1
|
Liang J, Kazmierczak K, Veerasammy M, Yadav S, Takeuchi L, Kanashiro‐Takeuchi R, Szczesna‐Cordary D. Mechanistic basis for rescuing hypertrophic cardiomyopathy with myosin regulatory light chain phosphorylation. Cytoskeleton (Hoboken) 2024; 81:806-814. [PMID: 38494592 PMCID: PMC11405541 DOI: 10.1002/cm.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
We investigated the impact of the phosphomimetic (Ser15 → Asp15) myosin regulatory light chain (S15D-RLC) on the Super-Relaxed (SRX) state of myosin using previously characterized transgenic (Tg) S15D-D166V rescue mice, comparing them to the Hypertrophic Cardiomyopathy (HCM) Tg-D166V model and wild-type (WT) RLC mice. In the Tg-D166V model, we observed a disruption of the SRX state, resulting in a transition from SRX to DRX (Disordered Relaxed) state, which explains the hypercontractility of D166V-mutated myosin motors. The presence of the S15D moiety in Tg-S15D-D166V mice restored the SRX/DRX balance to levels comparable to Tg-WT, thus mitigating the hypercontractile behavior associated with the HCM-D166V mutation. Additionally, we investigated the impact of delivering the S15D-RLC molecule to the hearts of Tg-D166V mice via adeno-associated virus (AAV9) and compared their condition to AAV9-empty vector-injected or non-injected Tg-D166V animals. Tg-D166V mice injected with AAV9 S15D-RLC exhibited a significantly higher proportion of myosin heads in the SRX state compared to those injected with AAV9 empty vector or left non-injected. No significant effect was observed in Tg-WT hearts treated similarly. These findings suggest that AAV9-delivered phosphomimetic S15D-RLC modality mitigates the abnormal Tg-D166V phenotype without impacting the normal function of Tg-WT hearts. Global longitudinal strain analysis supported these observations, indicating that the S15D moiety can alleviate the HCM-D166V phenotype by restoring SRX stability and the SRX ↔ DRX equilibrium.
Collapse
Affiliation(s)
- Jingsheng Liang
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Melanie Veerasammy
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Sunil Yadav
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Lauro Takeuchi
- Interdisciplinary Stem Cell Institute University of Miami Miller School of MedicineMiamiFloridaUSA
| | - Rosemeire Kanashiro‐Takeuchi
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Interdisciplinary Stem Cell Institute University of Miami Miller School of MedicineMiamiFloridaUSA
| | - Danuta Szczesna‐Cordary
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
2
|
Mohran S, Kooiker K, Mahoney-Schaefer M, Mandrycky C, Kao K, Tu AY, Freeman J, Moussavi-Harami F, Geeves M, Regnier M. The biochemically defined super relaxed state of myosin-A paradox. J Biol Chem 2024; 300:105565. [PMID: 38103642 PMCID: PMC10819765 DOI: 10.1016/j.jbc.2023.105565] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
The biochemical SRX (super-relaxed) state of myosin has been defined as a low ATPase activity state. This state can conserve energy when the myosin is not recruited for muscle contraction. The SRX state has been correlated with a structurally defined ordered (versus disordered) state of muscle thick filaments. The two states may be linked via a common interacting head motif (IHM) where the two heads of heavy meromyosin (HMM), or myosin, fold back onto each other and form additional contacts with S2 and the thick filament. Experimental observations of the SRX, IHM, and the ordered form of thick filaments, however, do not always agree, and result in a series of unresolved paradoxes. To address these paradoxes, we have reexamined the biochemical measurements of the SRX state for porcine cardiac HMM. In our hands, the commonly employed mantATP displacement assay was unable to quantify the population of the SRX state with all data fitting very well by a single exponential. We further show that mavacamten inhibits the basal ATPases of both porcine ventricle HMM and S1 (Ki, 0.32 and 1.76 μM respectively) while dATP activates HMM cooperatively without any evidence of an SRX state. A combination of our experimental observations and theories suggests that the displacement of mantATP in purified proteins is not a reliable assay to quantify the SRX population. This means that while the structurally defined IHM and ordered thick filaments clearly exist, great care must be employed when using the mantATP displacement assay.
Collapse
Affiliation(s)
- Saffie Mohran
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Translational Muscle Research, University of Washington, Seattle, Washington, USA
| | - Kristina Kooiker
- Center for Translational Muscle Research, University of Washington, Seattle, Washington, USA; Division of Cardiology, University of Washington, Seattle, Washington, USA
| | | | - Christian Mandrycky
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Translational Muscle Research, University of Washington, Seattle, Washington, USA
| | - Kerry Kao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Translational Muscle Research, University of Washington, Seattle, Washington, USA
| | - Jeremy Freeman
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Farid Moussavi-Harami
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Translational Muscle Research, University of Washington, Seattle, Washington, USA; Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Michael Geeves
- School of Biosciences, University of Kent, Canterbury, UK.
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Translational Muscle Research, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
3
|
Kazmierczak K, Liang J, Maura LG, Scott NK, Szczesna-Cordary D. Phosphorylation Mimetic of Myosin Regulatory Light Chain Mitigates Cardiomyopathy-Induced Myofilament Impairment in Mouse Models of RCM and DCM. Life (Basel) 2023; 13:1463. [PMID: 37511838 PMCID: PMC10381296 DOI: 10.3390/life13071463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This study focuses on mimicking constitutive phosphorylation in the N-terminus of the myosin regulatory light chain (S15D-RLC) as a rescue strategy for mutation-induced cardiac dysfunction in transgenic (Tg) models of restrictive (RCM) and dilated (DCM) cardiomyopathy caused by mutations in essential (ELC, MYL3 gene) or regulatory (RLC, MYL2 gene) light chains of myosin. Phosphomimetic S15D-RLC was reconstituted in left ventricular papillary muscle (LVPM) fibers from two mouse models of cardiomyopathy, RCM-E143K ELC and DCM-D94A RLC, along with their corresponding Tg-ELC and Tg-RLC wild-type (WT) mice. The beneficial effects of S15D-RLC in rescuing cardiac function were manifested by the S15D-RLC-induced destabilization of the super-relaxed (SRX) state that was observed in both models of cardiomyopathy. S15D-RLC promoted a shift from the SRX state to the disordered relaxed (DRX) state, increasing the number of heads readily available to interact with actin and produce force. Additionally, S15D-RLC reconstituted with fibers demonstrated significantly higher maximal isometric force per cross-section of muscle compared with reconstitution with WT-RLC protein. The effects of the phosphomimetic S15D-RLC were compared with those observed for Omecamtiv Mecarbil (OM), a myosin activator shown to bind to the catalytic site of cardiac myosin and increase myocardial contractility. A similar SRX↔DRX equilibrium shift was observed in OM-treated fibers as in S15D-RLC-reconstituted preparations. Additionally, treatment with OM resulted in significantly higher maximal pCa 4 force per cross-section of muscle fibers in both cardiomyopathy models. Our results suggest that both treatments with S15D-RLC and OM may improve the function of myosin motors and cardiac muscle contraction in RCM-ELC and DCM-RLC mice.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Luis G Maura
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Natissa K Scott
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| |
Collapse
|
4
|
Müller M, Eghbalian R, Boeckel JN, Frese KS, Haas J, Kayvanpour E, Sedaghat-Hamedani F, Lackner MK, Tugrul OF, Ruppert T, Tappu R, Martins Bordalo D, Kneuer JM, Piekarek A, Herch S, Schudy S, Keller A, Grammes N, Bischof C, Klinke A, Cardoso-Moreira M, Kaessmann H, Katus HA, Frey N, Steinmetz LM, Meder B. NIMA-related kinase 9 regulates the phosphorylation of the essential myosin light chain in the heart. Nat Commun 2022; 13:6209. [PMID: 36266340 PMCID: PMC9585074 DOI: 10.1038/s41467-022-33658-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
To adapt to changing hemodynamic demands, regulatory mechanisms modulate actin-myosin-kinetics by calcium-dependent and -independent mechanisms. We investigate the posttranslational modification of human essential myosin light chain (ELC) and identify NIMA-related kinase 9 (NEK9) to interact with ELC. NEK9 is highly expressed in the heart and the interaction with ELC is calcium-dependent. Silencing of NEK9 results in blunting of calcium-dependent ELC-phosphorylation. CRISPR/Cas9-mediated disruption of NEK9 leads to cardiomyopathy in zebrafish. Binding to ELC is mediated via the protein kinase domain of NEK9. A causal relationship between NEK9 activity and ELC-phosphorylation is demonstrated by genetic sensitizing in-vivo. Finally, we observe significantly upregulated ELC-phosphorylation in dilated cardiomyopathy patients and provide a unique map of human ELC-phosphorylation-sites. In summary, NEK9-mediated ELC-phosphorylation is a calcium-dependent regulatory system mediating cardiac contraction and inotropy.
Collapse
Affiliation(s)
- Marion Müller
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Rose Eghbalian
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Jes-Niels Boeckel
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Karen S Frese
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Elham Kayvanpour
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Maximilian K Lackner
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Oguz F Tugrul
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at ZMBH, Heidelberg University, Heidelberg, Germany
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Rewati Tappu
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Diana Martins Bordalo
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jasmin M Kneuer
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Annika Piekarek
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sabine Herch
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sarah Schudy
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Nadja Grammes
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Cornelius Bischof
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Henrik Kaessmann
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Hugo A Katus
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Lars M Steinmetz
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA
| | - Benjamin Meder
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany.
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA.
| |
Collapse
|
5
|
Kazmierczak K, Liang J, Gomez-Guevara M, Szczesna-Cordary D. Functional comparison of phosphomimetic S15D and T160D mutants of myosin regulatory light chain exchanged in cardiac muscle preparations of HCM and WT mice. Front Cardiovasc Med 2022; 9:988066. [PMID: 36204565 PMCID: PMC9530205 DOI: 10.3389/fcvm.2022.988066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated the rescue potential of two phosphomimetic mutants of the myosin regulatory light chain (RLC, MYL2 gene), S15D, and T160D RLCs. S15D-RLC mimics phosphorylation of the established serine-15 site of the human cardiac RLC. T160D-RLC mimics the phosphorylation of threonine-160, identified by computational analysis as a high-score phosphorylation site of myosin RLC. Cardiac myosin and left ventricular papillary muscle (LVPM) fibers were isolated from a previously generated model of hypertrophic cardiomyopathy (HCM), Tg-R58Q, and Tg-wild-type (WT) mice. Muscle specimens were first depleted of endogenous RLC and then reconstituted with recombinant human cardiac S15D and T160D phosphomimetic RLCs. Preparations reconstituted with recombinant human cardiac WT-RLC and R58Q-RLC served as controls. Mouse myosins were then tested for the actin-activated myosin ATPase activity and LVPM fibers for the steady-state force development and Ca2+-sensitivity of force. The data showed that S15D-RLC significantly increased myosin ATPase activity compared with T160D-RLC or WT-RLC reconstituted preparations. The two S15D and T160D phosphomimetic RLCs were able to rescue Vmax of Tg-R58Q myosin reconstituted with recombinant R58Q-RLC, but the effect of S15D-RLC was more pronounced than T160D-RLC. Low tension observed for R58Q-RLC reconstituted LVPM from Tg-R58Q mice was equally rescued by both phosphomimetic RLCs. In the HCM Tg-R58Q myocardium, the S15D-RLC caused a shift from the super-relaxed (SRX) state to the disordered relaxed (DRX) state, and the number of heads readily available to interact with actin and produce force was increased. At the same time, T160D-RLC stabilized the SRX state at a level similar to R58Q-RLC reconstituted fibers. We report here on the functional superiority of the established S15 phospho-site of the human cardiac RLC vs. C-terminus T160-RLC, with S15D-RLC showing therapeutic potential in mitigating a non-canonical HCM behavior underlined by hypocontractile behavior of Tg-R58Q myocardium.
Collapse
|
6
|
Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice: Role of the super-relaxed state of myosin. Proc Natl Acad Sci U S A 2022; 119:2110328119. [PMID: 35177471 PMCID: PMC8872785 DOI: 10.1073/pnas.2110328119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/22/2023] Open
Abstract
Many forms of cardiomyopathy manifest with changes in sarcomeric structure, function, and energetics. We used small-angle X-ray diffraction and myosin super-relaxed (SRX) state approaches to investigate the mechanisms underlying the clinical phenotypes associated with HCM-related D166V (aspartate-to-valine) and DCM-linked D94A (aspartate-to-alanine) mutations in the cardiac myosin RLC (MYL2 gene). Modulation of myosin function through dysregulation of the SRX state was closely coupled with structural rearrangements and the Ca2+ dependence of force development in HCM–D166V mice. The DCM–D94A model favored the SRX state without altering structure/force–pCa relationships. Understanding the regulation of SRX ↔ DRX equilibrium in the normal heart and how it is changed in heart disease may advance future therapeutics of patients suffering from the mutated MYL2 gene. In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure–function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from hypertrophic (HCM–D166V) and dilated (DCM–D94A) cardiomyopathy models were subjected to small-angle X-ray diffraction simultaneously with isometric force measurements to obtain the interfilament lattice spacing and equatorial intensity ratios (I11/I10) together with the force-pCa relationship over a full range of [Ca2+] and at a sarcomere length of 2.1 μm. In parallel, we studied the effect of mutations on the ATP-dependent myosin energetic states. Compared with wild-type (WT) and DCM–D94A mice, HCM–D166V significantly increased the Ca2+ sensitivity of force and left shifted the I11/I10-pCa relationship, indicating an apparent movement of HCM–D166V cross-bridges closer to actin-containing thin filaments, thereby allowing for their premature Ca2+ activation. The HCM–D166V model also disrupted the SRX state and promoted an SRX-to-DRX (super-relaxed to disordered relaxed) transition that correlated with an HCM-linked phenotype of hypercontractility. While this dysregulation of SRX ↔ DRX equilibrium was consistent with repositioning of myosin motors closer to the thin filaments and with increased force-pCa dependence for HCM–D166V, the DCM–D94A model favored the energy-conserving SRX state, but the structure/function–pCa data were similar to WT. Our results suggest that the mutation-induced redistribution of myosin energetic states is one of the key mechanisms contributing to the development of complex clinical phenotypes associated with human HCM–D166V and DCM–D94A mutations.
Collapse
|
7
|
Sitbon YH, Yadav S, Kazmierczak K, Szczesna-Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. J Muscle Res Cell Motil 2020; 41:313-327. [PMID: 31131433 PMCID: PMC6879809 DOI: 10.1007/s10974-019-09517-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The activity of cardiac and skeletal muscles depends upon the ATP-coupled actin-myosin interactions to execute the power stroke and muscle contraction. The goal of this review article is to provide insight into the function of myosin II, the molecular motor of the heart and skeletal muscles, with a special focus on the role of myosin II light chain (MLC) components. Specifically, we focus on the involvement of myosin regulatory (RLC) and essential (ELC) light chains in striated muscle development, isoform appearance and their function in normal and diseased muscle. We review the consequences of isoform switching and knockout of specific MLC isoforms on cardiac and skeletal muscle function in various animal models. Finally, we discuss how dysregulation of specific RLC/ELC isoforms can lead to cardiac and skeletal muscle diseases and summarize the effects of most studied mutations leading to cardiac or skeletal myopathies.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
8
|
De Bortoli M, Vio R, Basso C, Calore M, Minervini G, Angelini A, Melacini P, Vitiello L, Vazza G, Thiene G, Tosatto S, Corrado D, Iliceto S, Rampazzo A, Calore C. Novel Missense Variant in MYL2 Gene Associated With Hypertrophic Cardiomyopathy Showing High Incidence of Restrictive Physiology. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002824. [PMID: 32004434 DOI: 10.1161/circgen.119.002824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Marzia De Bortoli
- Department of Biology (M.D.B., M.C., L.V., G.V., A.R.), University of Padua, Italy.,Institute for Biomedicine, Eurac Research, Bolzano, Italy (M.D.B.).,Affiliated Institute of the University of Lübeck, Germany (M.D.B.)
| | - Riccardo Vio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health (R.V., C.B., A.A., P.M., G.T., D.C., S.I., C.C.), University of Padua, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health (R.V., C.B., A.A., P.M., G.T., D.C., S.I., C.C.), University of Padua, Italy
| | - Martina Calore
- Department of Biology (M.D.B., M.C., L.V., G.V., A.R.), University of Padua, Italy.,IMAiA-Institute for Molecular Biology and RNA Technology, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (M.C.)
| | - Giovanni Minervini
- Department of Biomedical Sciences (G.M., S.T.), University of Padua, Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health (R.V., C.B., A.A., P.M., G.T., D.C., S.I., C.C.), University of Padua, Italy
| | - Paola Melacini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health (R.V., C.B., A.A., P.M., G.T., D.C., S.I., C.C.), University of Padua, Italy
| | - Libero Vitiello
- Department of Biology (M.D.B., M.C., L.V., G.V., A.R.), University of Padua, Italy.,Interuniversity Institute of Myology, Italy (L.V.)
| | - Giovanni Vazza
- Department of Biology (M.D.B., M.C., L.V., G.V., A.R.), University of Padua, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health (R.V., C.B., A.A., P.M., G.T., D.C., S.I., C.C.), University of Padua, Italy
| | - Silvio Tosatto
- Department of Biomedical Sciences (G.M., S.T.), University of Padua, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health (R.V., C.B., A.A., P.M., G.T., D.C., S.I., C.C.), University of Padua, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health (R.V., C.B., A.A., P.M., G.T., D.C., S.I., C.C.), University of Padua, Italy
| | - Alessandra Rampazzo
- Department of Biology (M.D.B., M.C., L.V., G.V., A.R.), University of Padua, Italy.,CRIBI Biotechnology Centre (A.R.), University of Padua, Italy
| | - Chiara Calore
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health (R.V., C.B., A.A., P.M., G.T., D.C., S.I., C.C.), University of Padua, Italy
| |
Collapse
|
9
|
Yadav S, Yuan CC, Kazmierczak K, Liang J, Huang W, Takeuchi LM, Kanashiro-Takeuchi RM, Szczesna-Cordary D. Therapeutic potential of AAV9-S15D-RLC gene delivery in humanized MYL2 mouse model of HCM. J Mol Med (Berl) 2019; 97:1033-1047. [PMID: 31101927 DOI: 10.1007/s00109-019-01791-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder characterized by ventricular hypertrophy, myofibrillar disarray, and fibrosis, and is primarily caused by mutations in sarcomeric genes. With no definitive cure for HCM, there is an urgent need for the development of novel preventive and reparative therapies. This study is focused on aspartic acid-to-valine (D166V) mutation in the myosin regulatory light chain, RLC (MYL2 gene), associated with a malignant form of HCM. Since myosin RLC phosphorylation is critical for normal cardiac function, we aimed to exploit this post-translational modification via phosphomimetic-RLC gene therapy. We hypothesized that mimicking/modulating cardiac RLC phosphorylation in non-phosphorylatable D166V myocardium would improve heart function of HCM-D166V mice. Adeno-associated virus, serotype-9 (AAV9) was used to deliver phosphomimetic human RLC variant with serine-to-aspartic acid substitution at Ser15-RLC phosphorylation site (S15D-RLC) into the hearts of humanized HCM-D166V mice. Improvement of heart function was monitored by echocardiography, invasive hemodynamics (PV-loops) and muscle contractile mechanics. A significant increase in cardiac output and stroke work and a decrease in relaxation constant, Tau, shown to be prolonged in HCM mice, were observed in AAV- vs. PBS-injected HCM mice. Strain analysis showed enhanced myocardial longitudinal shortening in AAV-treated vs. control mice. In addition, increased maximal contractile force was observed in skinned papillary muscles from AAV-injected HCM hearts. Our data suggest that myosin RLC phosphorylation may have important translational implications for the treatment of RLC mutations-induced HCM and possibly play a role in other disease settings accompanied by depressed Ser15-RLC phosphorylation. KEY MESSAGES: HCM-D166V mice show decreased RLC phosphorylation and decompensated function. AAV9-S15D-RLC gene therapy in HCM-D166V mice, but not in WT-RLC, results in improved heart performance. Global longitudinal strain analysis shows enhanced contractility in AAV vs controls. Increased systolic and diastolic function is paralleled by higher contractile force. Phosphomimic S15D-RLC has a therapeutic potential for HCM.
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
10
|
Yadav S, Sitbon YH, Kazmierczak K, Szczesna-Cordary D. Hereditary heart disease: pathophysiology, clinical presentation, and animal models of HCM, RCM, and DCM associated with mutations in cardiac myosin light chains. Pflugers Arch 2019; 471:683-699. [PMID: 30706179 DOI: 10.1007/s00424-019-02257-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Genetic cardiomyopathies, a group of cardiovascular disorders based on ventricular morphology and function, are among the leading causes of morbidity and mortality worldwide. Such genetically driven forms of hypertrophic (HCM), dilated (DCM), and restrictive (RCM) cardiomyopathies are chronic, debilitating diseases that result from biomechanical defects in cardiac muscle contraction and frequently progress to heart failure (HF). Locus and allelic heterogeneity, as well as clinical variability combined with genetic and phenotypic overlap between different cardiomyopathies, have challenged proper clinical prognosis and provided an incentive for identification of pathogenic variants. This review attempts to provide an overview of inherited cardiomyopathies with a focus on their genetic etiology in myosin regulatory (RLC) and essential (ELC) light chains, which are EF-hand protein family members with important structural and regulatory roles. From the clinical discovery of cardiomyopathy-linked light chain mutations in patients to an array of exploratory studies in animals, and reconstituted and recombinant systems, we have summarized the current state of knowledge on light chain mutations and how they induce physiological disease states via biochemical and biomechanical alterations at the molecular, tissue, and organ levels. Cardiac myosin RLC phosphorylation and the N-terminus ELC have been discussed as two important emerging modalities with important implications in the regulation of myosin motor function, and thus cardiac performance. A comprehensive understanding of such triggers is absolutely necessary for the development of target-specific rescue strategies to ameliorate or reverse the effects of myosin light chain-related inherited cardiomyopathies.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Restrictive/etiology
- Cardiomyopathy, Restrictive/genetics
- Cardiomyopathy, Restrictive/pathology
- Disease Models, Animal
- Humans
- Mutation
- Myosin Light Chains/genetics
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
| |
Collapse
|
11
|
Yadav S, Kazmierczak K, Liang J, Sitbon YH, Szczesna-Cordary D. Phosphomimetic-mediated in vitro rescue of hypertrophic cardiomyopathy linked to R58Q mutation in myosin regulatory light chain. FEBS J 2018; 286:151-168. [PMID: 30430732 DOI: 10.1111/febs.14702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Myosin regulatory light chain (RLC) phosphorylation is important for cardiac muscle mechanics/function as well as for the Ca2+ -troponin/tropomyosin regulation of muscle contraction. This study focuses on the arginine to glutamine (R58Q) substitution in the human ventricular RLC (MYL2 gene), linked to malignant hypertrophic cardiomyopathy in humans and causing severe functional abnormalities in transgenic (Tg) R58Q mice, including inhibition of cardiac RLC phosphorylation. Using a phosphomimic recombinant RLC variant where Ser-15 at the phosphorylation site was substituted with aspartic acid (S15D) and placed in the background of R58Q, we aimed to assess whether we could rescue/mitigate R58Q-induced structural/functional abnormalities in vitro. We show rescue of several R58Q-exerted adverse phenotypes in S15D-R58Q-reconstituted porcine cardiac muscle preparations. A low level of maximal isometric force observed for R58Q- versus WT-reconstituted fibers was restored by S15D-R58Q. Significant beneficial effects were also observed on the Vmax of actin-activated myosin ATPase activity in S15D-R58Q versus R58Q-reconstituted myosin, along with its binding to fluorescently labeled actin. We also report that R58Q promotes the OFF state of myosin, both in reconstituted porcine fibers and in Tg mouse papillary muscles, thereby stabilizing the super-relaxed state (SRX) of myosin, characterized by a very low ATP turnover rate. Experiments in S15D-R58Q-reconstituted porcine fibers showed a mild destabilization of the SRX state, suggesting an S15D-mediated shift in disordered-relaxed (DRX)↔SRX equilibrium toward the DRX state of myosin. Our study shows that S15D-phosphomimic can be used as a potential rescue strategy to abrogate/alleviate the RLC mutation-induced phenotypes and is a likely candidate for therapeutic intervention in HCM patients.
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
12
|
Yakubova A, Thorrez L, Svetlichnyy D, Zwarts L, Vulsteke V, Laenen G, Oosterlinck W, Moreau Y, Dehaspe L, Van Houdt J, Cortés-Calabuig Á, De Moor B, Callaerts P, Herijgers P. ACE-inhibition induces a cardioprotective transcriptional response in the metabolic syndrome heart. Sci Rep 2018; 8:16169. [PMID: 30385846 PMCID: PMC6212468 DOI: 10.1038/s41598-018-34547-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease associated with metabolic syndrome has a high prevalence, but the mechanistic basis of metabolic cardiomyopathy remains poorly understood. We characterised the cardiac transcriptome in a murine metabolic syndrome (MetS) model (LDLR−/−; ob/ob, DKO) relative to the healthy, control heart (C57BL/6, WT) and the transcriptional changes induced by ACE-inhibition in those hearts. RNA-Seq, differential gene expression and transcription factor analysis identified 288 genes differentially expressed between DKO and WT hearts implicating 72 pathways. Hallmarks of metabolic cardiomyopathy were increased activity in integrin-linked kinase signalling, Rho signalling, dendritic cell maturation, production of nitric oxide and reactive oxygen species in macrophages, atherosclerosis, LXR-RXR signalling, cardiac hypertrophy, and acute phase response pathways. ACE-inhibition had a limited effect on gene expression in WT (55 genes, 23 pathways), and a prominent effect in DKO hearts (1143 genes, 104 pathways). In DKO hearts, ACE-I appears to counteract some of the MetS-specific pathways, while also activating cardioprotective mechanisms. We conclude that MetS and control murine hearts have unique transcriptional profiles and exhibit a partially specific transcriptional response to ACE-inhibition.
Collapse
Affiliation(s)
- Aziza Yakubova
- Department of Cardiovascular Sciences, Research Unit of Cardiac Surgery, KU Leuven, Leuven, Belgium
| | - Lieven Thorrez
- Department of Development and Regeneration, Interdisciplinary Research Facility, KU Leuven, Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Dmitry Svetlichnyy
- Department of Human Genetics, Laboratory of Computational Biology, KU Leuven, Leuven, Belgium
| | - Liesbeth Zwarts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, Leuven, Belgium
| | - Veerle Vulsteke
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, Leuven, Belgium
| | - Griet Laenen
- Department of Electrical Engineering, ESAT - STADIUS, Stadius Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Wouter Oosterlinck
- Department of Cardiovascular Sciences, Research Unit of Cardiac Surgery, KU Leuven, Leuven, Belgium
| | - Yves Moreau
- Department of Electrical Engineering, ESAT - STADIUS, Stadius Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Luc Dehaspe
- Department of Human Genetics, Genomics Core, Center for Human Genetics, University Hospital, KU Leuven, Leuven, Belgium
| | - Jeroen Van Houdt
- Department of Human Genetics, Genomics Core, Center for Human Genetics, University Hospital, KU Leuven, Leuven, Belgium
| | - Álvaro Cortés-Calabuig
- Department of Human Genetics, Genomics Core, Center for Human Genetics, University Hospital, KU Leuven, Leuven, Belgium
| | - Bart De Moor
- Department of Electrical Engineering, ESAT - STADIUS, Stadius Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, Leuven, Belgium.
| | - Paul Herijgers
- Department of Cardiovascular Sciences, Research Unit of Cardiac Surgery, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Dvornikov AV, de Tombe PP, Xu X. Phenotyping cardiomyopathy in adult zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:116-125. [PMID: 29884423 PMCID: PMC6269218 DOI: 10.1016/j.pbiomolbio.2018.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is usually manifested by increased myofilament Ca2+ sensitivity, excessive contractility, and impaired relaxation. In contrast, dilated cardiomyopathy (DCM) originates from insufficient sarcomere contractility and reduced cardiac pump function, subsequently resulting in heart failure. The zebrafish has emerged as a new model of human cardiomyopathy with high-throughput screening, which will facilitate the discovery of novel genetic factors and the development of new therapies. Given the small hearts of zebrafish, better phenotyping tools are needed to discern different types of cardiomyopathy, such as HCM and DCM. This article reviews the existing models of cardiomyopathy, available morphologic and functional methods, and current understanding of the different types of cardiomyopathy in adult zebrafish.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Pieter P de Tombe
- University of Illinois at Chicago, Department of Physiology and Biophysics, Chicago, IL, USA; Magdi Yacoub Institute, Cardiac Biophysics Division, Harefield, UK; Imperial College, Heart and Lung Institute, London, UK; Freiburg University, Institute for Experimental Cardiovascular Medicine, Germany
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Ji F, Liu Q, Feng Z, Han X, Li Z. Genetic association between 1425G/A SNP in PRKCH and hypertrophic cardiomyopathy in a Chinese population. Oncotarget 2017; 8:114839-114844. [PMID: 29383124 PMCID: PMC5777736 DOI: 10.18632/oncotarget.22214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022] Open
Abstract
Hypertrophic cardiomyopathy is a heterogeneous myocardial disorder with a broad spectrum of clinical presentation and morphologic features. Previous reports indicated that protein kinase C pathway as a major determinant of cardiac hypertrophy and heart failure. Population-based analyses of the association between PRKCH gene (encoded PKCη) and HCM has not been performed yet. The purpose of this study is to investigate the association of the nonsynonymous SNP (1425G/A) in PRKCH gene and hypertrophic cardiomyopathy in a Chinese population. 323 patients with HCM and 326 controls were examined using a case-control methodology. The 1425G/A SNP in PRKCH was genotyped by allele-specific real-time PCR assay. The 1425G/A SNP in PRKCH increased the risk of HOCM (hypertrophic obstructive cardiomyopathy) (OR=1.427, 95% confidence interval, 1.013 to 2.012, P=0.046) under a dominant model. After age- and sex-adjustment, the significant associations remained in HOCM (for GG +AG versus AA, OR= 2.497, 95% confidence interval, 1.01 to 6.17; P=0.047). The 1425G/A SNP in PRKCH increases the risk of hypertrophic obstructive cardiomyopathy in the Chinese population.
Collapse
Affiliation(s)
- Feng Ji
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qun Liu
- Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Zeyu Feng
- Medical School of Nantong University, Nantong 226001, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhitong Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
15
|
Pseudophosphorylation of cardiac myosin regulatory light chain: a promising new tool for treatment of cardiomyopathy. Biophys Rev 2017; 9:57-64. [PMID: 28510043 DOI: 10.1007/s12551-017-0248-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Many genetic mutations in sarcomeric proteins, including the cardiac myosin regulatory light chain (RLC) encoded by the MYL2 gene, have been implicated in familial cardiomyopathies. Yet, the molecular mechanisms by which these mutant proteins regulate cardiac muscle mechanics in health and disease remain poorly understood. Evidence has been accumulating that RLC phosphorylation has an influential role in striated muscle contraction and, in addition to the conventional modulation via Ca2+ binding to troponin C, it can regulate cardiac muscle function. In this review, we focus on RLC mutations that have been reported to cause cardiomyopathy phenotypes via compromised RLC phosphorylation and elaborate on pseudo-phosphorylation rescue mechanisms. This new methodology has been discussed as an emerging exploratory tool to understand the role of phosphorylation as well as a genetic modality to prevent/rescue cardiomyopathy phenotypes. Finally, we summarize structural effects post-phosphorylation, a phenomenon that leads to an ordered shift in the myosin S1 and RLC conformational equilibrium between two distinct states.
Collapse
|
16
|
Zhou Z, Huang W, Liang J, Szczesna-Cordary D. Molecular and Functional Effects of a Splice Site Mutation in the MYL2 Gene Associated with Cardioskeletal Myopathy and Early Cardiac Death in Infants. Front Physiol 2016; 7:240. [PMID: 27378946 PMCID: PMC4911367 DOI: 10.3389/fphys.2016.00240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
The homozygous appearance of the intronic mutation (IVS6-1) in the MYL2 gene encoding for myosin ventricular/slow-twitch skeletal regulatory light chain (RLC) was recently linked to the development of slow skeletal muscle fiber type I hypotrophy and early cardiac death. The IVS6-1 (c403-1G>C) mutation resulted from a cryptic splice site in MYL2 causing a frameshift and replacement of the last 32 codons by 19 different amino acids in the RLC mutant protein. Infants who were IVS6-1+∕+-positive died between 4 and 6 months of age due to cardiomyopathy and heart failure. In this report we have investigated the molecular mechanism and functional consequences associated with the IVS6-1 mutation using recombinant human cardiac IVS6-1 and wild-type (WT) RLC proteins. Recombinant proteins were reconstituted into RLC-depleted porcine cardiac muscle preparations and subjected to enzymatic and functional assays. IVS6-1-RLC showed decreased binding to the myosin heavy chain (MHC) compared with WT, and IVS6-1-reconstituted myosin displayed reduced binding to actin in rigor. The IVS6-1 myosin demonstrated a significantly lower Vmax of the actin-activated myosin ATPase activity compared with WT. In stopped-flow experiments, IVS6-1 myosin showed slower kinetics of the ATP induced dissociation of the acto-myosin complex and a significantly reduced slope of the kobs-[MgATP] relationship compared to WT. In skinned porcine cardiac muscles, RLC-depleted and IVS6-1 reconstituted muscle strips displayed a significant decrease in maximal contractile force and a significantly increased Ca2+ sensitivity, both hallmarks of hypertrophic cardiomyopathy-associated mutations in MYL2. Our results showed that the amino-acid changes in IVS6-1 were sufficient to impose significant conformational alterations in the RLC protein and trigger a series of abnormal protein-protein interactions in the cardiac muscle sarcomere. Notably, the mutation disrupted the RLC-MHC interaction and the steady-state and kinetics of the acto-myosin interaction. Specifically, slower myosin cross-bridge turnover rates and slower second-order MgATP binding rates of acto-myosin interactions were observed in IVS6-1 vs. WT reconstituted cardiac preparations. Our in vitro results suggest that when placed in vivo, IVS6-1 may lead to cardiomyopathy and early death of homozygous infants by severely compromising the ability of myosin to develop contractile force and maintain normal systolic and diastolic cardiac function.
Collapse
Affiliation(s)
- Zhiqun Zhou
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| |
Collapse
|
17
|
Yu H, Chakravorty S, Song W, Ferenczi MA. Phosphorylation of the regulatory light chain of myosin in striated muscle: methodological perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:779-805. [PMID: 27084718 PMCID: PMC5101276 DOI: 10.1007/s00249-016-1128-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022]
Abstract
Phosphorylation of the regulatory light chain (RLC) of myosin modulates cellular functions such as muscle contraction, mitosis, and cytokinesis. Phosphorylation defects are implicated in a number of diseases. Here we focus on striated muscle where changes in RLC phosphorylation relate to diseases such as hypertrophic cardiomyopathy and muscular dystrophy, or age-related changes. RLC phosphorylation in smooth muscle and non-muscle cells are covered briefly where relevant. There is much scientific interest in controlling the phosphorylation levels of RLC in vivo and in vitro in order to understand its physiological function in striated muscles. A summary of available and emerging in vivo and in vitro methods is presented. The physiological role of RLC phosphorylation and novel pathways are discussed to highlight the differences between muscle types and to gain insights into disease processes.
Collapse
Affiliation(s)
- Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Samya Chakravorty
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Michael A Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
18
|
Scheid LM, Mosqueira M, Hein S, Kossack M, Juergensen L, Mueller M, Meder B, Fink RH, Katus HA, Hassel D. Essential light chain S195 phosphorylation is required for cardiac adaptation under physical stress. Cardiovasc Res 2016; 111:44-55. [DOI: 10.1093/cvr/cvw066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/18/2016] [Indexed: 01/10/2023] Open
|
19
|
Biesiadecki BJ, Ziolo MT. Should we treat heart failure with phosphatase inhibitors? Better to start at the end. J Mol Cell Cardiol 2015; 89:116-8. [PMID: 26497613 DOI: 10.1016/j.yjmcc.2015.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Karabina A, Kazmierczak K, Szczesna-Cordary D, Moore JR. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load. Arch Biochem Biophys 2015; 580:14-21. [PMID: 26116789 PMCID: PMC4790447 DOI: 10.1016/j.abb.2015.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/27/2015] [Accepted: 06/21/2015] [Indexed: 12/15/2022]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac β-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level.
Collapse
Affiliation(s)
- Anastasia Karabina
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
21
|
Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proc Natl Acad Sci U S A 2015; 112:E4138-46. [PMID: 26124132 DOI: 10.1073/pnas.1505819112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 → Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. We hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca(2+) sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.
Collapse
|
22
|
The R21C Mutation in Cardiac Troponin I Imposes Differences in Contractile Force Generation between the Left and Right Ventricles of Knock-In Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:742536. [PMID: 25961037 PMCID: PMC4415466 DOI: 10.1155/2015/742536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 01/20/2023]
Abstract
We investigated the effect of the hypertrophic cardiomyopathy-linked R21C (arginine to cysteine) mutation in human cardiac troponin I (cTnI) on the contractile properties and myofilament protein phosphorylation in papillary muscle preparations from left (LV) and right (RV) ventricles of homozygous R21C(+/+) knock-in mice. The maximal steady-state force was significantly reduced in skinned papillary muscle strips from the LV compared to RV, with the latter displaying the level of force observed in LV or RV from wild-type (WT) mice. There were no differences in the Ca(2+) sensitivity between the RV and LV of R21C(+/+) mice; however, the Ca(2+) sensitivity of force was higher in RV-R21C(+/+) compared with RV-WT and lower in LV- R21C(+/+) compared with LV-WT. We also observed partial loss of Ca(2+) regulation at low [Ca(2+)]. In addition, R21C(+/+)-KI hearts showed no Ser23/24-cTnI phosphorylation compared to LV or RV of WT mice. However, phosphorylation of the myosin regulatory light chain (RLC) was significantly higher in the RV versus LV of R21C(+/+) mice and versus LV and RV of WT mice. The difference in RLC phosphorylation between the ventricles of R21C(+/+) mice likely contributes to observed differences in contractile force and the lower tension monitored in the LV of HCM mice.
Collapse
|
23
|
Farman GP, Muthu P, Kazmierczak K, Szczesna-Cordary D, Moore JR. Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH2 terminus of the RLC on β-myosin cross-bridge mechanics. J Appl Physiol (1985) 2014; 117:1471-7. [PMID: 25324513 DOI: 10.1152/japplphysiol.00798.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM) is associated with mutations in sarcomeric proteins, including the myosin regulatory light chain (RLC). Here we studied the impact of three HCM mutations located in the NH2 terminus of the RLC on the molecular mechanism of β-myosin heavy chain (MHC) cross-bridge mechanics using the in vitro motility assay. To generate mutant β-myosin, native RLC was depleted from porcine cardiac MHC and reconstituted with mutant (A13T, F18L, and E22K) or wild-type (WT) human cardiac RLC. We characterized the mutant myosin force and motion generation capability in the presence of a frictional load. Compared with WT, all three mutants exhibited reductions in maximal actin filament velocity when tested under low or no frictional load. The actin-activated ATPase showed no significant difference between WT and HCM-mutant-reconstituted myosins. The decrease in velocity has been attributed to a significantly increased duty cycle, as was measured by the dependence of actin sliding velocity on myosin surface density, for all three mutant myosins. These results demonstrate a mutation-induced alteration in acto-myosin interactions that may contribute to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Gerrie P Farman
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; and
| | - Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | | | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; and
| |
Collapse
|