximalization of cell identity in response to SBR. CONCLUSIONS Adaptation to proximal SBR involves regional reprogramming of ileal enterocytes toward a proximal identity. Interventions bolstering the endogenous reprogramming capacity of SI enterocytes-conceivably by engaging the retinoid metabolism pathway-merit further investigation, as they may increase enteral feeding tolerance, and obviate intestinal failure, in SGS.
Collapse
Affiliation(s)
- Kristen M Seiler
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Sarah E Waye
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Wenjun Kong
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Adam Bajinting
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - William H Goo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Emily J Onufer
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Cathleen Courtney
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
7
|
Peters KM, Carlson BA, Gladyshev VN, Tsuji PA. Selenoproteins in colon cancer. Free Radic Biol Med 2018; 127:14-25. [PMID: 29793041 PMCID: PMC6168369 DOI: 10.1016/j.freeradbiomed.2018.05.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
Selenocysteine-containing proteins (selenoproteins) have been implicated in the regulation of various cell signaling pathways, many of which are linked to colorectal malignancies. In this in-depth excurse into the selenoprotein literature, we review possible roles for human selenoproteins in colorectal cancer, focusing on the typical hallmarks of cancer cells and their tumor-enabling characteristics. Human genome studies of single nucleotide polymorphisms in various genes coding for selenoproteins have revealed potential involvement of glutathione peroxidases, thioredoxin reductases, and other proteins. Cell culture studies with targeted down-regulation of selenoproteins and studies utilizing knockout/transgenic animal models have helped elucidate the potential roles of individual selenoproteins in this malignancy. Those selenoproteins, for which strong links to development or progression of colorectal cancer have been described, may be potential future targets for clinical interventions.
Collapse
Affiliation(s)
- Kristin M Peters
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| | - Vadim N Gladyshev
- Dept. of Medicine, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Petra A Tsuji
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| |
Collapse
|
8
|
Gao C, Fu Q, Su B, Zhou S, Liu F, Song L, Zhang M, Ren Y, Dong X, Tan F, Li C. Transcriptomic profiling revealed the signatures of intestinal barrier alteration and pathogen entry in turbot (Scophthalmus maximus) following Vibrio anguillarum challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:159-168. [PMID: 27431928 DOI: 10.1016/j.dci.2016.07.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The mucosal immune system serves as the frontline barriers of host defense against pathogen infection, especially for the fishes, which are living in the pathogen rich aquatic environment. The intestine constitutes the largest surface body area in constantly contact with the external pathogens, and plays a vital role in the immune defense against inflammation and pathogen infection. Previous studies have revealed that fish intestine might serves as the portal of entry for Vibrio anguillarum. To characterize the immune actors and their associated immune activities in turbot intestine barrier during bacterial infection, here we examined the gene expression profiles of turbot intestine at three time points following experimental infection with V. anguillarum utilizing RNA-seq technology. A total of 122 million reads were assembled into 183,101 contigs with an average length of 1151 bp and the N50 size of 2302 bp. Analysis of differential gene expression between control and infected samples at 1 h, 4 h, and 12 h revealed 2079 significantly expressed genes. Enrichment and pathway analysis of the differentially expressed genes showed the centrality of the pathogen attachment and recognition, antioxidant/apoptosis, mucus barrier modification and immune activation/inflammation in the pathogen entry and host immune responses. The present study reported the novel gene expression patterns in turbot mucosal immunity, which were overlooked in previous studies. Our results can help to understand the mechanisms of turbot host defense, and may also provide foundation to identify the biomarkers for future selection of disease-resistant broodstock and evaluation of disease prevention and treatment options.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Selenoproteins: Antioxidant selenoenzymes and beyond. Arch Biochem Biophys 2016; 595:113-9. [PMID: 27095226 DOI: 10.1016/j.abb.2015.06.024] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 11/21/2022]
Abstract
Adequate intake of the essential trace element and micronutrient selenium is thought to be beneficial for maintaining human health. Selenium may modulate a broad spectrum of key biological processes, including the cellular response to oxidative stress, redox signalling, cellular differentiation, the immune response, and protein folding. Biochemical and cellular effects of selenium are achieved through activities of selenocysteine-containing selenoproteins. This small yet essential group comprises proteins encoded by 25 genes in humans, e.g. oxidoreductases such as glutathione peroxidases (GPx) and thioredoxin reductases (TrxR), as well as the iodothyronine deiodinases (DIO) and the plasma selenium transport protein, selenoprotein P (SePP1). Synthetic selenoorganic compounds, including the GPx mimetic ebselen, have also been applied in biological systems in vitro and in vivo; antioxidant and anti-inflammatory actions of ebselen and its history as a drug candidate are summarised here. Furthermore, we discuss several aspects of selenoprotein biochemistry, ranging from their well-known importance for cellular protection against oxidative damage to more recent data that link selenoprotein expression/activity to enterocyte and adipocyte differentiation and function and to (dys)regulation of insulin action and secretion.
Collapse
|
10
|
Profiles of microRNA networks in intestinal epithelial cells in a mouse model of colitis. Sci Rep 2015; 5:18174. [PMID: 26647826 PMCID: PMC4673535 DOI: 10.1038/srep18174] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) accompany a critical loss of the frontline barrier function that is achieved primarily by intestinal epithelial cells (IECs). Although the gene-regulation pathways underlying these host-defense roles of IECs presumably are deranged during IBD pathogenesis, the quantitative and qualitative alterations of posttranscriptional regulators such as microRNAs (miRNAs) within the cells largely remain to be defined. We aimed to uncover the regulatory miRNA–target gene relationships that arise differentially in inflamed small- compared with large-IECs. Whereas IBD significantly increased the expression of only a few miRNA candidates in small-IECs, numerous miRNAs were upregulated in inflamed large-IECs. These marked alterations might explain why the large, as compared with small, intestine is more sensitive to colitis and shows more severe pathology in this experimental model of IBD. Our in-depth assessment of the miRNA–mRNA expression profiles and the resulting networks prompts us to suggest that miRNAs such as miR-1224, miR-3473a, and miR-5128 represent biomarkers that appear in large-IECs upon IBD development and co-operatively repress the expression of key anti-inflammatory factors. The current study provides insight into gene-regulatory networks in IECs through which dynamic rearrangement of the involved miRNAs modulates the gene expression–regulation machinery between maintaining and disrupting gastrointestinal homeostasis.
Collapse
|
11
|
Wunderlich F, Al-Quraishy S, Steinbrenner H, Sies H, Dkhil MA. Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant-based natural products. Parasitol Res 2014; 113:3547-56. [PMID: 25185667 DOI: 10.1007/s00436-014-4101-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022]
Abstract
Eimeriosis, a widespread infectious disease of livestock, is caused by coccidian protozoans of the genus Eimeria. These obligate intracellular parasites strike the digestive tract of their hosts and give rise to enormous economic losses, particularly in poultry, ruminants including cattle, and rabbit farming. Vaccination, though a rational prophylactic measure, has not yet been as successful as initially thought. Numerous broad-spectrum anti-coccidial drugs are currently in use for treatment and prophylactic control of eimeriosis. However, increasing concerns about parasite resistance, consumer health, and environmental safety of the commercial drugs warrant efforts to search for novel agents with anti-Eimeria activity. This review summarizes current approaches to prevent and treat eimeriosis such as vaccination and commercial drugs, as well as recent attempts to use dietary antioxidants as novel anti-Eimeria agents. In particular, the trace elements selenium and zinc, the vitamins A and E, and natural products extracted from garlic, barberry, pomegranate, sweet wormwood, and other plants are discussed. Several of these novel anti-Eimeria agents exhibit a protective role against oxidative stress that occurs not only in the intestine of Eimeria-infected animals, but also in their non-parasitized tissues, in particular, in the first-pass organ liver. Currently, it appears to be promising to identify safe combinations of low-cost natural products with high anti-Eimeria efficacy for a potential use as feed supplementation in animal farming.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
12
|
Abstract
Inadequate dietary intake of the essential trace element selenium (Se) is thought to be a risk factor for several chronic diseases associated with oxidative stress and inflammation. Biological actions of Se occur through low-molecular weight metabolites and through selenoproteins. Several key selenoproteins including glutathione peroxidases; selenoproteins M, P, and S; and selenium-binding protein 1 have been detected in the intestine. Interestingly, Se and antioxidant selenoproteins are known to modulate differentiation and function of immune cells and contribute to avoid excessive immune responses. This review discusses the role of Se and intestinal selenoproteins in inflammatory bowel diseases, based on data from human, animal, and in vitro studies. In humans, Se deficiency is commonly observed in patients with Crohn's disease. In animal models of experimental colitis, the Se status was negatively correlated with the severity of the disease. While the cause-effect relationship of these observations remains to be clarified, the beneficial outcome of dietary Se supplementation and an optimization of selenoprotein biosynthesis in murine inflammatory bowel disease models have led to investigations of targets and actions of Se in the gastrointestinal tract. The Se status affects gene expression, signaling pathways, and cellular functions in the small and large intestine as well as the gut microbiome composition. This data, particularly from animal experiments, hold promise that adequate dietary Se supply may counteract chronic intestinal inflammation in humans.
Collapse
|