1
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
2
|
Combined prenatal to postnatal protein restriction augments protein quality control processes and proteolysis in the muscle of rat offspring. J Nutr Biochem 2023; 114:109273. [PMID: 36681307 DOI: 10.1016/j.jnutbio.2023.109273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Several human epidemiological and animal studies suggest that a maternal low-protein (MLP) diet affects skeletal muscle (SM) health in the offspring. However, effect of combined prenatal to postnatal protein restriction (chronic PR) and prenatal to perinatal protein restriction (PR) with postnatal rehabilitation maternal protein restriction (MPR) on protein quality control (PQC) processes and proteolysis in the offspring remains poorly understood. The current study explored the impact of chronic PR and MPR on SM protein degradation rates, chaperones, unfolded protein response (UPR), ubiquitin-proteasome system (UPS), autophagy, and apoptosis, in the adult offspring. Wistar rats were randomly assigned to a normal protein (NP; 20% casein), or low-protein (LP; 8% casein) isocaloric diets from 7 weeks prior to breeding through weaning. Offspring born to NP dams received the same diet (NP offspring) while a group of LP offspring remained on LP diet and another group was rehabilitated with NP diet (LPR offspring) from weaning for 16 weeks. LP offspring displayed lower body weight, lean mass, and myofiber cross-sectional area than NP. Furthermore, LP offspring demonstrated increased total protein degradation, urinary 3-methyl histidine, ER stress, autophagy, UPS components, proteasomal activity, muscle atrophy markers, and apoptosis-related proteins than NP. However, MPR showed little or no effect on muscle proteolysis, UPR, UPS, autophagy, apoptosis, and muscle atrophy in LPR offspring. These results indicate that exposure to chronic PR diets induces muscle atrophy and accelerates SM proteolysis via augmenting PQC processes in the offspring, while MPR shows little or no effect.
Collapse
|
3
|
Emerging therapeutic roles of small heat shock protein-derived mini-chaperones and their delivery strategies. Biochimie 2022; 208:56-65. [PMID: 36521577 DOI: 10.1016/j.biochi.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The small heat shock protein (sHsp) family is a group of proteins in which some are induced in response to external stimuli, such as environmental and pathological stresses, while others are constitutively expressed. They show chaperone-like activity, protect cells from apoptosis, and maintain cytoskeletal architecture. Short sequences or fragments ranging from approximately 19-20 residues in sHsps were shown to display chaperone activity in vitro. These sequences are termed sHsp-derived mini-peptides/mini-chaperones. These peptides offer an advantage in providing protective and therapeutic effects over full-length proteins owing to their small molecular weight and easy uptake into the cells. Research on sHsp mini-chaperone therapy has recently received attention and advanced tremendously. sHsp mini-chaperones have shown a wide range of therapeutic effects, such as anti-aggregation of proteins, anti-apoptotic, anti-inflammatory, anti-oxidant, senolytic, and anti-platelet activity. The administration of mini-chaperones into the several disease animal models, including experimental autoimmune encephalomyelitis, cataract, age-related macular degeneration, glaucoma, and thrombosis through various routes reduced symptoms or prevented the progression of the disease. However, it was found that the therapeutic potential of sHsp mini-chaperones is limited by their short turnover and enzymatic degradation in circulation. Nonetheless, carrier molecules approach such as nanoparticles, cell penetration peptides, and extracellular vesicles increased their efficacy by enhancing the uptake, retention time, protection from enzymatic degradation, and site-specific delivery without altering their biological activity. In this context, this review highlights the recent advances in the therapeutic potential of sHsp-derived mini-chaperones, their effect in experimental animal models, and approaches for increasing their efficacy.
Collapse
|
4
|
Reddy VS, Pandarinath S, Archana M, Reddy GB. Impact of chronic hyperglycemia on Small Heat Shock Proteins in diabetic rat brain. Arch Biochem Biophys 2021; 701:108816. [PMID: 33631184 DOI: 10.1016/j.abb.2021.108816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
Small heat shock proteins (sHsps) are a family of proteins. Some are induced in response to multiple stimuli and others are constitutively expressed. They are involved in fundamental cellular processes, including protein folding, apoptosis, and maintenance of cytoskeletal integrity. Hyperglycemia created during diabetes leads to neuronal derangements in the brain. In this study, we investigated the impact of chronic hyperglycemia on the expression of sHsps and heat shock transcription factors (HSFs), solubility and aggregation of sHsps and amyloidogenic proteins, and their role in neuronal apoptosis in a diabetic rat model. Diabetes was induced in Sprague-Dawley rats with streptozotocin and hyperglycemia was maintained for 16 weeks. Expressions of sHsps and HSFs were analyzed by qRT-PCR and immunoblotting in the cerebral cortex. Solubility of sHsps and amyloidogenic proteins, including α-synuclein and Tau, was analyzed by the detergent soluble assay. Neuronal cell death was analyzed by TUNEL staining and apoptotic markers. The interaction of sHsps with amyloidogenic proteins and Bax was assessed using co-immunoprecipitation. Hyperglycemia decreased Hsp27 and HSF1, and increased αBC, Hsp22, and HSF4 levels at transcript and protein levels. Diabetes induced the aggregation of αBC, Hsp22, α-synuclein, and pTau, as their levels were higher in the insoluble fraction. Additionally, diabetes impaired the interaction of αBC with α-synuclein and pTau. Furthermore, diabetes reduced the interaction of αBC with Bax, which may possibly contribute to neuronal apoptosis. Together, these results indicate that chronic hyperglycemia induces differential responses of sHsps by altering their expression, solubility, interaction, and roles in apoptosis.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - S Pandarinath
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - M Archana
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | |
Collapse
|
5
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
6
|
Li S, Liang M, Pan Y, Wang M, Gao D, Shang H, Su Q, Laher I. Exercise modulates heat shock protein 27 activity in diabetic cardiomyopathy. Life Sci 2020; 243:117251. [PMID: 31904365 DOI: 10.1016/j.lfs.2019.117251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 02/05/2023]
Abstract
AIMS Heat shock protein 27 regulates homeostasis of skeletal and cardiac muscle proteins in various stressful states including diabetes and exercise. Aerobic exercise can inhibit or ameliorate cardiac structural abnormality and dysfunction in diabetic cardiomyopathy. The aim of this study was to evaluate the role of HSP27 in aerobic exercise improving cardiac diastolic dysfunction in type 2 diabetic rats. METHODS Forty male Sprague-Dawley rats were randomly divided into the following groups: control, control + aerobic exercise, diabetic, and diabetic + aerobic exercise. Diabetes was induced by feeding with a high-fat high-sugar diet for 7-weeks followed by a single intraperitoneal injection of streptozotocin (30 mg/kg) in male rats. Moderate aerobic exercise training was performed on a treadmill for 8 weeks after induction of diabetes. KEY FINDINGS Aerobic exercise increased left ventricular end-diastolic internal diameter, left ventricular end-diastolic volume, myocardial HSP27 protein expression, HSP27-S82 phosphorylation levels, pHSP27-titin binding and improved cardiac muscle fibre alignment in diabetic rats. SIGNIFICANCE Our study indicates that moderate aerobic exercise increases HSP27 activation, improves cardiomyocyte fibre alignment and restores cardiac diastolic function.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Min Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Derun Gao
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Huayu Shang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Quansheng Su
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
7
|
Reddy VS, Trinath J, Reddy GB. Implication of homocysteine in protein quality control processes. Biochimie 2019; 165:19-31. [PMID: 31269461 DOI: 10.1016/j.biochi.2019.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
Homocysteine (Hcy) is a key metabolite generated during methionine metabolism. The elevated levels of Hcy in the blood are reffered to as hyperhomocystenimeia (HHcy). The HHcy is caused by impaired metabolism/deficiency of either folate or B12 or defects in Hcy metabolism. Accumulating evidence suggests that HHcy is associated with cardiovascular and brain diseases including atherosclerosis, endothelial injury, and stroke etc. Vitamin B12 (cobalamin; B12) is a water-soluble vitamin essential for two metabolic reactions. It acts as a co-factor for methionine synthase and L-methylmalonyl-CoA mutase. Besides, it is also vital for DNA synthesis and maturation of RBC. Deficiency of B12 is associated with haematological and neurological disorders. Hyperhomocysteinemia (HHcy)-induced toxicity is thought to be mediated by the accumulation of Hcy and its metabolites, homocysteinylated proteins. Cellular protein quality control (PQC) is essential for the maintenance of proteome integrity, and cell viability and its failure contributes to the development of multiple diseases. Chaperones, unfolded protein response (UPR), ubiquitin-proteasome system (UPS), and autophagy are analogous strategies of PQC that maintain cellular proteome integrity. Recently, multiple studies reported that HHcy responsible for perturbation of PQC by reducing chaperone levels, activating UPR, and impairing autophagy. Besides, HHcy also induce cytotoxicity, inflammation, protein aggregation and apoptosis. It has been shown that some of the factors including altered SIRT1-HSF1 axis and irreversible homocysteinylation of proteins are responsible for folate and/or B12 deficiency or HHcy-induced impairment of PQC. Therefore, this review highlights the current understanding of HHcy in the context of cellular PQC and their pathophysiological and clinical consequences, epigenomic changes, therapeutic implications of B12, and chemical chaperones based on cell culture and experimental animal models.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India.
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | | |
Collapse
|
8
|
Reddy VS, Madala SK, Trinath J, Reddy GB. Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress Chaperones 2018; 23:441-454. [PMID: 29086335 PMCID: PMC5904088 DOI: 10.1007/s12192-017-0856-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| |
Collapse
|
9
|
Jakhotia S, Sivaprasad M, Shalini T, Reddy PY, Viswanath K, Jakhotia K, Sahay R, Sahay M, Reddy GB. Circulating levels of Hsp27 in microvascular complications of diabetes: Prospects as a biomarker of diabetic nephropathy. J Diabetes Complications 2018; 32:221-225. [PMID: 29175119 DOI: 10.1016/j.jdiacomp.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
AIM Heat shock protein 27 (Hsp27) is a small heat shock protein known to protect the cells from apoptosis under stress. In the present study, we determined the plasma Hsp27 levels in type 2 diabetes subjects without and with microvascular complications- diabetic retinopathy (DRe), diabetic nephropathy (DNe), and diabetic neuropathy (DNu) to understand if it could serve as a marker for these complications. METHODS This is a hospital-based case-control study with 754 subjects including 247 controls, 195 subjects with diabetes, 123 with DRe, 80 with DNe and 109 with DNu. Plasma Hsp27 levels were measured by ELISA. RESULTS The mean plasma Hsp27 was higher in the DNe group (631.5±355.2) compared to the control (496.55±308.54), diabetes (523.41±371.01), DRe (494.60±391.48) and DNu (455.21±319.74) groups with a p-value of 0.018. Receiver operating characteristic (ROC) curve analysis of Hsp27 in DNe group showed an area under the curve (AUC) of 0.617. Spearman correlation analysis shows a positive correlation of plasma Hsp27 with serum creatinine (p=0.053, r-value 0.083). Gender, age and BMI did not affect the plasma Hsp27 levels. CONCLUSION The plasma Hsp27 levels in the DNe group are higher compared to the control and other complications, thereby it could be explored to be used as a potential biomarker of DNe.
Collapse
Affiliation(s)
- Sneha Jakhotia
- Biochemistry, National Institute of Nutrition, Hyderabad, India
| | | | - Tattari Shalini
- Biochemistry, National Institute of Nutrition, Hyderabad, India
| | | | | | | | - Rakesh Sahay
- Osmania Medical College and General Hospital, Hyderabad, India
| | - Manisha Sahay
- Osmania Medical College and General Hospital, Hyderabad, India
| | | |
Collapse
|
10
|
Panneerselvam L, Raghunath A, Perumal E. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride. Cell Stress Chaperones 2017; 22:743-750. [PMID: 28451878 PMCID: PMC5573692 DOI: 10.1007/s12192-017-0801-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/28/2017] [Accepted: 04/16/2017] [Indexed: 01/21/2023] Open
Abstract
Acute fluoride (F-) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F- induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F--intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F- for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F--intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F--treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F--induced heart failure.
Collapse
Affiliation(s)
- Lakshmikanthan Panneerselvam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
11
|
Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, Qin D, Essandoh K, Wang Y, Peng T, Fan GC. Hsp20-Mediated Activation of Exosome Biogenesis in Cardiomyocytes Improves Cardiac Function and Angiogenesis in Diabetic Mice. Diabetes 2016; 65:3111-28. [PMID: 27284111 PMCID: PMC5033265 DOI: 10.2337/db15-1563] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/25/2016] [Indexed: 12/12/2022]
Abstract
Decreased heat shock protein (Hsp) expression in type 1 and type 2 diabetes has been implicated as a primary factor contributing to diabetes-induced organ damage. We recently showed that diabetic cardiomyocytes could release detrimental exosomes, which contain lower levels of Hsp20 than normal ones. To investigate whether such detrimental exosomes could be modified in cardiomyocytes by raising Hsp20 levels to become protective, we used a transgenic (TG) mouse model with cardiac-specific overexpression of Hsp20. TG and control wild-type (WT) mice were injected with streptozotocin (STZ) to induce diabetes. We observed that overexpression of Hsp20 significantly attenuated STZ-caused cardiac dysfunction, hypertrophy, apoptosis, fibrosis, and microvascular rarefaction. Moreover, Hsp20-TG cardiomyocytes exhibited an increased generation/secretion of exosomes by direct interaction of Hsp20 with Tsg101. Of importance, exosomes derived from TG cardiomyocytes encased higher levels of Hsp20, p-Akt, survivin, and SOD1 than WT exosomes and protected against in vitro hyperglycemia-triggered cell death, as well as in vivo STZ-induced cardiac adverse remodeling. Last, blockade of exosome generation by GW4869 remarkably offset Hsp20-mediated cardioprotection in diabetic mice. Our results indicate that elevation of Hsp20 in cardiomyocytes can offer protection in diabetic hearts through the release of instrumental exosomes. Thus, Hsp20-engineered exosomes might be a novel therapeutic agent for diabetic cardiomyopathy.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Animals
- Benzylidene Compounds/pharmacology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Cells, Cultured
- Collagen Type I/metabolism
- Collagen Type III/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Exosomes/drug effects
- Exosomes/metabolism
- HSP20 Heat-Shock Proteins/genetics
- HSP20 Heat-Shock Proteins/metabolism
- Heart/drug effects
- Male
- Mice
- Mice, Transgenic
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Protein Binding
- Reactive Oxygen Species/metabolism
- Superoxide Dismutase-1/metabolism
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Haitao Gu
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jiangtong Peng
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH Department of Cardiovascular Diseases, Tongji Medical College Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Li
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Liwang Yang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Dongze Qin
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kobina Essandoh
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, Ontario, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
12
|
Toft DJ, Fuller M, Schipma M, Chen F, Cryns VL, Layden BT. αB-crystallin and HspB2 deficiency is protective from diet-induced glucose intolerance. GENOMICS DATA 2016; 9:10-7. [PMID: 27330996 PMCID: PMC4909821 DOI: 10.1016/j.gdata.2016.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/29/2022]
Abstract
Emerging evidence suggests molecular chaperones have a role in the pathogenesis of obesity and diabetes. As αB-crystallin and HspB2 are molecular chaperones and data suggests their expression is elevated in the skeletal muscle of diabetic and obese animals, we sought to determine if αB-crystallin and HspB2 collectively play a functional role in the metabolic phenotype of diet-induced obesity. Using αB-crystallin/HspB2 knockout and littermate wild-type controls, it was observed that mice on the high fat diet gained more weight as compared to the normal chow group and genotype did not impact this weight gain. To test if the genotype and/or diet influenced glucose homeostasis, intraperitoneal glucose challenge was performed. While similar on normal chow diet, wild-type mice on the high fat diet exhibited higher glucose levels during the glucose challenge compared to the αB-crystallin/HspB2 knockout mice. Although wild-type mice had higher glucose levels, insulin levels were similar for both genotypes. Insulin tolerance testing revealed that αB-crystallin/HspB2 knockout mice were more sensitive to insulin, leading to lower glucose levels over time, which is indicative of a difference in insulin sensitivity between the genotypes on a high fat diet. Transcriptome analyses of skeletal muscle in αB-crystallin/HspB2 knockout and wild-type mice on a normal or high fat diet revealed reductions in cytokine pathway genes in αB-crystallin/HspB2 knockout mice, which may contribute to their improved insulin sensitivity. Collectively, these data reveal that αB-crystallin/HspB2 plays a role in development of insulin resistance during a high fat diet challenge.
Collapse
Affiliation(s)
- Daniel J Toft
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Miles Fuller
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Matthew Schipma
- Next Generation Sequencing Core, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Feng Chen
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Vincent L Cryns
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Brian T Layden
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
13
|
Bakthisaran R, Akula KK, Tangirala R, Rao CM. Phosphorylation of αB-crystallin: Role in stress, aging and patho-physiological conditions. Biochim Biophys Acta Gen Subj 2015; 1860:167-82. [PMID: 26415747 DOI: 10.1016/j.bbagen.2015.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. SCOPE OF REVIEW The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. MAJOR CONCLUSIONS Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. GENERAL SIGNIFICANCE Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
14
|
Reddy VS, Reddy GB. Role of crystallins in diabetic complications. Biochim Biophys Acta Gen Subj 2015; 1860:269-77. [PMID: 25988654 DOI: 10.1016/j.bbagen.2015.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Crystallins are the major structural proteins of vertebrate eye lens responsible for maintaining the refractive index of the lens. However, recent studies suggest that they also have a functional significance in non-lenticular tissues. Prolonged uncontrolled diabetes results in the development of macro and microvascular complications that are the leading causes of morbidity and mortality in diabetic patients all over the world. SCOPE OF REVIEW Recent studies have shown that crystallins play an instrumental role in diabetes and its complications. Therefore, this review highlights the current data on the impact of chronic hyperglycemia on expression, distribution, glycation, phosphorylation, chaperone-like function and, anti-apoptotic activity of crystallins. Furthermore, we discussed the insights for developing therapeutic strategies for diabetic complications including natural agents, peptides, and pharmacological chaperones that modulate or mimic chaperone activity of α-crystallins. MAJOR CONCLUSIONS Upregulation of crystallins appears to be a common feature of chronic diabetes. Further, chronic hyperglycemia induces the glycation and phosphorylation of crystallins, mainly α-crystallins and thereby alters their properties. The disturbed interaction of αB-crystallin with various apoptotic mediators including Bax and caspases is also an important factor for increased cell death in diabetes. Numerous dietary agents, peptides, and chemical chaperones prevent apoptosis and the loss of chaperone activity in diabetes. GENERAL SIGNIFICANCE Understanding the role of crystallins will aid in developing therapeutic strategies for alleviating pathophysiological conditions such as protein aggregation, inflammation, oxidative stress and apoptosis associated with chronic complications of diabetes including cataract, retinopathy, and cardiomyopathy. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Vadde Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India.
| |
Collapse
|
15
|
Reddy VS, Jakhotia S, Reddy PY, Reddy GB. Hyperglycemia induced expression, phosphorylation, and translocation of αB-crystallin in rat skeletal muscle. IUBMB Life 2015; 67:291-9. [PMID: 25900025 DOI: 10.1002/iub.1370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/27/2015] [Indexed: 12/16/2022]
Abstract
αB-Crystallin (αBC) is a member of the small heat shock protein family that responds to a variety of stress and prevents the aggregation of partially unfolded proteins. Chronic hyperglycemia created during diabetes results in skeletal muscle atrophy and leads to diabetic myopathy. The aim of this study was to investigate the role of αBC under chronic hyperglycemia in rat skeletal muscle. Diabetes was induced in Wistar rats by a single i.p injection of streptozotocin and maintained for a period of 12 weeks at the end of which the animals were sacrificed and the muscle was collected. The protein levels of αBC and its phosphorylation status in gastrocnemius muscle were analyzed by immunoblotting. The translocation of phosphorylated αBC was analyzed by detergent solubility assay, co-immunoprecipitation (Co-IP), and immunohistochemistry. The cell death was analyzed by TUNEL assay and by apoptotic markers. The interaction of αBC with Bax was analyzed by Co-IP. Chronic hyperglycemia significantly increased the protein levels of αBC and its phosphorylation at S59 by activation of p38 mitogen-activated protein kinase (p38MAPK) and at S45 by activation of the extracellular regulated protein kinase 1/2 (ERK1/2). Further, phosphorylated αBC translocated and interacted with desmin indicating that phosphorylated αBC forms might be involved in protection of sarcomere structures from disruption in chronic hyperglycemia. Further, Co-IP studies showed an impaired interaction of αBC with Bax which could be one of the possible factors for increased cell death as evidenced by TUNEL assay in diabetic muscle. These results suggest that an increased expression, phosphorylation, translocation of αBC, and its involvement in apoptosis might play a significant role in maintenance of cytoskeletal architecture and protection of cells from apoptosis in diabetic skeletal muscle.
Collapse
Affiliation(s)
- Vadde Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana, India
| | - Sneha Jakhotia
- Biochemistry Division, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana, India
| | - P Yadagiri Reddy
- Biochemistry Division, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana, India
| |
Collapse
|